Cyber attack early warning system

Information

  • Patent Grant
  • 9825989
  • Patent Number
    9,825,989
  • Date Filed
    Wednesday, September 30, 2015
    9 years ago
  • Date Issued
    Tuesday, November 21, 2017
    7 years ago
Abstract
An early warning system and method for generating an alert regarding a potential attack on a client device is provided for based on real-time analysis. The early warning system and method generally comprise receiving data associated with an attack alert, wherein the attack alert corresponds to an electrical signal that indicates detection of a malware attack from a remote source. The received data is analyzed using an attack-specific engine that is configured to generate an attack-specific result. An attack value is computed based on the attack-specific result and a consideration of potential attack targets, wherein the attack value is compared to a threshold value so as to determine whether or not to generate an early warning alert. An early warning alert is generated when the attack value matches or exceeds the threshold value.
Description
FIELD

Embodiments of the disclosure relate to the field of cyber-security. More specifically, one embodiment of the disclosure relates to a system, apparatus and method for providing an early warning of a potential attack on a client device based on real-time analysis.


GENERAL BACKGROUND

Over the last decade, malicious software has become a pervasive problem for Internet users as many networked resources include vulnerabilities that are subject to attack. For instance, over the past few years, an increasing number of vulnerabilities are being discovered in software that is loaded onto network devices, such as vulnerabilities within operating systems, for example. While some vulnerabilities continue to be addressed through software patches, prior to the release of such software patches, network devices will continue to be targeted for attack by malware, namely information such as computer code that attempts during execution to take advantage of a vulnerability in computer software by acquiring sensitive information or adversely influencing or attacking normal operations of the network device or the entire enterprise network.


Moreover, with the proliferation of the Internet, social media, and email, malware is capable of spreading more quickly and effecting a larger subset of the population than ever before. In response, systems have been developed to remove and/or quarantine malware. For example, users are generally informed to “scan” their various devices and/or systems using traditional security measures such as “anti-virus” software that is configured to remove any malware that may have been installed therein. Unfortunately, users are at the mercy of the most recent update of their anti-virus software, which may or may not include information to prevent possible malware exploits.


Furthermore, modern malware is becoming increasingly targeted, such that particular users, industries, or even specific segments are being sought, thereby circumventing even the most recently updated and detailed security measures that are usually generic in nature. The issue is further exacerbated because malware is also becoming increasingly sophisticated, to the point that such malware may go undetected by anti-virus software, or go so far as circumventing anti-virus measures altogether.


Accordingly, a need exists for an early warning system that is preventative, rather than reactive after the fact, to predict potential malware attacks prior to their occurrence, and notify targets that have a high probability of being attacked.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:



FIG. 1 is an exemplary block diagram of an operational flow of an early warning system.



FIG. 2A is an exemplary block diagram of a communication system deploying a cyber attack early warning system via a network.



FIG. 2B is an exemplary embodiment of a logical representation of the cyber attack early warning system of FIG. 2A.



FIG. 3 is a flowchart of an exemplary method for providing early warning of a potential attack on a client device based on a real-time analysis of a plurality of factors.



FIG. 4 is an exemplary network device demonstrating an alert according to the present disclosure.





DETAILED DESCRIPTION

Embodiments of the present disclosure generally relate to a cyber attack early warning system that is configured to predict and notify probable targets of a potential malware attack prior to its occurrence.


According to one embodiment of the disclosure, network traffic is analyzed such that malicious network traffic is filtered and preferably prevented from executing, using a remote source. Herein, upon detection of potentially malicious network traffic, the remote source is configured to generate an “attack alert” that is communicated to the cyber attack early warning system, which comprises an input engine, an expert engine, a correlation engine, and a reporting engine.


When the attack alert is received by the cyber attack early warning system, the attack alert is analyzed and classified. For example, the attack alert may correspond to any of various malware attack types, including without limitation Advanced Persistent Threats (APT), Point-Of-Sales attacks (POS), Crimeware attacks, and the like.


Once the attack alert is classified, an attack-specific engine is configured to provide further in-depth analysis of the attack alert, including the application of a plurality of analysis mechanisms, such as various algorithms and/or models specific to the type of malware attack. It is contemplated that the attack-specific engine may also analyze elements of past attacks and related data. The results of these various analyses are correlated to compute an “attack value” so that probable attack targets may be notified. For example, probable attack targets may include companies or individuals in the same industry, geographic region, and capacity, for example, without limitation. If the determined attack value matches or exceeds a predetermined threshold value, then an early warning alert is provided to probable targets of a malware attack. If the attack value is less than the predetermined threshold, then the early warning alert is not generated.


