Embodiments of the disclosure relate to the field of cyber-security. More specifically, one embodiment of the disclosure relates to a system, apparatus and method for providing an early warning of a potential attack on a client device based on real-time analysis.
Over the last decade, malicious software has become a pervasive problem for Internet users as many networked resources include vulnerabilities that are subject to attack. For instance, over the past few years, an increasing number of vulnerabilities are being discovered in software that is loaded onto network devices, such as vulnerabilities within operating systems, for example. While some vulnerabilities continue to be addressed through software patches, prior to the release of such software patches, network devices will continue to be targeted for attack by malware, namely information such as computer code that attempts during execution to take advantage of a vulnerability in computer software by acquiring sensitive information or adversely influencing or attacking normal operations of the network device or the entire enterprise network.
Moreover, with the proliferation of the Internet, social media, and email, malware is capable of spreading more quickly and effecting a larger subset of the population than ever before. In response, systems have been developed to remove and/or quarantine malware. For example, users are generally informed to “scan” their various devices and/or systems using traditional security measures such as “anti-virus” software that is configured to remove any malware that may have been installed therein. Unfortunately, users are at the mercy of the most recent update of their anti-virus software, which may or may not include information to prevent possible malware exploits.
Furthermore, modern malware is becoming increasingly targeted, such that particular users, industries, or even specific segments are being sought, thereby circumventing even the most recently updated and detailed security measures that are usually generic in nature. The issue is further exacerbated because malware is also becoming increasingly sophisticated, to the point that such malware may go undetected by anti-virus software, or go so far as circumventing anti-virus measures altogether.
Accordingly, a need exists for an early warning system that is preventative, rather than reactive after the fact, to predict potential malware attacks prior to their occurrence, and notify targets that have a high probability of being attacked.
Embodiments of the invention are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:
Embodiments of the present disclosure generally relate to a cyber attack early warning system that is configured to predict and notify probable targets of a potential malware attack prior to its occurrence.
According to one embodiment of the disclosure, network traffic is analyzed such that malicious network traffic is filtered and preferably prevented from executing, using a remote source. Herein, upon detection of potentially malicious network traffic, the remote source is configured to generate an “attack alert” that is communicated to the cyber attack early warning system, which comprises an input engine, an expert engine, a correlation engine, and a reporting engine.
When the attack alert is received by the cyber attack early warning system, the attack alert is analyzed and classified. For example, the attack alert may correspond to any of various malware attack types, including without limitation Advanced Persistent Threats (APT), Point-Of-Sales attacks (POS), Crimeware attacks, and the like.
Once the attack alert is classified, an attack-specific engine is configured to provide further in-depth analysis of the attack alert, including the application of a plurality of analysis mechanisms, such as various algorithms and/or models specific to the type of malware attack. It is contemplated that the attack-specific engine may also analyze elements of past attacks and related data. The results of these various analyses are correlated to compute an “attack value” so that probable attack targets may be notified. For example, probable attack targets may include companies or individuals in the same industry, geographic region, and capacity, for example, without limitation. If the determined attack value matches or exceeds a predetermined threshold value, then an early warning alert is provided to probable targets of a malware attack. If the attack value is less than the predetermined threshold, then the early warning alert is not generated.
In the following description, certain terminology is used to describe features of the invention. For example, in certain situations, both terms “logic” and “engine” are representative of hardware, firmware and/or software that is configured to perform one or more functions. As hardware, logic (or engine) may include circuitry having data processing or storage functionality. Examples of such circuitry may include, but are not limited or restricted to a microprocessor, one or more processor cores, a programmable gate array, a microcontroller, an application specific integrated circuit, wireless receiver, transmitter and/or transceiver circuitry, semiconductor memory, or combinatorial logic.
Logic (or engine) may be software in the form of one or more software modules, such as executable code in the form of an executable application, an application programming interface (API), a subroutine, a function, a procedure, an applet, a servlet, a routine, source code, object code, a shared library/dynamic load library, or one or more instructions. These software modules may be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of non-transitory storage medium may include, but are not limited or restricted to a programmable circuit; a semiconductor memory; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); persistent storage such as non-volatile memory (e.g., read-only memory “ROM”, power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or a portable memory device. As firmware, the executable code is stored in persistent storage.
The term “object” generally refers to a collection of data, whether in transit (e.g., over a network) or at rest (e.g., stored), often having a logical structure or organization that enables it to be classified for purposes of analysis. During analysis, for example, the object may exhibit a set of expected characteristics and, during processing, a set of expected behaviors. The object may also exhibit a set of unexpected characteristics and a set of unexpected behaviors that may evidence an exploit and potentially allow the object to be classified as an exploit.
Examples of objects may include one or more flows or a self-contained element within a flow itself. A “flow” generally refers to related packets that are received, transmitted, or exchanged within a communication session. For convenience, a packet is broadly referred to as a series of bits or bytes having a prescribed format, which may include packets, frames, or cells.
As an illustrative example, an object may include a set of flows such as (1) a sequence of transmissions in accordance with a particular communication protocol (e.g., User Datagram Protocol (UDP); Transmission Control Protocol (TCP); or Hypertext Transfer Protocol (HTTP); etc.), or (2) inter-process communications (e.g., Remote Procedure Call “RPC” or analogous processes, etc.). Similar, as another illustrative example, the object may be a self-contained element, where different types of such objects may include an executable file, non-executable file (such as a document or a dynamically link library), a Portable Document Format (PDF) file, a JavaScript file, Zip file, a Flash file, a document (for example, a Microsoft Office® document), an electronic mail (email), downloaded web page, an instant messaging element in accordance with Session Initiation Protocol (SIP) or another messaging protocol, or the like.
According to one embodiment, the term “malware” may be construed broadly as any code or activity that initiates a malicious attack and/or operations associated with anomalous or unwanted behavior. For instance, malware may correspond to a type of malicious computer code that executes an exploit to take advantage of a vulnerability, for example, to harm or co-opt operation of a network device or misappropriate, modify or delete data. In the alternative, malware may correspond to an exploit, namely information (e.g., executable code, data, command(s), etc.) that attempts to take advantage of a vulnerability in software and/or an action by a person gaining unauthorized access to one or more areas of a network device to cause the network device to experience undesirable or anomalous behaviors. The undesirable or anomalous behaviors may include a communication-based anomaly or an execution-based anomaly, which, for example, could (1) alter the functionality of an network device executing application software in an atypical manner (a file is opened by a first process where the file is configured to be opened by a second process and not the first process); (2) alter the functionality of the network device executing that application software without any malicious intent; and/or (3) provide unwanted functionality which may be generally acceptable in another context. Additionally, malware may be code that initiates unwanted behavior which may be, as one example, uploading a contact list from an endpoint device to cloud storage without receiving permission from the user.
The term “shellcode” refers to a small piece of executable code that resides in data (e.g., is injected into data), is used as a payload of malware, and, in some cases, contains a shell command to execute an exploit.
In certain instances, the term “detected” is used herein to represent that there is a prescribed level of confidence (or probability) on the presence of an exploit or attack within an object under analysis.
The term “network device” should be construed as any electronic device with the capability of connecting to a network. Such a network may be a public network such as the Internet or a private network such as a wireless data telecommunication network, wide area network, a type of local area network (LAN), or a combination of networks. Examples of a network device may include, but are not limited or restricted to, a laptop, a mobile phone, a tablet, a computer, etc.
The term “computerized” generally represents that any corresponding operations are conducted by hardware in combination with software and/or firmware. Also, the terms “compare” or “comparison” generally mean determining if a match (e.g., a certain level of correlation) is achieved between two items where one of the items may include a particular signature pattern.
Finally, the terms “or” and “and/or” as used herein are to be interpreted as inclusive or meaning any one or any combination. Therefore, “A, B or C” or “A, B and/or C” mean “any of the following: A; B; C; A and B; A and C; B and C; A, B and C.” An exception to this definition will occur only when a combination of elements, functions, steps or acts are in some way inherently mutually exclusive.
As this invention is susceptible to embodiments of many different forms, it is intended that the present disclosure is to be considered as an example of the principles of the invention and not intended to limit the invention to the specific embodiments shown and described.
Referring to
When suspicious objects are identified by the MCD system 102, an attack alert 110 is generated and received by the EWS 100. The attack alert 110 may comprise analysis logs detailing certain characteristics of exploits, such as from one or more virtual machines, attack metadata, communication logs from the client device and/or the MCD system 102, and various other information corresponding to a malware attack, without limitation.
As shown in
In one embodiment, the EWS 100 and MCD system 102 are communicatively coupled with a threat intelligence network 105. The threat intelligence network 105 may be configured to store and access data regarding malware attacks across a number of objects, including for example, web-based, email-based, and file-based threats. Moreover, it is envisioned that the threat intelligence network 105 may be configured to store historical information regarding previously analyzed and/or known malware attacks. The threat intelligence network 105 may also be periodically and/or aperiodically updated so as to store information regarding new malware attacks, reports, alerts, and/or corresponding features, for example.
Once generated, some or all of the data associated with the attack alert 110 is routed to the EWS 100 using pull coding, such that the initial request for the attack alert 110 originates from the EWS 100, and is then responded to by a server, such as via the threat intelligence network 105. In one embodiment, using pull coding, the threat intelligence network 105 may be idle until the EWS 100 interrupts the threat intelligence network 105 with a request. Upon receipt of the request, the threat intelligence network 105 may become an active component. In one embodiment, the threat intelligence network 105 may be configured so as to determine its own interest in the request and also to consider the origin of the request prior to communicating any further data. It should be appreciated, however, that other routing methodologies such as push technologies, or some hybrid of push/pull technologies are within the scope and spirit of the present disclosure.
Upon receipt by the EWS 100, the attack alert 110 is communicated to the input engine 120 for analysis, feature extraction and classification using various logic, such as heuristics, exploit/vulnerability logic and parsing logic, for example, as explained in detail further below. When the attack alert 110 is classified, the input engine 120 generates a classified result 125 that is communicated to the attack-specific engine 130, which provides attack-specific analysis with respect to the classified result 125. As shown, the attack-specific engine 130 includes attack-specific logic 135 that may be specifically tailored to analyze one of various malware attacks, including by way of non-limiting example, APT, POS, and Crimeware attacks.
