This application was published in German on Aug. 8, 2002 as International Publication Number WO 02/060629 A1.
The invention relates to a milling tool and in particular to a so-called tubular drill, as it is used by jewellers or goldsmiths for producing pieces of jewellery.
Milling tools and tubular drills of that kind are known. They serve to round off the ends of wires with which jewels are held in their frames. For these purposes, milling tools with precision gear cuttings have been developed as shown in
It is therefore an object of the present invention to provide a milling tool and in particular a tubular drill which is capable of performing the rounding off procedure in a simple and fast manner without the danger of clogging the cutting edges.
This object is solved by the features of claim 1.
Due to this embodiment, a milling tool or a tubular drill, respectively, is provided with which chip removal is guaranteed, as a sufficiently large area for the chip removal can be provided by means of slits. Thus, the rounding off process is made easier and the milling tool prevents clogging and loading of the cutting edges that enhances the cutting performance of the tool.
Preferred embodiments are described in the subclaims.
According to a preferred further development, the bore is disposed eccentrically, such that the axis of the bore extends laterally offset with respect to the axis of the tool. By way of this embodiment, a cutting angle is generated at the resulting cutting edge, which positively influences the cutting performance of the tool.
The chip removal can further be influenced in a positive sense if according to the preferred embodiment, at least one slit is provided, the following edge of which forms the cutting edge. In this way, an edge is generated which offers at its front side sufficient space for a good chip removal through the slit and has at its rear side a sufficient clearance angle for a good penetration of the edge into the material to be processed.
Preferably, the slit extends from the axis of the tool to the outer circumferential surface of the working portion and the following side surface of the slit extends substantially through the axis of the tool. Thus, the chips can be discharged outwardly. This prevents clogging at the edges.
According to a preferred embodiment, at least two bores are provided, the axes of which extend parallel to each other or in an angle, preferably between 0° to 20°, with respect to the axis of the tool. The axes of the two bores are also arranged such that they are laterally offset with respect to the axis of the tool by the same amount or by different amounts, but in different directions, such that the contour of the bores viewed from the front forms a circle being slightly centrically constricted. This arrangement presents an optimum relation between the number of edges and the available cutting space.
In order to guarantee an optimum chip removal in this embodiment, preferably two slits are provided. The slits are arranged such that respectively one slit—relative to the rotational direction—is positioned directly in front of the contraction. Thus, chips generated by the respective edges can be discharged directly through the slits to effectively prevent clogging.
According to alternative embodiments, it is also possible to provide more than two cutting edges. If this is the case, in accordance with a preferred embodiment, the number of eccentric bores corresponds to the number of cutting edges or the number of slits, respectively. With this arrangement, the chips produced by each edge can be directly discharged from the cutting position, without the occurrence of clogging.
In case of several edges or bores, it is advantageous for reasons of manufacturing if the bores, the slits and the cutting edges are arranged such that there results a symmetric assembly.
The chip removal can be further ameliorated if according to a preferred embodiment, each slit has a smooth, in particular arc-shaped groove bottom. Such a shape positively influences the transport of the chips, thereby preventing collection of chips and clogging of the slits.
By way of the shape of the bore, the shape generated at the working portion can be influenced. Therefore, each bore has, according to a preferred embodiment, when viewed from the side, the shape of a semicircle, such that a semicircular shaped end at the working portion is generated.
However, if a different end form is desired, another shape of the bore can also be provided. For example, each bore, viewed from the side, can have the shape of a cone, such that a cone-shaped end is generated at the working portion.
Concerning the displacement of the bore and concerning the width of the slits, experiments may be made to a broad extent. However, it has proven to be especially appropriate if the displacement of each eccentric bore ranges from 0 to a maximum of about 0.25 of the diameter of the working portion and if the width of the slits ranges from 0 to a maximum of about 0.5 of the diameter of the working portion. Thus, the size of the cutting spaces and the size of the chip discharge can be coordinated optimally.
Further advantages, features and developments of the present invention result from the description of preferred embodiments. In the drawings:
In
The arrangement of the bores 4 is selected such that there results, on the whole, a symmetric assembly of the working portion 3. In
Further, two slits 6 are arranged in the working portion 3, the lower edge of which, positioned at the back in the rotational direction “P”, forms a cutting edge 8. The slits 6 are positioned exactly such that respectively one slit 6 follows one of the contractions 10 formed by the contour of the bores 4. As shown in
The width of the slits 6 can have any size and preferably ranges from 0 to a maximum of about 0.5 of the diameter “D” of the working portion 3.
The groove bottom 9 of the slits 6 is formed smoothly, to guarantee a trouble-free chip removal. It can be shaped flat, as shown in
The inventive milling tool 1 is preferably provided with two bores 4, two slits 6 and two cutting edges 8. However, it is also possible to provide three or four cutting edges 8, as shown in
As an alternative to the embodiments shown in
As an alternative, the bores also can be arranged not axially parallel, i.e. in an angle, preferably between 0° and 20° and further preferred between 0° and 10°, with respect to the axis of the tool, although this is not illustrated in
Number | Date | Country | Kind |
---|---|---|---|
101 04 580 | Feb 2001 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP02/00971 | 1/30/2002 | WO | 00 | 9/1/2005 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/060629 | 8/8/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4145159 | Yamada et al. | Mar 1979 | A |
4795289 | Potemkin | Jan 1989 | A |
4847464 | Moore, Sr. | Jul 1989 | A |
5213452 | Kirby | May 1993 | A |
6168355 | Wardell | Jan 2001 | B1 |
6435780 | Flynn | Aug 2002 | B1 |
Number | Date | Country |
---|---|---|
154 242 | Dec 1903 | DE |
313 494 | Feb 1918 | DE |
2 531 887 | Feb 1984 | FR |
2 749 203 | May 1997 | FR |
Number | Date | Country | |
---|---|---|---|
20060056927 A1 | Mar 2006 | US |