I. Terminology


In the following description, certain terminology is used to describe features of the invention. For example, in certain situations, both terms “logic” and “engine” are representative of hardware, firmware and/or software that is configured to perform one or more functions. As hardware, logic (or engine) may include circuitry having data processing or storage functionality. Examples of such circuitry may include, but are not limited or restricted to a microprocessor, one or more processor cores, a programmable gate array, a microcontroller, an application specific integrated circuit, wireless receiver, transmitter and/or transceiver circuitry, semiconductor memory, or combinatorial logic.


Logic (or engine) may be software in the form of one or more software modules, such as executable code in the form of an executable application, an application programming interface (API), a subroutine, a function, a procedure, an applet, a servlet, a routine, source code, object code, a shared library/dynamic load library, or one or more instructions. These software modules may be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of non-transitory storage medium may include, but are not limited or restricted to a programmable circuit; a semiconductor memory; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); persistent storage such as non-volatile memory (e.g., read-only memory “ROM”, power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or a portable memory device. As firmware, the executable code is stored in persistent storage.


The term “object” generally refers to a collection of data, whether in transit (e.g., over a network) or at rest (e.g., stored), often having a logical structure or organization that enables it to be classified for purposes of analysis. During analysis, for example, the object may exhibit a set of expected characteristics and, during processing, a set of expected behaviors. The object may also exhibit a set of unexpected characteristics and a set of unexpected behaviors that may evidence an exploit and potentially allow the object to be classified as an exploit.


Examples of objects may include one or more flows or a self-contained element within a flow itself. A “flow” generally refers to related packets that are received, transmitted, or exchanged within a communication session. For convenience, a packet is broadly referred to as a series of bits or bytes having a prescribed format, which may include packets, frames, or cells.


As an illustrative example, an object may include a set of flows such as (1) a sequence of transmissions in accordance with a particular communication protocol (e.g., User Datagram Protocol (UDP); Transmission Control Protocol (TCP); or Hypertext Transfer Protocol (HTTP); etc.), or (2) inter-process communications (e.g., Remote Procedure Call “RPC” or analogous processes, etc.). Similar, as another illustrative example, the object may be a self-contained element, where different types of such objects may include an executable file, non-executable file (such as a document or a dynamically link library), a Portable Document Format (PDF) file, a JavaScript file, Zip file, a Flash file, a document (for example, a Microsoft Office® document), an electronic mail (email), downloaded web page, an instant messaging element in accordance with Session Initiation Protocol (SIP) or another messaging protocol, or the like.


According to one embodiment, the term “malware” may be construed broadly as any code or activity that initiates a malicious attack and/or operations associated with anomalous or unwanted behavior. For instance, malware may correspond to a type of malicious computer code that executes an exploit to take advantage of a vulnerability, for example, to harm or co-opt operation of a network device or misappropriate, modify or delete data. In the alternative, malware may correspond to an exploit, namely information (e.g., executable code, data, command(s), etc.) that attempts to take advantage of a vulnerability in software and/or an action by a person gaining unauthorized access to one or more areas of a network device to cause the network device to experience undesirable or anomalous behaviors. The undesirable or anomalous behaviors may include a communication-based anomaly or an execution-based anomaly, which, for example, could (1) alter the functionality of an network device executing application software in an atypical manner (a file is opened by a first process where the file is configured to be opened by a second process and not the first process); (2) alter the functionality of the network device executing that application software without any malicious intent; and/or (3) provide unwanted functionality which may be generally acceptable in another context. Additionally, malware may be code that initiates unwanted behavior which may be, as one example, uploading a contact list from an endpoint device to cloud storage without receiving permission from the user.


The term “shellcode” refers to a small piece of executable code that resides in data (e.g., is injected into data), is used as a payload of malware, and, in some cases, contains a shell command to execute an exploit.


In certain instances, the term “detected” is used herein to represent that there is a prescribed level of confidence (or probability) on the presence of an exploit or attack within an object under analysis.


The term “network device” should be construed as any electronic device with the capability of connecting to a network. Such a network may be a public network such as the Internet or a private network such as a wireless data telecommunication network, wide area network, a type of local area network (LAN), or a combination of networks. Examples of a network device may include, but are not limited or restricted to, a laptop, a mobile phone, a tablet, a computer, etc.


The term “computerized” generally represents that any corresponding operations are conducted by hardware in combination with software and/or firmware. Also, the terms “compare” or “comparison” generally mean determining if a match (e.g., a certain level of correlation) is achieved between two items where one of the items may include a particular signature pattern.


Finally, the terms “or” and “and/or” as used herein are to be interpreted as inclusive or meaning any one or any combination. Therefore, “A, B or C” or “A, B and/or C” mean “any of the following: A; B; C; A and B; A and C; B and C; A, B and C.” An exception to this definition will occur only when a combination of elements, functions, steps or acts are in some way inherently mutually exclusive.