For example, the attack-specific logic 135 may comprise a plurality of analysis mechanisms such as one or more heuristic, probabilistic, and/or machine learning algorithms specific to a type of malware attack. Consequently, a particular attack alert may be compared with previously known attacks, incidences, feature sets, vulnerabilities, attack signatures, and the like, to determine correspondence with respect to a plurality of time-dependent and time-independent features. In one embodiment, the time dependent features may comprise the number of request-response sessions, and/or the time, day, and month of the attack. Similarly, in one embodiment, time-independent features may comprise the time-independent features such as the geographic location of the attack target, industry, employees of an organization, either alone or in combination, without limitation. The combination of time-dependent and time-independent features are then examined using a plurality of correlation techniques, so as to determine a degree of similarity based on the presence and/or volume of the time-dependent and time-independent features and generate an attack-specific engine result 140 that is communicated to the correlation engine 145.
Using probabilistic or machine-learning algorithms, the correlation engine 145 is configured to determine an “attack value”, which in one embodiment comprises a real-time value that may be based on at least the attack-specific engine result 140, time-dependent and time-independent features, and a consideration of potential attack targets, for example. The correlation engine 145 is configured to compare the attack value with a predetermined threshold value to determine whether an early warning alert should be generated.
In one embodiment, the predetermined threshold value may represent, for example, certain incidences, feature sets, vulnerabilities, and/or attack signatures specific to any of various malware attacks. More specifically, it is envisioned that the predetermined threshold value may comprise any plurality of characteristics of a particular malware attack, including by way of non-limiting example, the number and/or existence of various API calls, request-response sessions, and geographical information regarding the most recent, and/or previously targeted parties. It should be understood that the predetermined threshold value might vary for different types of malware attacks. Thus, for certain malware attacks, only one characteristic may be required to be present so that the attack value matches or exceeds the threshold value. Of course, in other instances, the threshold value may be adapted to accommodate any number of characteristics depending on the type of malware attack.
In general, if the attack value matches or exceeds the predetermined threshold value, then a correlated result 150 is generated and communicated to the reporting engine 155 for final processing and reporting. In the event that the attack value fails to exceed the predetermined threshold, then the correlated results 150 may indicate, for example, that the reporting engine 155 should not generate an early warning alert or report 160. The correlated results 150 may be stored in a database for future reference.
If the correlated results 150 indicate that an early warning alert or report 160 should be generated, then at least portions of the correlated results 150 and attack-specific engine results 140 may be combined and communicated to the reporting engine 155. The reporting engine 155 may issue an early warning alert or report 160 (e.g., an email message, text message, display screen image, etc.) to security administrators for example, communicating the urgency in handling and preferably preventing one or more predicted attacks.
Alternatively, the early warning alert or report 160 may trigger further analysis of the object by the MCD system 102, for example, to verify behavior of the object as an exploit. The early warning alert or report 160 may also include detailed instructions pertaining to specific attack types, potential issues thereto, security holes, and best practices to prevent one or more predicted malware attacks. It should be appreciated that the reporting engine 155 may also be configured to update the threat intelligence network 105 with information corresponding to the instantly analyzed attack alert for future reference and/or further processing.
Referring to
According to the embodiment illustrated in
As shown, the EWS 100 may be communicatively coupled with the communication network 261 via a network interface 270. In general, the network interface 270 operates as a data capturing device (sometimes referred to as a “tap” or “network tap”) that is configured to receive data propagating to/from the client device 264 and provide at least some of this data to the MCD system 263. Alternatively, the MCD system 263 may be positioned behind the firewall 262 and in-line with client device 264.
According to one embodiment of the disclosure, the network interface 270 is capable of receiving and routing objects associated with network traffic to the MCD system 263. The network interface 270 may provide the entire traffic or a certain subset of the network traffic, for example, such as one or more files that are part of a set of flows, packet payloads, or the like. In some embodiments, although not shown, network interface 270 may be contained within the MCD system 263.
As further shown in
In some embodiments, as best shown in
Referring again to
Additionally or in the alternative, the attack alert logic 211 may be configured with exploit/vulnerability matching logic 214 that is adapted to perform vulnerability signature checks, namely a process of uncovering deviations in messaging practices set forth in applicable communication protocols (e.g., HTTP, TCP, etc.). The term “signature” designates an indicator of a set of characteristics and/or behaviors exhibited by one or more exploits that may not be unique to those exploit(s). Thus, a match of the signature may indicate to some level of probability, often well less than 100%, that the attack alert 110 comprises a certain exploit. In some contexts, those of skill in the art have used the term “signature” as a unique identifier or “fingerprint,” for example, of a specific virus or virus family (or other exploit), which is generated for instance as a hash of its machine code, and that is a special sub-case for purposes of this disclosure.
As further shown in
As shown, the classified results 125 are communicated to the attack-specific engine 220. The attack-specific engine 220 comprises attack-specific logic 135 that comprises a plurality of attack cores 2221-222N, each specific to one of various types of malware attacks, including by way of non-limiting example, APT, POS, and Crimeware attacks. The attack-specific engine 220 further comprises routing logic 223 that is configured so as to route the classified result 125 to one of the appropriate attack cores 2221-222N. It is envisioned that each of the attack cores 2221-222N is configured so as to analyze the content of the attack alert 110 and apply a plurality of analysis mechanisms specific to the type of malware attack. In one embodiment, each of the attack cores 2221-222N may be configured as a plug-in, extension, and/or an add-on, for example, so as to apply analysis mechanisms specific to the type of malware attack. Each of the plug-ins may include feature logic 224 specific to each type of attack, including, but not limited to network and operating system behavior when a client device and/or network is under a specific type of malware attack, as explained in further detail below. It is envisioned that each of the plug-ins may be configured so as to cooperate with any real-time data collection and/or processing capabilities of the EWS 100.
In one embodiment, each of the plurality of attack cores 2221-222N comprises feature logic 224 specific to each type of attack, based on, for example, attacks stored in a feature-set database 225 comprising historical data corresponding to known and/or previously analyzed attacks. More specifically, the feature logic 224 may comprise time-dependent features and time-independent features. With respect to time-dependent features, a particular attack alert may be compared with previously known attacks, incidences, attack signatures, and the like, so as to determine correspondence with respect to a plurality of time-dependent features such as the number of methods for a request-response over a predetermined period of time, the time of day of the attack, the duration of the attack, the month, year, execution time of the attack, and the like, without limitation. Furthermore, a plurality of time-independent features, as the name implies, may comprise features such as the geographic location of the attack target, industry, role/title of a specific party etc., without limitation. For example, in one embodiment, in the event that there is an APT attack, the feature-set database 225 may have information stored thereon relating to known APT attacks, such as the medium most often used in such attacks, e.g., a document, or PDF file, and the like; along with any correspondingly suspicious instructions, commands, and/or processes.
As shown in
It should be understood that the logic models 228 may comprise one or more software modules executed by the same processor or different processors, where these different processors may be located within the same processor package (e.g., different processor cores) and/or located at remote or even geographically remote locations that are communicatively coupled (e.g., by a dedicated communication link) or a network. Once the attack-specific engine 220 has completed its analysis, an attack-specific result 140 comprising certain attack features is generated and communicated to the correlation engine 230. Furthermore, the attack-specific logic 135 may store the attack-specific result 140 in the feature-set database 225 for future reference.
The correlation engine 230 comprises alert value determination logic 231 and a database 232. The alert value determination logic 231 is communicatively coupled to the database 232, where it is envisioned that information regarding potential targets may be stored. Notable information that may be stored on the database 232 includes at least real time features corresponding to potential targets, such as geographic location, industries, segments, whether the target stores credit card information or other sensitive personal data, previous known attacks, alerts, current events, and specifics regarding the various targets' officers, board of directors, and the like.
The alert value determination logic 231 of the correlation engine 230 is configured using at least one of a probabilistic or machine-learning algorithm to determine, in real time, an attack value that represents a probability (or level of confidence) that a potential target may also be attacked. In doing so, the correlation engine 230 is configured so as to consider the attack features learned from the attack-specific engine 220, and real time features stored on the database 232. It is envisioned that the alert value determination logic 231 shall determine if the attack value matches or exceeds a predetermined threshold, so as to generate a correlated result 150 that indicates whether or not a probable target has been found, and therefore alerted with respect to the potential of a malware attack.
Consequently, the correlated result 150 is communicated to the alert generation logic 242 of the reporting logic 240, which may generate an alert for the client device 264 and/or route the alert to the threat intelligence network 265 for further analysis. In addition, the alert may be routed to the communication network 261 for further analysis by a network administrator, for example. The reporting logic 240 may issue an early warning alert or report 160 (e.g., an email message, text message, display screen image, etc.) to security administrators for example, communicating the urgency in handling one or more predicted attacks. The early warning alert or report 160 may trigger a further analysis of the object to verify the behavior of the object as an exploit. It is envisioned that the early warning alert or report 160 may also comprise instructions so as to prevent one or more predicted malware attacks. Finally, the reporting logic 240 may store the correlated results 150 in the database 242 for future reference.
Referring now to
Processor(s) 275 may further be coupled to persistent storage 290 via a second transmission medium 286. According to one embodiment of the disclosure, persistent storage 290 may include the cyber attack early warning system 100, which in one embodiment comprises (a) input engine 210; (b) attack-specific engine 220; (c) correlation engine 230; and reporting logic 240. It is envisioned that one or more of these engines (or logic units) could be implemented externally from the cyber attack early warning system 100 without extending beyond the spirit and scope of the present disclosure.
Referring now to
In block 305, each of the attack cores is configured to analyze the content of the attack alert and apply a plurality of analysis mechanisms specific to the type of malware attack. For example, utilizing the attack cores, a particular attack alert may be compared with previously known attacks, incidences, feature sets, attack signatures, etc. to determine correspondence with respect to a plurality of time-sensitive features such as the number of methods for a request-response, and/or the time of day of the attack. A plurality of time-insensitive features such as geographic location of the present attack target, industry, etc. may also be analyzed, without limitation.
In block 306, after analyzing the combination of time-sensitive and time-insensitive features, an attack-specific result is generated and communicated to the correlation engine so as to correlate the result using real-time features across a plurality of potential targets. In block 307, using probabilistic and/or machine-learning algorithms, the correlation engine is configured to determine an “attack value” based on the attack-specific result, and a consideration of probable attack targets. For example, probable attack targets may include companies in the same industry, geographic region, and/or companies having the same size/scale of a presently attacked target, without limitation. In block 308, if the determined attack value matches or exceeds a predetermined threshold value, then an early warning alert is provided in block 310 and communicated to probable targets of a malware attack. If the attack value is less than the predetermined threshold, then, at block 309, the early warning alert is not generated. In either event, however, the threat intelligence network 265 is updated with respect to any potential incident, and the corresponding results thereto.
Referring to
In one embodiment, the exemplary alert 450 (e.g., an email message, text message, display screen image, etc.) is communicated to security administrators for receipt/viewing on the mobile network device 400. For example, the exemplary alert 450 may indicate the urgency in handling one or more predicted attacks. Furthermore, the exemplary alert 450 may comprise instructions so as to prevent one or more predicted malware attacks. The exemplary alert 450 may also comprise information with respect to the origination of the potential attack, along with suspicious behavior that might confirm the attack with respect to a potential target.
In the foregoing description, the invention is described with reference to specific exemplary embodiments thereof. However, it will be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims.
This application is a continuation of U.S. patent application Ser. No. 14/872,003, filed Sep. 30, 2015, now U.S. Pat. No. 9,825,989, issued Nov. 21, 2017, the entire contents of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4292580 | Ott et al. | Sep 1981 | A |
5175732 | Hendel et al. | Dec 1992 | A |
5319776 | Hile et al. | Jun 1994 | A |
5440723 | Arnold et al. | Aug 1995 | A |
5490249 | Miller | Feb 1996 | A |
5657473 | Killean et al. | Aug 1997 | A |
5802277 | Cowlard | Sep 1998 | A |
5842002 | Schnurer et al. | Nov 1998 | A |
5960170 | Chen et al. | Sep 1999 | A |
5978917 | Chi | Nov 1999 | A |
5983348 | Ji | Nov 1999 | A |
6088803 | Tso et al. | Jul 2000 | A |
6092194 | Touboul | Jul 2000 | A |
6094677 | Capek et al. | Jul 2000 | A |
6108799 | Boulay et al. | Aug 2000 | A |
6154844 | Touboul et al. | Nov 2000 | A |
6269330 | Cidon et al. | Jul 2001 | B1 |
6272641 | Ji | Aug 2001 | B1 |
6279113 | Vaidya | Aug 2001 | B1 |
6298445 | Shostack et al. | Oct 2001 | B1 |
6357008 | Nachenberg | Mar 2002 | B1 |
6424627 | Sørhaug et al. | Jul 2002 | B1 |
6442696 | Wray et al. | Aug 2002 | B1 |
6484315 | Ziese | Nov 2002 | B1 |
6487666 | Shanklin et al. | Nov 2002 | B1 |
6493756 | O'Brien et al. | Dec 2002 | B1 |
6550012 | Villa et al. | Apr 2003 | B1 |
6775657 | Baker | Aug 2004 | B1 |
6831893 | Ben Nun et al. | Dec 2004 | B1 |
6832367 | Choi et al. | Dec 2004 | B1 |
6895550 | Kanchirayappa et al. | May 2005 | B2 |
6898632 | Gordy et al. | May 2005 | B2 |
6907396 | Muttik et al. | Jun 2005 | B1 |
6941348 | Petry et al. | Sep 2005 | B2 |
6971097 | Wallman | Nov 2005 | B1 |
6981279 | Arnold et al. | Dec 2005 | B1 |
7007107 | Ivchenko et al. | Feb 2006 | B1 |
7028179 | Anderson et al. | Apr 2006 | B2 |
7043757 | Hoefelmeyer et al. | May 2006 | B2 |
7058822 | Edery et al. | Jun 2006 | B2 |
7069316 | Gryaznov | Jun 2006 | B1 |
7080407 | Zhao et al. | Jul 2006 | B1 |
7080408 | Pak et al. | Jul 2006 | B1 |
7093002 | Wolff et al. | Aug 2006 | B2 |
7093239 | van der Made | Aug 2006 | B1 |
7096498 | Judge | Aug 2006 | B2 |
7100201 | Izatt | Aug 2006 | B2 |
7107617 | Hursey et al. | Sep 2006 | B2 |
7159149 | Spiegel | Jan 2007 | B2 |
7213260 | Judge | May 2007 | B2 |
7231667 | Jordan | Jun 2007 | B2 |
7240364 | Branscomb et al. | Jul 2007 | B1 |
7240368 | Roesch et al. | Jul 2007 | B1 |
7243371 | Kasper et al. | Jul 2007 | B1 |
7249175 | Donaldson | Jul 2007 | B1 |
7287278 | Liang | Oct 2007 | B2 |
7308716 | Danford et al. | Dec 2007 | B2 |
7328453 | Merkle, Jr. et al. | Feb 2008 | B2 |
7346486 | Ivancic et al. | Mar 2008 | B2 |
7356736 | Natvig | Apr 2008 | B2 |
7386888 | Liang et al. | Jun 2008 | B2 |
7392542 | Bucher | Jun 2008 | B2 |
7418729 | Szor | Aug 2008 | B2 |
7428300 | Drew et al. | Sep 2008 | B1 |
7441272 | Durham et al. | Oct 2008 | B2 |
7448084 | Apap et al. | Nov 2008 | B1 |
7458098 | Judge et al. | Nov 2008 | B2 |
7464404 | Carpenter et al. | Dec 2008 | B2 |
7464407 | Nakae et al. | Dec 2008 | B2 |
7467408 | O'Toole, Jr. | Dec 2008 | B1 |
7478428 | Thomlinson | Jan 2009 | B1 |
7480773 | Reed | Jan 2009 | B1 |
7487543 | Arnold et al. | Feb 2009 | B2 |
7496960 | Chen et al. | Feb 2009 | B1 |
7496961 | Zimmer et al. | Feb 2009 | B2 |
7519990 | Xie | Apr 2009 | B1 |
7523493 | Liang et al. | Apr 2009 | B2 |
7530104 | Thrower et al. | May 2009 | B1 |
7540025 | Tzadikario | May 2009 | B2 |
7546638 | Anderson et al. | Jun 2009 | B2 |
7565550 | Liang et al. | Jul 2009 | B2 |
7568233 | Szor et al. | Jul 2009 | B1 |
7584455 | Ball | Sep 2009 | B2 |
7603715 | Costa et al. | Oct 2009 | B2 |
7607171 | Marsden et al. | Oct 2009 | B1 |
7620986 | Jagannathan | Nov 2009 | B1 |
7639714 | Stolfo et al. | Dec 2009 | B2 |
7644441 | Schmid et al. | Jan 2010 | B2 |
7657419 | van der Made | Feb 2010 | B2 |
7676841 | Sobchuk et al. | Mar 2010 | B2 |
7698548 | Shelest et al. | Apr 2010 | B2 |
7707633 | Danford et al. | Apr 2010 | B2 |
7712136 | Sprosts et al. | May 2010 | B2 |
7730011 | Deninger et al. | Jun 2010 | B1 |
7739740 | Nachenberg et al. | Jun 2010 | B1 |
7743419 | Mashevsky | Jun 2010 | B1 |
7779463 | Stolfo et al. | Aug 2010 | B2 |
7784097 | Stolfo et al. | Aug 2010 | B1 |
7832008 | Kraemer | Nov 2010 | B1 |
7836502 | Zhao et al. | Nov 2010 | B1 |
7849506 | Dansey et al. | Dec 2010 | B1 |
7854007 | Sprosts et al. | Dec 2010 | B2 |
7869073 | Oshima | Jan 2011 | B2 |
7877803 | Enstone et al. | Jan 2011 | B2 |
7904959 | Sidiroglou et al. | Mar 2011 | B2 |
7908660 | Bahl | Mar 2011 | B2 |
7930738 | Petersen | Apr 2011 | B1 |
7937387 | Frazier et al. | May 2011 | B2 |
7937761 | Bennett | May 2011 | B1 |
7949849 | Lowe et al. | May 2011 | B2 |
7996556 | Raghavan et al. | Aug 2011 | B2 |
7996836 | McCorkendale et al. | Aug 2011 | B1 |
7996904 | Chiueh et al. | Aug 2011 | B1 |
7996905 | Arnold et al. | Aug 2011 | B2 |
8006305 | Aziz | Aug 2011 | B2 |
8010667 | Zhang et al. | Aug 2011 | B2 |
8020206 | Hubbard et al. | Sep 2011 | B2 |
8028338 | Schneider et al. | Sep 2011 | B1 |
8042184 | Batenin | Oct 2011 | B1 |
8045094 | Teragawa | Oct 2011 | B2 |
8045458 | Alperovitch et al. | Oct 2011 | B2 |
8069484 | McMillan et al. | Nov 2011 | B2 |
8087086 | Lai et al. | Dec 2011 | B1 |
8171553 | Aziz et al. | May 2012 | B2 |
8176049 | Deninger et al. | May 2012 | B2 |
8176480 | Spertus | May 2012 | B1 |
8201246 | Wu et al. | Jun 2012 | B1 |
8204984 | Aziz et al. | Jun 2012 | B1 |
8209748 | Nordstrom et al. | Jun 2012 | B1 |
8214905 | Doukhvalov et al. | Jul 2012 | B1 |
8220055 | Kennedy | Jul 2012 | B1 |
8225288 | Miller et al. | Jul 2012 | B2 |
8225373 | Kraemer | Jul 2012 | B2 |
8233882 | Rogel | Jul 2012 | B2 |
8234640 | Fitzgerald et al. | Jul 2012 | B1 |
8234709 | Viljoen et al. | Jul 2012 | B2 |
8239944 | Nachenberg et al. | Aug 2012 | B1 |
8260914 | Ranjan | Sep 2012 | B1 |
8266091 | Gubin et al. | Sep 2012 | B1 |
8286251 | Eker et al. | Oct 2012 | B2 |
8291499 | Aziz et al. | Oct 2012 | B2 |
8307435 | Mann et al. | Nov 2012 | B1 |
8307443 | Wang et al. | Nov 2012 | B2 |
8310923 | Nordstrom et al. | Nov 2012 | B1 |
8312545 | Tuvell et al. | Nov 2012 | B2 |
8321936 | Green et al. | Nov 2012 | B1 |
8321941 | Tuvell et al. | Nov 2012 | B2 |
8332571 | Edwards, Sr. | Dec 2012 | B1 |
8365286 | Poston | Jan 2013 | B2 |
8365297 | Parshin et al. | Jan 2013 | B1 |
8370938 | Daswani et al. | Feb 2013 | B1 |
8370939 | Zaitsev et al. | Feb 2013 | B2 |
8375444 | Aziz et al. | Feb 2013 | B2 |
8381299 | Stolfo et al. | Feb 2013 | B2 |
8402529 | Green et al. | Mar 2013 | B1 |
8464340 | Ahn et al. | Jun 2013 | B2 |
8479174 | Chiriac | Jul 2013 | B2 |
8479276 | Vaystikh et al. | Jul 2013 | B1 |
8479291 | Bodke | Jul 2013 | B1 |
8510827 | Leake et al. | Aug 2013 | B1 |
8510828 | Guo et al. | Aug 2013 | B1 |
8510842 | Amit et al. | Aug 2013 | B2 |
8516478 | Edwards et al. | Aug 2013 | B1 |
8516590 | Ranadive et al. | Aug 2013 | B1 |
8516593 | Aziz | Aug 2013 | B2 |
8522348 | Chen et al. | Aug 2013 | B2 |
8528086 | Aziz | Sep 2013 | B1 |
8533824 | Hutton et al. | Sep 2013 | B2 |
8539582 | Aziz et al. | Sep 2013 | B1 |
8549638 | Aziz | Oct 2013 | B2 |
8555391 | Demir et al. | Oct 2013 | B1 |
8561177 | Aziz et al. | Oct 2013 | B1 |
8566476 | Shifter et al. | Oct 2013 | B2 |
8566946 | Aziz et al. | Oct 2013 | B1 |
8578497 | Antonakakis | Nov 2013 | B2 |
8584094 | Dadhia et al. | Nov 2013 | B2 |
8584234 | Sobel et al. | Nov 2013 | B1 |
8584239 | Aziz et al. | Nov 2013 | B2 |
8595834 | Xie et al. | Nov 2013 | B2 |
8627476 | Satish et al. | Jan 2014 | B1 |
8635696 | Aziz | Jan 2014 | B1 |
8682054 | Xue et al. | Mar 2014 | B2 |
8682812 | Ranjan | Mar 2014 | B1 |
8689333 | Aziz | Apr 2014 | B2 |
8695096 | Zhang | Apr 2014 | B1 |
8713631 | Pavlyushchik | Apr 2014 | B1 |
8713681 | Silberman et al. | Apr 2014 | B2 |
8726392 | McCorkendale et al. | May 2014 | B1 |
8739280 | Chess et al. | May 2014 | B2 |
8776180 | Kumar et al. | Jul 2014 | B2 |
8776229 | Aziz | Jul 2014 | B1 |
8782792 | Bodke | Jul 2014 | B1 |
8789172 | Stolfo et al. | Jul 2014 | B2 |
8789178 | Kejriwal et al. | Jul 2014 | B2 |
8793278 | Frazier et al. | Jul 2014 | B2 |
8793787 | Ismael et al. | Jul 2014 | B2 |
8805947 | Kuzkin et al. | Aug 2014 | B1 |
8806647 | Daswani et al. | Aug 2014 | B1 |
8832829 | Manni et al. | Sep 2014 | B2 |
8850570 | Ramzan | Sep 2014 | B1 |
8850571 | Staniford et al. | Sep 2014 | B2 |
8881234 | Narasimhan et al. | Nov 2014 | B2 |
8881271 | Butler, II | Nov 2014 | B2 |
8881282 | Aziz et al. | Nov 2014 | B1 |
8898788 | Aziz et al. | Nov 2014 | B1 |
8935779 | Manni et al. | Jan 2015 | B2 |
8949257 | Shifter et al. | Feb 2015 | B2 |
8984638 | Aziz et al. | Mar 2015 | B1 |
8990939 | Staniford et al. | Mar 2015 | B2 |
8990944 | Singh et al. | Mar 2015 | B1 |
8997219 | Staniford et al. | Mar 2015 | B2 |
9009822 | Ismael et al. | Apr 2015 | B1 |
9009823 | Ismael et al. | Apr 2015 | B1 |
9027135 | Aziz | May 2015 | B1 |
9071638 | Aziz et al. | Jun 2015 | B1 |
9092616 | Kumar et al. | Jul 2015 | B2 |
9104867 | Thioux et al. | Aug 2015 | B1 |
9106630 | Frazier et al. | Aug 2015 | B2 |
9106694 | Aziz et al. | Aug 2015 | B2 |
9118715 | Staniford et al. | Aug 2015 | B2 |
9124625 | Seger | Sep 2015 | B1 |
9159035 | Ismael et al. | Oct 2015 | B1 |
9166994 | Ward | Oct 2015 | B2 |
9171160 | Vincent et al. | Oct 2015 | B2 |
9176843 | Ismael et al. | Nov 2015 | B1 |
9189627 | Islam | Nov 2015 | B1 |
9195829 | Goradia et al. | Nov 2015 | B1 |
9197664 | Aziz et al. | Nov 2015 | B1 |
9223972 | Vincent et al. | Dec 2015 | B1 |
9225740 | Ismael et al. | Dec 2015 | B1 |
9241010 | Bennett | Jan 2016 | B1 |
9251343 | Vincent et al. | Feb 2016 | B1 |
9262635 | Paithane et al. | Feb 2016 | B2 |
9268936 | Butler | Feb 2016 | B2 |
9275229 | LeMasters | Mar 2016 | B2 |
9282109 | Aziz et al. | Mar 2016 | B1 |
9292686 | Ismael et al. | Mar 2016 | B2 |
9294501 | Mesdaq et al. | Mar 2016 | B2 |
9300686 | Pidathala et al. | Mar 2016 | B2 |
9306960 | Aziz | Apr 2016 | B1 |
9306974 | Aziz et al. | Apr 2016 | B1 |
9311479 | Manni et al. | Apr 2016 | B1 |
9355247 | Thioux et al. | May 2016 | B1 |
9356944 | Aziz | May 2016 | B1 |
9363280 | Rivlin | Jun 2016 | B1 |
9367681 | Ismael et al. | Jun 2016 | B1 |
9386030 | Vashist et al. | Jul 2016 | B2 |
9398028 | Karandikar et al. | Jul 2016 | B1 |
9413781 | Cunningham et al. | Aug 2016 | B2 |
9426071 | Caldejon et al. | Aug 2016 | B1 |
9430646 | Mushtaq et al. | Aug 2016 | B1 |
9432389 | Khalid et al. | Aug 2016 | B1 |
9438613 | Paithane et al. | Sep 2016 | B1 |
9438622 | Staniford et al. | Sep 2016 | B1 |
9438623 | Thioux et al. | Sep 2016 | B1 |
9459901 | Jung et al. | Oct 2016 | B2 |
9467460 | Otvagin et al. | Oct 2016 | B1 |
9483644 | Paithane et al. | Nov 2016 | B1 |
9495180 | Ismael | Nov 2016 | B2 |
9497213 | Thompson et al. | Nov 2016 | B2 |
9507935 | Ismael et al. | Nov 2016 | B2 |
9516057 | Aziz | Dec 2016 | B2 |
9519782 | Aziz et al. | Dec 2016 | B2 |
9536091 | Paithane et al. | Jan 2017 | B2 |
9537972 | Edwards et al. | Jan 2017 | B1 |
9560059 | Islam | Jan 2017 | B1 |
9565202 | Kindlund et al. | Feb 2017 | B1 |
9591015 | Amin et al. | Mar 2017 | B1 |
9591020 | Aziz | Mar 2017 | B1 |
9594904 | Jain et al. | Mar 2017 | B1 |
9594905 | Ismael et al. | Mar 2017 | B1 |
9594912 | Thioux et al. | Mar 2017 | B1 |
9609007 | Rivlin et al. | Mar 2017 | B1 |
9626509 | Khalid et al. | Apr 2017 | B1 |
9628498 | Aziz et al. | Apr 2017 | B1 |
9628507 | Haq et al. | Apr 2017 | B2 |
9633134 | Ross | Apr 2017 | B2 |
9635039 | Islam et al. | Apr 2017 | B1 |
9641546 | Manni et al. | May 2017 | B1 |
9654485 | Neumann | May 2017 | B1 |
9661009 | Karandikar et al. | May 2017 | B1 |
9661018 | Aziz | May 2017 | B1 |
9674298 | Edwards et al. | Jun 2017 | B1 |
9680862 | Ismael et al. | Jun 2017 | B2 |
9690606 | Ha et al. | Jun 2017 | B1 |
9690933 | Singh et al. | Jun 2017 | B1 |
9690935 | Shifter et al. | Jun 2017 | B2 |
9690936 | Malik et al. | Jun 2017 | B1 |
9736179 | Ismael | Aug 2017 | B2 |
9740857 | Ismael et al. | Aug 2017 | B2 |
9747446 | Pidathala et al. | Aug 2017 | B1 |
9756074 | Aziz et al. | Sep 2017 | B2 |
9773112 | Rathor et al. | Sep 2017 | B1 |
9781144 | Otvagin et al. | Oct 2017 | B1 |
9787700 | Amin et al. | Oct 2017 | B1 |
9787706 | Otvagin et al. | Oct 2017 | B1 |
9792196 | Ismael et al. | Oct 2017 | B1 |
9824209 | Ismael et al. | Nov 2017 | B1 |
9824211 | Wilson | Nov 2017 | B2 |
9824216 | Khalid et al. | Nov 2017 | B1 |
9825976 | Gomez et al. | Nov 2017 | B1 |
9825989 | Mehra et al. | Nov 2017 | B1 |
9838408 | Karandikar et al. | Dec 2017 | B1 |
9838411 | Aziz | Dec 2017 | B1 |
9838416 | Aziz | Dec 2017 | B1 |
9838417 | Khalid et al. | Dec 2017 | B1 |
9846776 | Paithane et al. | Dec 2017 | B1 |
9876701 | Caldejon et al. | Jan 2018 | B1 |
9888016 | Amin et al. | Feb 2018 | B1 |
9888019 | Pidathala et al. | Feb 2018 | B1 |
9910988 | Vincent et al. | Mar 2018 | B1 |
9912644 | Cunningham | Mar 2018 | B2 |
9912681 | Ismael et al. | Mar 2018 | B1 |
9912684 | Aziz et al. | Mar 2018 | B1 |
9912691 | Mesdaq et al. | Mar 2018 | B2 |
9912698 | Thioux et al. | Mar 2018 | B1 |
9916440 | Paithane et al. | Mar 2018 | B1 |
9921978 | Chan et al. | Mar 2018 | B1 |
9934376 | Ismael | Apr 2018 | B1 |
9934381 | Kindlund et al. | Apr 2018 | B1 |
9946568 | Ismael et al. | Apr 2018 | B1 |
9954890 | Staniford et al. | Apr 2018 | B1 |
9973531 | Thioux | May 2018 | B1 |
10002252 | Ismael et al. | Jun 2018 | B2 |
10019338 | Goradia et al. | Jul 2018 | B1 |
10019573 | Silberman et al. | Jul 2018 | B2 |
10025691 | Ismael et al. | Jul 2018 | B1 |
10025927 | Khalid et al. | Jul 2018 | B1 |
10027689 | Rathor et al. | Jul 2018 | B1 |
10027690 | Aziz et al. | Jul 2018 | B2 |
10027696 | Rivlin et al. | Jul 2018 | B1 |
10033747 | Paithane et al. | Jul 2018 | B1 |
10033748 | Cunningham et al. | Jul 2018 | B1 |
10033753 | Islam et al. | Jul 2018 | B1 |
10033759 | Kabra et al. | Jul 2018 | B1 |
10050998 | Singh | Aug 2018 | B1 |
10068091 | Aziz et al. | Sep 2018 | B1 |
10075455 | Zafar et al. | Sep 2018 | B2 |
10083302 | Paithane et al. | Sep 2018 | B1 |
10084813 | Eyada | Sep 2018 | B2 |
10089461 | Ha et al. | Oct 2018 | B1 |
10097573 | Aziz | Oct 2018 | B1 |
10104102 | Neumann | Oct 2018 | B1 |
10108446 | Steinberg et al. | Oct 2018 | B1 |
10121000 | Rivlin et al. | Nov 2018 | B1 |
10122746 | Manni et al. | Nov 2018 | B1 |
10133863 | Bu et al. | Nov 2018 | B2 |
10133866 | Kumar et al. | Nov 2018 | B1 |
10146810 | Shiffer et al. | Dec 2018 | B2 |
10148693 | Singh et al. | Dec 2018 | B2 |
10165000 | Aziz et al. | Dec 2018 | B1 |
10169585 | Pilipenko et al. | Jan 2019 | B1 |
10176321 | Abbasi et al. | Jan 2019 | B2 |
10181029 | Ismael et al. | Jan 2019 | B1 |
10191861 | Steinberg et al. | Jan 2019 | B1 |
10192052 | Singh et al. | Jan 2019 | B1 |
10198574 | Thioux et al. | Feb 2019 | B1 |
10200384 | Mushtaq et al. | Feb 2019 | B1 |
10210329 | Malik et al. | Feb 2019 | B1 |
10216927 | Steinberg | Feb 2019 | B1 |
10218740 | Mesdaq et al. | Feb 2019 | B1 |
10242185 | Goradia | Mar 2019 | B1 |
20010005889 | Albrecht | Jun 2001 | A1 |
20010047326 | Broadbent et al. | Nov 2001 | A1 |
20020018903 | Kokubo et al. | Feb 2002 | A1 |
20020038430 | Edwards et al. | Mar 2002 | A1 |
20020091819 | Melchione et al. | Jul 2002 | A1 |
20020095607 | Lin-Hendel | Jul 2002 | A1 |
20020116627 | Tarbotton et al. | Aug 2002 | A1 |
20020144156 | Copeland | Oct 2002 | A1 |
20020162015 | Tang | Oct 2002 | A1 |
20020166063 | Lachman et al. | Nov 2002 | A1 |
20020169952 | DiSanto et al. | Nov 2002 | A1 |
20020184528 | Shevenell et al. | Dec 2002 | A1 |
20020188887 | Largman et al. | Dec 2002 | A1 |
20020194490 | Halperin et al. | Dec 2002 | A1 |
20030021728 | Sharpe et al. | Jan 2003 | A1 |
20030074578 | Ford et al. | Apr 2003 | A1 |
20030084318 | Schertz | May 2003 | A1 |
20030101381 | Mateev et al. | May 2003 | A1 |
20030115483 | Liang | Jun 2003 | A1 |
20030188190 | Aaron et al. | Oct 2003 | A1 |
20030191957 | Hypponen et al. | Oct 2003 | A1 |
20030200460 | Morota et al. | Oct 2003 | A1 |
20030212902 | van der Made | Nov 2003 | A1 |
20030229801 | Kouznetsov et al. | Dec 2003 | A1 |
20030237000 | Denton et al. | Dec 2003 | A1 |
20040003323 | Bennett et al. | Jan 2004 | A1 |
20040006473 | Mills et al. | Jan 2004 | A1 |
20040015712 | Szor | Jan 2004 | A1 |
20040019832 | Arnold et al. | Jan 2004 | A1 |
20040047356 | Bauer | Mar 2004 | A1 |
20040083408 | Spiegel et al. | Apr 2004 | A1 |
20040088581 | Brawn et al. | May 2004 | A1 |
20040093513 | Cantrell et al. | May 2004 | A1 |
20040111531 | Staniford et al. | Jun 2004 | A1 |
20040117478 | Triulzi et al. | Jun 2004 | A1 |
20040117624 | Brandt et al. | Jun 2004 | A1 |
20040128355 | Chao et al. | Jul 2004 | A1 |
20040165588 | Pandya | Aug 2004 | A1 |
20040236963 | Danford et al. | Nov 2004 | A1 |
20040243349 | Greifeneder et al. | Dec 2004 | A1 |
20040249911 | Alkhatib et al. | Dec 2004 | A1 |
20040255161 | Cavanaugh | Dec 2004 | A1 |
20040268147 | Wiederin et al. | Dec 2004 | A1 |
20050005159 | Oliphant | Jan 2005 | A1 |
20050021740 | Bar et al. | Jan 2005 | A1 |
20050033960 | Vialen et al. | Feb 2005 | A1 |
20050033989 | Poletto et al. | Feb 2005 | A1 |
20050050148 | Mohammadioun et al. | Mar 2005 | A1 |
20050086523 | Zimmer et al. | Apr 2005 | A1 |
20050091513 | Mitomo et al. | Apr 2005 | A1 |
20050091533 | Omote et al. | Apr 2005 | A1 |
20050091652 | Ross et al. | Apr 2005 | A1 |
20050108562 | Khazan et al. | May 2005 | A1 |
20050114663 | Cornell et al. | May 2005 | A1 |
20050125195 | Brendel | Jun 2005 | A1 |
20050149726 | Joshi et al. | Jul 2005 | A1 |
20050157662 | Bingham et al. | Jul 2005 | A1 |
20050183143 | Anderholm et al. | Aug 2005 | A1 |
20050201297 | Peikari | Sep 2005 | A1 |
20050210533 | Copeland et al. | Sep 2005 | A1 |
20050238005 | Chen et al. | Oct 2005 | A1 |
20050240781 | Gassoway | Oct 2005 | A1 |
20050262562 | Gassoway | Nov 2005 | A1 |
20050265331 | Stolfo | Dec 2005 | A1 |
20050283839 | Cowburn | Dec 2005 | A1 |
20060010495 | Cohen et al. | Jan 2006 | A1 |
20060015416 | Hoffman et al. | Jan 2006 | A1 |
20060015715 | Anderson | Jan 2006 | A1 |
20060015747 | Van De Ven | Jan 2006 | A1 |
20060021029 | Brickell et al. | Jan 2006 | A1 |
20060021054 | Costa et al. | Jan 2006 | A1 |
20060031476 | Mathes et al. | Feb 2006 | A1 |
20060047665 | Neil | Mar 2006 | A1 |
20060070130 | Costea et al. | Mar 2006 | A1 |
20060075496 | Carpenter et al. | Apr 2006 | A1 |
20060095968 | Portolani et al. | May 2006 | A1 |
20060101516 | Sudaharan et al. | May 2006 | A1 |
20060101517 | Banzhof et al. | May 2006 | A1 |
20060117385 | Mester et al. | Jun 2006 | A1 |
20060123477 | Raghavan et al. | Jun 2006 | A1 |
20060143709 | Brooks et al. | Jun 2006 | A1 |
20060150249 | Gassen et al. | Jul 2006 | A1 |
20060161983 | Cothrell et al. | Jul 2006 | A1 |
20060161987 | Levy-Yurista | Jul 2006 | A1 |
20060161989 | Reshef et al. | Jul 2006 | A1 |
20060164199 | Gilde et al. | Jul 2006 | A1 |
20060173992 | Weber | Aug 2006 | A1 |
20060179147 | Tran et al. | Aug 2006 | A1 |
20060184632 | Marino et al. | Aug 2006 | A1 |
20060191010 | Benjamin | Aug 2006 | A1 |
20060221956 | Narayan et al. | Oct 2006 | A1 |
20060236393 | Kramer et al. | Oct 2006 | A1 |
20060242709 | Seinfeld et al. | Oct 2006 | A1 |
20060248519 | Jaeger et al. | Nov 2006 | A1 |
20060248582 | Panjwani et al. | Nov 2006 | A1 |
20060251104 | Koga | Nov 2006 | A1 |
20060288417 | Bookbinder et al. | Dec 2006 | A1 |
20070006288 | Mayfield et al. | Jan 2007 | A1 |
20070006313 | Porras et al. | Jan 2007 | A1 |
20070011174 | Takaragi et al. | Jan 2007 | A1 |
20070016951 | Piccard et al. | Jan 2007 | A1 |
20070019286 | Kikuchi | Jan 2007 | A1 |
20070033645 | Jones | Feb 2007 | A1 |
20070038943 | FitzGerald et al. | Feb 2007 | A1 |
20070064689 | Shin et al. | Mar 2007 | A1 |
20070074169 | Chess et al. | Mar 2007 | A1 |
20070079379 | Sprosts | Apr 2007 | A1 |
20070094730 | Bhikkaji et al. | Apr 2007 | A1 |
20070101435 | Konanka et al. | May 2007 | A1 |
20070128855 | Cho et al. | Jun 2007 | A1 |
20070142030 | Sinha et al. | Jun 2007 | A1 |
20070143827 | Nicodemus et al. | Jun 2007 | A1 |
20070156895 | Vuong | Jul 2007 | A1 |
20070157180 | Tillmann et al. | Jul 2007 | A1 |
20070157306 | Elrod et al. | Jul 2007 | A1 |
20070168988 | Eisner et al. | Jul 2007 | A1 |
20070171824 | Ruello et al. | Jul 2007 | A1 |
20070174915 | Gribble et al. | Jul 2007 | A1 |
20070192500 | Lum | Aug 2007 | A1 |
20070192858 | Lum | Aug 2007 | A1 |
20070192859 | Shahar | Aug 2007 | A1 |
20070198275 | Malden et al. | Aug 2007 | A1 |
20070208822 | Wang et al. | Sep 2007 | A1 |
20070220607 | Sprosts | Sep 2007 | A1 |
20070240218 | Tuvell et al. | Oct 2007 | A1 |
20070240219 | Tuvell et al. | Oct 2007 | A1 |
20070240220 | Tuvell et al. | Oct 2007 | A1 |
20070240222 | Tuvell et al. | Oct 2007 | A1 |
20070250930 | Aziz et al. | Oct 2007 | A1 |
20070256132 | Oliphant | Nov 2007 | A2 |
20070271446 | Nakamura | Nov 2007 | A1 |
20080005782 | Aziz | Jan 2008 | A1 |
20080018122 | Zierler et al. | Jan 2008 | A1 |
20080028463 | Dagon et al. | Jan 2008 | A1 |
20080040710 | Chiriac | Feb 2008 | A1 |
20080046781 | Childs et al. | Feb 2008 | A1 |
20080066179 | Liu | Mar 2008 | A1 |
20080072326 | Danford et al. | Mar 2008 | A1 |
20080077793 | Tan et al. | Mar 2008 | A1 |
20080080518 | Hoeflin et al. | Apr 2008 | A1 |
20080086720 | Lekel | Apr 2008 | A1 |
20080098476 | Syversen | Apr 2008 | A1 |
20080115221 | Yun | May 2008 | A1 |
20080120722 | Sima et al. | May 2008 | A1 |
20080134178 | Fitzgerald et al. | Jun 2008 | A1 |
20080134334 | Kim et al. | Jun 2008 | A1 |
20080141376 | Clausen et al. | Jun 2008 | A1 |
20080184367 | McMillan et al. | Jul 2008 | A1 |
20080184373 | Traut et al. | Jul 2008 | A1 |
20080189787 | Arnold et al. | Aug 2008 | A1 |
20080201778 | Guo et al. | Aug 2008 | A1 |
20080209557 | Herley et al. | Aug 2008 | A1 |
20080215742 | Goldszmidt et al. | Sep 2008 | A1 |
20080222729 | Chen et al. | Sep 2008 | A1 |
20080263665 | Ma et al. | Oct 2008 | A1 |
20080295172 | Bohacek | Nov 2008 | A1 |
20080301810 | Lehane et al. | Dec 2008 | A1 |
20080307524 | Singh et al. | Dec 2008 | A1 |
20080313738 | Enderby | Dec 2008 | A1 |
20080320594 | Jiang | Dec 2008 | A1 |
20090003317 | Kasralikar et al. | Jan 2009 | A1 |
20090007100 | Field et al. | Jan 2009 | A1 |
20090013408 | Schipka | Jan 2009 | A1 |
20090031423 | Liu et al. | Jan 2009 | A1 |
20090036111 | Danford et al. | Feb 2009 | A1 |
20090037835 | Goldman | Feb 2009 | A1 |
20090044024 | Oberheide et al. | Feb 2009 | A1 |
20090044274 | Budko et al. | Feb 2009 | A1 |
20090064332 | Porras et al. | Mar 2009 | A1 |
20090077666 | Chen et al. | Mar 2009 | A1 |
20090083369 | Marmor | Mar 2009 | A1 |
20090083855 | Apap et al. | Mar 2009 | A1 |
20090089879 | Wang et al. | Apr 2009 | A1 |
20090094697 | Provos et al. | Apr 2009 | A1 |
20090113425 | Ports et al. | Apr 2009 | A1 |
20090125976 | Wassermann et al. | May 2009 | A1 |
20090126015 | Monastyrsky et al. | May 2009 | A1 |
20090126016 | Sobko et al. | May 2009 | A1 |
20090133125 | Choi et al. | May 2009 | A1 |
20090144823 | Lamastra et al. | Jun 2009 | A1 |
20090158430 | Borders | Jun 2009 | A1 |
20090172815 | Gu et al. | Jul 2009 | A1 |
20090187992 | Poston | Jul 2009 | A1 |
20090193293 | Stolfo et al. | Jul 2009 | A1 |
20090198651 | Shifter et al. | Aug 2009 | A1 |
20090198670 | Shifter et al. | Aug 2009 | A1 |
20090198689 | Frazier et al. | Aug 2009 | A1 |
20090199274 | Frazier et al. | Aug 2009 | A1 |
20090199296 | Xie et al. | Aug 2009 | A1 |
20090228233 | Anderson et al. | Sep 2009 | A1 |
20090241187 | Troyansky | Sep 2009 | A1 |
20090241190 | Todd et al. | Sep 2009 | A1 |
20090265692 | Godefroid et al. | Oct 2009 | A1 |
20090271867 | Zhang | Oct 2009 | A1 |
20090300415 | Zhang et al. | Dec 2009 | A1 |
20090300761 | Park et al. | Dec 2009 | A1 |
20090328185 | Berg et al. | Dec 2009 | A1 |
20090328221 | Blumfield et al. | Dec 2009 | A1 |
20100005146 | Drako et al. | Jan 2010 | A1 |
20100011205 | McKenna | Jan 2010 | A1 |
20100017546 | Poo et al. | Jan 2010 | A1 |
20100030996 | Butler, II | Feb 2010 | A1 |
20100031353 | Thomas et al. | Feb 2010 | A1 |
20100037314 | Perdisci et al. | Feb 2010 | A1 |
20100043073 | Kuwamura | Feb 2010 | A1 |
20100054278 | Stolfo et al. | Mar 2010 | A1 |
20100058474 | Hicks | Mar 2010 | A1 |
20100064044 | Nonoyama | Mar 2010 | A1 |
20100077481 | Polyakov et al. | Mar 2010 | A1 |
20100083376 | Pereira et al. | Apr 2010 | A1 |
20100115621 | Staniford et al. | May 2010 | A1 |
20100132038 | Zaitsev | May 2010 | A1 |
20100154056 | Smith et al. | Jun 2010 | A1 |
20100180344 | Malyshev et al. | Jul 2010 | A1 |
20100192223 | Ismael et al. | Jul 2010 | A1 |
20100220863 | Dupaquis et al. | Sep 2010 | A1 |
20100235831 | Dittmer | Sep 2010 | A1 |
20100251104 | Massand | Sep 2010 | A1 |
20100281102 | Chinta et al. | Nov 2010 | A1 |
20100281541 | Stolfo et al. | Nov 2010 | A1 |
20100281542 | Stolfo et al. | Nov 2010 | A1 |
20100287260 | Peterson et al. | Nov 2010 | A1 |
20100299754 | Amit et al. | Nov 2010 | A1 |
20100306173 | Frank | Dec 2010 | A1 |
20110004737 | Greenebaum | Jan 2011 | A1 |
20110025504 | Lyon et al. | Feb 2011 | A1 |
20110041179 | St Hlberg | Feb 2011 | A1 |
20110047594 | Mahaffey et al. | Feb 2011 | A1 |
20110047620 | Mahaffey et al. | Feb 2011 | A1 |
20110055907 | Narasimhan et al. | Mar 2011 | A1 |
20110055925 | Jakobsson | Mar 2011 | A1 |
20110078794 | Manni et al. | Mar 2011 | A1 |
20110093951 | Aziz | Apr 2011 | A1 |
20110099620 | Stavrou et al. | Apr 2011 | A1 |
20110099633 | Aziz | Apr 2011 | A1 |
20110099635 | Silberman et al. | Apr 2011 | A1 |
20110113231 | Kaminsky | May 2011 | A1 |
20110145918 | Jung et al. | Jun 2011 | A1 |
20110145920 | Mahaffey et al. | Jun 2011 | A1 |
20110145934 | Abramovici et al. | Jun 2011 | A1 |
20110167493 | Song et al. | Jul 2011 | A1 |
20110167494 | Bowen et al. | Jul 2011 | A1 |
20110167495 | Antonakakis et al. | Jul 2011 | A1 |
20110173213 | Frazier et al. | Jul 2011 | A1 |
20110173460 | Ito et al. | Jul 2011 | A1 |
20110219449 | St. Neitzel et al. | Sep 2011 | A1 |
20110219450 | McDougal et al. | Sep 2011 | A1 |
20110225624 | Sawhney et al. | Sep 2011 | A1 |
20110225655 | Niemela et al. | Sep 2011 | A1 |
20110247072 | Staniford et al. | Oct 2011 | A1 |
20110265182 | Peinado et al. | Oct 2011 | A1 |
20110289582 | Kejriwal et al. | Nov 2011 | A1 |
20110302587 | Nishikawa et al. | Dec 2011 | A1 |
20110307954 | Melnik et al. | Dec 2011 | A1 |
20110307955 | Kaplan et al. | Dec 2011 | A1 |
20110307956 | Yermakov et al. | Dec 2011 | A1 |
20110314546 | Aziz et al. | Dec 2011 | A1 |
20120023593 | Puder et al. | Jan 2012 | A1 |
20120054869 | Yen et al. | Mar 2012 | A1 |
20120066698 | Yanoo | Mar 2012 | A1 |
20120079596 | Thomas | Mar 2012 | A1 |
20120084859 | Radinsky et al. | Apr 2012 | A1 |
20120096553 | Srivastava et al. | Apr 2012 | A1 |
20120110667 | Zubrilin et al. | May 2012 | A1 |
20120117652 | Manni et al. | May 2012 | A1 |
20120121154 | Xue et al. | May 2012 | A1 |
20120124426 | Maybee et al. | May 2012 | A1 |
20120174186 | Aziz et al. | Jul 2012 | A1 |
20120174196 | Bhogavilli et al. | Jul 2012 | A1 |
20120174218 | McCoy et al. | Jul 2012 | A1 |
20120198279 | Schroeder | Aug 2012 | A1 |
20120210423 | Friedrichs et al. | Aug 2012 | A1 |
20120222121 | Staniford et al. | Aug 2012 | A1 |
20120255015 | Sahita et al. | Oct 2012 | A1 |
20120255017 | Sallam | Oct 2012 | A1 |
20120260342 | Dube et al. | Oct 2012 | A1 |
20120266244 | Green et al. | Oct 2012 | A1 |
20120278886 | Luna | Nov 2012 | A1 |
20120297489 | Dequevy | Nov 2012 | A1 |
20120330801 | McDougal et al. | Dec 2012 | A1 |
20120331553 | Aziz et al. | Dec 2012 | A1 |
20130014259 | Gribble et al. | Jan 2013 | A1 |
20130031625 | Lim | Jan 2013 | A1 |
20130036472 | Aziz | Feb 2013 | A1 |
20130047257 | Aziz | Feb 2013 | A1 |
20130074185 | McDougal et al. | Mar 2013 | A1 |
20130086684 | Mohler | Apr 2013 | A1 |
20130097699 | Balupari et al. | Apr 2013 | A1 |
20130097706 | Titonis et al. | Apr 2013 | A1 |
20130111587 | Goel et al. | May 2013 | A1 |
20130117852 | Stute | May 2013 | A1 |
20130117855 | Kim et al. | May 2013 | A1 |
20130139264 | Brinkley et al. | May 2013 | A1 |
20130160125 | Likhachev et al. | Jun 2013 | A1 |
20130160127 | Jeong et al. | Jun 2013 | A1 |
20130160130 | Mendelev et al. | Jun 2013 | A1 |
20130160131 | Madou et al. | Jun 2013 | A1 |
20130167236 | Sick | Jun 2013 | A1 |
20130174214 | Duncan | Jul 2013 | A1 |
20130185789 | Hagiwara et al. | Jul 2013 | A1 |
20130185795 | Winn et al. | Jul 2013 | A1 |
20130185798 | Saunders et al. | Jul 2013 | A1 |
20130191915 | Antonakakis et al. | Jul 2013 | A1 |
20130196649 | Paddon et al. | Aug 2013 | A1 |
20130227691 | Aziz et al. | Aug 2013 | A1 |
20130246370 | Bartram et al. | Sep 2013 | A1 |
20130247186 | LeMasters | Sep 2013 | A1 |
20130263260 | Mahaffey et al. | Oct 2013 | A1 |
20130291109 | Staniford et al. | Oct 2013 | A1 |
20130298243 | Kumar et al. | Nov 2013 | A1 |
20130318038 | Shiffer et al. | Nov 2013 | A1 |
20130318073 | Shiffer et al. | Nov 2013 | A1 |
20130325791 | Shiffer et al. | Dec 2013 | A1 |
20130325792 | Shiffer et al. | Dec 2013 | A1 |
20130325871 | Shiffer et al. | Dec 2013 | A1 |
20130325872 | Shiffer et al. | Dec 2013 | A1 |
20130340079 | Gottlieb | Dec 2013 | A1 |
20140032875 | Butler | Jan 2014 | A1 |
20140053260 | Gupta et al. | Feb 2014 | A1 |
20140053261 | Gupta et al. | Feb 2014 | A1 |
20140082730 | Vashist | Mar 2014 | A1 |
20140130158 | Wang et al. | May 2014 | A1 |
20140137180 | Lukacs et al. | May 2014 | A1 |
20140157405 | Joll | Jun 2014 | A1 |
20140169762 | Ryu | Jun 2014 | A1 |
20140179360 | Jackson et al. | Jun 2014 | A1 |
20140181131 | Ross | Jun 2014 | A1 |
20140189687 | Jung et al. | Jul 2014 | A1 |
20140189866 | Shifter et al. | Jul 2014 | A1 |
20140189882 | Jung et al. | Jul 2014 | A1 |
20140237599 | Gertner | Aug 2014 | A1 |
20140237600 | Silberman et al. | Aug 2014 | A1 |
20140280245 | Wilson | Sep 2014 | A1 |
20140283037 | Sikorski et al. | Sep 2014 | A1 |
20140283063 | Thompson et al. | Sep 2014 | A1 |
20140328204 | Klotsche et al. | Nov 2014 | A1 |
20140337836 | Ismael | Nov 2014 | A1 |
20140344926 | Cunningham | Nov 2014 | A1 |
20140351935 | Shao et al. | Nov 2014 | A1 |
20140380473 | Bu et al. | Dec 2014 | A1 |
20140380474 | Paithane et al. | Dec 2014 | A1 |
20150007312 | Pidathala et al. | Jan 2015 | A1 |
20150096022 | Vincent et al. | Apr 2015 | A1 |
20150096023 | Mesdaq et al. | Apr 2015 | A1 |
20150096024 | Haq et al. | Apr 2015 | A1 |
20150096025 | Ismael | Apr 2015 | A1 |
20150180886 | Staniford et al. | Jun 2015 | A1 |
20150186645 | Aziz et al. | Jul 2015 | A1 |
20150199513 | Ismael et al. | Jul 2015 | A1 |
20150199531 | Ismael et al. | Jul 2015 | A1 |
20150199532 | Ismael et al. | Jul 2015 | A1 |
20150220735 | Paithane et al. | Aug 2015 | A1 |
20150237068 | Sandke | Aug 2015 | A1 |
20150319185 | Kirti | Nov 2015 | A1 |
20150372980 | Eyada | Dec 2015 | A1 |
20160004869 | Ismael et al. | Jan 2016 | A1 |
20160006756 | Ismael et al. | Jan 2016 | A1 |
20160044000 | Cunningham | Feb 2016 | A1 |
20160127393 | Aziz et al. | May 2016 | A1 |
20160191547 | Zafar et al. | Jun 2016 | A1 |
20160191550 | Ismael et al. | Jun 2016 | A1 |
20160261612 | Mesdaq et al. | Sep 2016 | A1 |
20160275289 | Sethumadhavan | Sep 2016 | A1 |
20160285914 | Singh et al. | Sep 2016 | A1 |
20160301703 | Aziz | Oct 2016 | A1 |
20160335110 | Paithane et al. | Nov 2016 | A1 |
20170068816 | Cavazos | Mar 2017 | A1 |
20170083703 | Abbasi | Mar 2017 | A1 |
20170093910 | Gukal | Mar 2017 | A1 |
20180013770 | Ismael | Jan 2018 | A1 |
20180048660 | Paithane et al. | Feb 2018 | A1 |
20180121316 | Ismael et al. | May 2018 | A1 |
20180288077 | Siddiqui et al. | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
2439806 | Jan 2008 | GB |
2490431 | Oct 2012 | GB |
0223805 | Mar 2002 | WO |
0206928 | Nov 2003 | WO |
2007117636 | Oct 2007 | WO |
2008041950 | Apr 2008 | WO |
2011084431 | Jul 2011 | WO |
2011112348 | Sep 2011 | WO |
2012075336 | Jun 2012 | WO |
2012145066 | Oct 2012 | WO |
2013067505 | May 2013 | WO |
Entry |
---|
Marchette, David J., “Computer Intrusion Detection and Network Monitoring: A Statistical Viewpoint”, (“Marchette”), (2001). |
Margolis, P.E. , “Random House Webster's ‘Computer & Internet Dictionary 3rd Edition’”, ISBN 0375703519, (Dec. 1998). |
Moore, D. , et al., “Internet Quarantine: Requirements for Containing Self-Propagating Code”, INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003), pp. 1901-1910. |
Morales, Jose A., et al., ““Analyzing and exploiting network behaviors of malware.””, Security and Privacy in Communication Networks. Springer Berlin Heidelberg, 2010. 20-34. |
Mori, Detecting Unknown Computer Viruses, 2004, Springer-Verlag Berlin Heidelberg. |
Natvig, Kurt , “SANDBOXII: Internet”, Virus Bulletin Conference, (“Natvig”), (Sep. 2002). |
NetBIOS Working Group. Protocol Standard for a NetBIOS Service on a TCP/UDP transport: Concepts and Methods. STD 19, RFC 1001, Mar. 1987. |
Newsome, J. , et al., “Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software”, In Proceedings of the 12th Annual Network and Distributed System Security, Symposium (NDSS '05), (Feb. 2005). |
Newsome, J. , et al., “Polygraph: Automatically Generating Signatures for Polymorphic Worms”, In Proceedings of the IEEE Symposium on Security and Privacy, (May 2005). |
Nojiri, D. , et al., “Cooperation Response Strategies for Large Scale Attack Mitigation”, DARPA Information Survivability Conference and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302. |
Oberheide et al., CloudAV.sub.—N-Version Antivirus in the Network Cloud, 17th USENIX Security Symposium USENIX Security '08 Jul. 28-Aug. 1, 2008 San Jose, CA. |
Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Roonald Perez, Leendert van Doorn, John Linwood Griffin, Stefan Berger., sHype: Secure Hypervisor Appraoch to Trusted Virtualized Systems (Feb. 2, 2005) (“Sailer”). |
Silicon Defense, “Worm Containment in the Internal Network”, (Mar. 2003), pp. 1-25. |
Singh, S. , et al., “Automated Worm Fingerprinting”, Proceedings of the ACM/USENIX Symposium on Operating System Design and Implementation, San Francisco, California, (Dec. 2004). |
Spitzner, Lance , “Honeypots: Tracking Hackers”, (“Spizner”), (Sep. 17, 2002). |
The Sniffers's Guide to Raw Traffic available at: yuba.stanford.edu/.about.casado/pcap/section1.html, (Jan. 6, 2014). |
Thomas H. Ptacek, and Timothy N. Newsham , “Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection”, Secure Networks, (“Ptacek”), (Jan. 1998). |
U.S. Appl. No. 14/872,003, filed Sep. 30, 2015 Non-Final Office Action dated Jan. 17, 2017. |
U.S. Appl. No. 14/872,003, filed Sep. 30, 2015 Notice of Allowance dated Aug. 25, 2017. |
U.S. Pat. No. 8,171,553 filed Apr. 20, 2006, Inter Parties Review Decision dated Jul. 10, 2015. |
U.S. Pat. No. 8,291,499 filed Mar. 16, 2012, Inter Parties Review Decision dated Jul. 10, 2015. |
Venezia, Paul , “NetDetector Captures Intrusions”, InfoWorld Issue 27, (“Venezia”), (Jul. 14, 2003). |
Wahid et al., Characterising the Evolution in Scanning Activity of Suspicious Hosts, Oct. 2009, Third International Conference on Network and System Security, pp. 344-350. |
Whyte, et al., “DNS-Based Detection of Scanning Works in an Enterprise Network”, Proceedings of the 12th Annual Network and Distributed System Security Symposium, (Feb. 2005), 15 pages. |
Williamson, Matthew M., “Throttling Viruses: Restricting Propagation to Defeat Malicious Mobile Code”, ACSAC Conference, Las Vegas, NV, USA, (Dec. 2002), pp. 1-9. |
Yuhei Kawakoya et al: “Memory behavior-based automatic malware unpacking in stealth debugging environment”, Malicious and Unwanted Software (Malware), 2010 5th International Conference on, IEEE, Piscataway, NJ, USA, Oct. 19, 2010, pp. 39-46, XP031833827, ISBN:978-1-4244-8-9353-1. |
Zhang et al., The Effects of Threading, Infection Time, and Multiple-Attacker Collaboration on Malware Propagation, Sep. 2009, IEEE 28th International Symposium on Reliable Distributed Systems, pp. 73-82. |
“Mining Specification of Malicious Behavior”—Jha et al, UCSB, Sep. 2007 https://www.cs.ucsb.edu/.about.chris/research/doc/esec07.sub.--mining.pdf- . |
“Network Security: NetDetector—Network Intrusion Forensic System (NIFS) Whitepaper”, (“NetDetector Whitepaper”), (2003). |
“Packet”, Microsoft Computer Dictionary, Microsoft Press, (Mar. 2002), 1 page. |
“When Virtual is Better Than Real”, IEEEXplore Digital Library, available at, http://ieeexplore.ieee.org/xpl/articleDetails.isp?reload=true&arnumbe- r=990073, (Dec. 7, 2013). |
Abdullah, et al., Visualizing Network Data for Intrusion Detection, 2005 IEEE Workshop on Information Assurance and Security, pp. 100-108. |
Adetoye, Adedayo , et al., “Network Intrusion Detection & Response System”, (“Adetoye”), (Sep. 2003). |
AltaVista Advanced Search Results. “attack vector identifier”. Http://www.altavista.com/web/results?Itag=ody&pg=aq&aqmode=aqa=Event+Orch- estrator . . . , (Accessed on Sep. 15, 2009). |
AltaVista Advanced Search Results. “Event Orchestrator”. Http://www.altavista.com/web/results?Itag=ody&pg=aq&aqmode=aqa=Event+Orch- esrator . . . , (Accessed on Sep. 3, 2009). |
Apostolopoulos, George; hassapis, Constantinos; “V-eM: A cluster of Virtual Machines for Robust, Detailed, and High-Performance Network Emulation”, 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Sep. 11-14, 2006, pp. 117-126. |
Aura, Tuomas, “Scanning electronic documents for personally identifiable information”, Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM, 2006. |
Baecher, “The Nepenthes Platform: An Efficient Approach to collect Malware”, Springer-verlag Berlin Heidelberg, (2006), pp. 165-184. |
Baldi, Mario; Risso, Fulvio; “A Framework for Rapid Development and Portable Execution of Packet-Handling Applications”, 5th IEEE International Symposium Processing and Information Technology, Dec. 21, 2005, pp. 233-238. |
Bayer, et al., “Dynamic Analysis of Malicious Code”, J Comput Virol, Springer-Verlag, France., (2006), pp. 67-77. |
Boubalos, Chris , “extracting syslog data out of raw pcap dumps, seclists.org, Honeypots mailing list archives”, available at http://seclists.org/honeypots/2003/q2/319 (“Boubalos”), (Jun. 5, 2003). |
Chaudet, C. , et al., “Optimal Positioning of Active and Passive Monitoring Devices”, International Conference on Emerging Networking Experiments and Technologies, Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, CoNEXT '05, Toulousse, France, (Oct. 2005), pp. 71-82. |
Chen, P. M. and Noble, B. D., “When Virtual is Better Than Real, Department of Electrical Engineering and Computer Science”, University of Michigan (“Chen”) (2001). |
Cisco “Intrusion Prevention for the Cisco ASA 5500-x Series” Data Sheet (2012). |
Cisco, Configuring the Catalyst Switched Port Analyzer (SPAN) (“Cisco”), (1992). |
Clark, John, Sylvian Leblanc,and Scott Knight. “Risks associated with usb hardware trojan devices used by insiders.” Systems Conference (SysCon), 2011 IEEE International. IEEE, 2011. |
Cohen, M.I. , “PyFlag—An advanced network forensic framework”, Digital investigation 5, Elsevier, (2008), pp. S112-S120. |
Costa, M. , et al., “Vigilante: End-to-End Containment of Internet Worms”, SOSP '05, Association for Computing Machinery, Inc., Brighton U.K., (Oct. 23-26, 2005). |
Crandall, J.R. , et al., “Minos:Control Data Attack Prevention Orthogonal to Memory Model”, 37th International Symposium on Microarchitecture, Portland, Oregon, (Dec. 2004). |
Deutsch, P. , “Zlib compressed data format specification version 3.3” RFC 1950, (1996). |
Distler, “Malware Analysis: An Introduction”, SANS Institute InfoSec Reading Room, SANS Institute, (2007). |
Dunlap, George W. , et al., “ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay”, Proceeding of the 5th Symposium on Operating Systems Design and Implementation, USENIX Association, (“Dunlap”), (Dec. 9, 2002). |
Excerpt regarding First Printing Date for Merike Kaeo, Designing Network Security (“Kaeo”), (2005). |
Filiol, Eric , et al., “Combinatorial Optimisation of Worm Propagation on an Unknown Network”, International Journal of Computer Science 2.2 (2007). |
FireEye Malware Analysis & Exchange Network, Malware Protection System, FireEye Inc., 2010. |
FireEye Malware Analysis, Modern Malware Forensics, FireEye Inc., 2010. |
FireEye v.6.0 Security Target, pp. 1-35, Version 1.1, FireEye Inc., May 2011. |
Sibler, Clint, et al. AndroidLeaks: automatically detecting potential privacy leaks in android applications on a large scale. Springer Berlin Heidelberg, 2012. |
Goel, et al., Reconstructing System State for Intrusion Analysis, Apr. 2008 SIGOPS Operating Systems Review, vol. 42 Issue 3, pp. 21-28. |
Gregg Keizer: “Microsoft's HoneyMonkeys Show Patching Windows Works”, Aug. 8, 2005, XP055143386, Retrieved from the Internet: URL:http://www.informationweek.com/microsofts-honeymonkeys-show-patching-windows-works/d/d-d/1035069? [retrieved on Jun. 1, 2016]. |
Heng Yin et al, Panorama: Capturing System-Wide Information Flow for Malware Detection and Analysis, Research Showcase @ CMU, Carnegie Mellon University, 2007. |
Hjelmvik, Erik , “Passive Network Security Analysis with NetworkMiner”, (IN)Secure, Issue 18, (Oct. 2008), pp. 1-100. |
Idika et al., A-Survey-of-Malware-Detection-Techniques, Feb. 2, 2007, Department of Computer Science, Purdue University. |
IEEE Xplore Digital Library Sear Results for “detection of unknown computer worms”. Http//ieeexplore.ieee.org/searchresult.jsp?SortField=Score&SortOrder=desc- &ResultC . . . , (Accessed on Aug. 28, 2009). |
Isohara, Takamasa, Keisuke Takemori, and Ayumu Kubota. “Kernel-based behavior analysis for android malware detection.” Computational intelligence and Security (CIS), 2011 Seventh International Conference on. IEEE, 2011. |
Kaeo, Merike , “Designing Network Security”, (“Kaeo”), (Nov. 2003). |
Kevin A Roundy et al: “Hybrid Analysis and Control of Malware”, Sep. 15, 2010, Recent Advances in Intrusion Detection, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 317-338, XP019150454 ISBN:978-3-642-15511-6. |
Kim, H. , et al., “Autograph: Toward Automated, Distributed Worm Signature Detection”, Proceedings of the 13th Usenix Security Symposium (Security 2004), San Diego, (Aug. 2004), pp. 271-286. |
King, Samuel T., et al., “Operating System Support for Virtual Machines”, (“King”) (2003). |
Krasnyansky, Max , et al., Universal TUN/TAP driver, available at https://www.kernel.org/doc/Documentation/networking/tuntap.txt (2002) (“Krasnyansky”). |
Kreibich, C. , et al., “Honeycomb-Creating Intrusion Detection Signatures Using Honeypots”, 2nd Workshop on Hot Topics in Networks (HotNets-11), Boston, USA, (2003). |
Kristoff, J. , “Botnets, Detection and Mitigation: DNS-Based Techniques”, NU Security Day, (2005), 23 pages. |
Leading Colleges Select FireEye to Stop Malware-Related Data Breaches, FireEye Inc., 2009. |
Li et al., A VMM-Based System Call Interposition Framework for Program Monitoring, Dec. 2010, IEEE 16th International Conference on Parallel and Distributed Systems, pp. 706-711. |
Liljenstam, Michael , et al., “Simulating Realistic Network Traffic for Worm Warning System Design and Testing”, Institute for Security Technology studies, Dartmouth College (“Liljenstam”), (Oct. 27, 2003). |
Lindorfer, Martina, Clemens Kolbitsch, and Paolo Milani Comparetti. “Detecting environment-sensitive malware.” Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, 2011. |
Lok Kwong et al: “DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic Views for Dynamic Android Vlalware Analysis”, Aug. 10, 2012, XP055158513, Retrieved from the Internet: URL:https://www.usenix.org/system/files/conference/usenixsecurity12/sec12- -final107.pdf [retrieved on Dec. 15, 2014]. |
Didier Stevens, “Malicious PDF Documents Explained”, Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 9, No. 1, Jan. 1, 2011, pp. 80-82, XP011329453, ISSN: 1540-7993, DOI: 10.1109/MSP.2011.14. |
Hiroshi Shinotsuka, Malware Authors Using New Techniques to Evade Automated Threat Analysis Systems, Oct. 26, 2012, http://www.symantec.com/connect/blogs/, pp. 1-4. |
Khaled Salah et al: “Using Cloud Computing to Implement a Security Overlay Network”, Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 11, No. 1, Jan. 1, 2013 (Jan. 1, 2013). |
Lastline Labs, The Threat of Evasive Malware, Feb. 25, 2013, Lastline Labs, pp. 1-8. |
Vladimir Getov: “Security as a Service in Smart Clouds—Opportunities and Concerns”, Computer Software and Applications Conference (COMPSAC), 2012 IEEE 36th Annual, IEEE, Jul. 16, 2012 (Jul. 16, 2012). |
Number | Date | Country | |
---|---|---|---|
Parent | 14872003 | Sep 2015 | US |
Child | 15817006 | US |