As this invention is susceptible to embodiments of many different forms, it is intended that the present disclosure is to be considered as an example of the principles of the invention and not intended to limit the invention to the specific embodiments shown and described.


II. Early Warning Alert Generation Methodology


A. Operational Flow for Early Warning Alert Generation


Referring to FIG. 1, an exemplary logical representation of a cyber attack early warning system 100 (hereinafter “EWS”) is shown. Herein, some or all of various incoming objects associated with monitored network traffic are received by an exemplary malicious content detection (MCD) system 102, as described in U.S. patent application Ser. No. 14/042,483, filed Sep. 30, 2013 and incorporated herein by reference in its entirety, which preferably comprises virtual execution logic that is part of a dynamic analysis engine, either directly or via an optional static analysis engine. According to one embodiment of the disclosure, the static analysis engine is configured as a capture and filter device that receives the incoming objects and conducts heuristics, exploit signature checks and/or vulnerability signature checks on some or all of the objects, to identify “suspicious” objects having one or more characteristics associated with an exploit. It is envisioned that the MCD system 102 may also perform a behavioral analysis of the incoming objects. For example, the MCD system 102 may analyze one or more objects to determine how the object was received, e.g., via browser download, email attachment, external drive, SQL injection compromise, and the like, without limitation. Furthermore, certain artifacts that may be unique with respect to a type of malware attack may be analyzed. The behavioral analysis may also consider propagation mechanisms of an object, to determine how the object communicates or navigates across and/or through a network, for example.


When suspicious objects are identified by the MCD system 102, an attack alert 110 is generated and received by the EWS 100. The attack alert 110 may comprise analysis logs detailing certain characteristics of exploits, such as from one or more virtual machines, attack metadata, communication logs from the client device and/or the MCD system 102, and various other information corresponding to a malware attack, without limitation.


As shown in FIG. 1, the EWS 100 comprises an input engine 120, an attack-specific engine 130, a correlation engine 145, and a reporting engine 155. According to one embodiment of the disclosure, each of the input engine 120, the attack-specific engine 130, the correlation engine 145, and the reporting engine 155 may correspond to one or more software modules stored in non-transitory storage medium that, when executed by one or more hardware processors, performs the below identified functionality. Alternatively, some or all of these engine 120, 130, 145 and 155 may correspond to hardware logic. Independent of the system architecture, the communicative coupling between the input engine 120, attack-specific engine 130, correlation engine 145, and reporting engine 155 is provided in a generally serial configuration. However, it is contemplated that some or all of the aforementioned engines may be provided in a parallel configuration, where the attack alert 110 may be processed concurrently, or in any other configuration such as a daisy-chain or any other topology without limitation.


In one embodiment, the EWS 100 and MCD system 102 are communicatively coupled with a threat intelligence network 105. The threat intelligence network 105 may be configured to store and access data regarding malware attacks across a number of objects, including for example, web-based, email-based, and file-based threats. Moreover, it is envisioned that the threat intelligence network 105 may be configured to store historical information regarding previously analyzed and/or known malware attacks. The threat intelligence network 105 may also be periodically and/or aperiodically updated so as to store information regarding new malware attacks, reports, alerts, and/or corresponding features, for example.


Once generated, some or all of the data associated with the attack alert 110 is routed to the EWS 100 using pull coding, such that the initial request for the attack alert 110 originates from the EWS 100, and is then responded to by a server, such as via the threat intelligence network 105. In one embodiment, using pull coding, the threat intelligence network 105 may be idle until the EWS 100 interrupts the threat intelligence network 105 with a request. Upon receipt of the request, the threat intelligence network 105 may become an active component. In one embodiment, the threat intelligence network 105 may be configured so as to determine its own interest in the request and also to consider the origin of the request prior to communicating any further data. It should be appreciated, however, that other routing methodologies such as push technologies, or some hybrid of push/pull technologies are within the scope and spirit of the present disclosure.


Upon receipt by the EWS 100, the attack alert 110 is communicated to the input engine 120 for analysis, feature extraction and classification using various logic, such as heuristics, exploit/vulnerability logic and parsing logic, for example, as explained in detail further below. When the attack alert 110 is classified, the input engine 120 generates a classified result 125 that is communicated to the attack-specific engine 130, which provides attack-specific analysis with respect to the classified alert 125. As shown, the attack-specific engine 130 includes attack-specific logic 135 that may be specifically tailored to analyze one of various malware attacks, including by way of non-limiting example, APT, POS, and Crimeware attacks.


For example, the attack-specific logic 135 may comprise a plurality of analysis mechanisms such as one or more heuristic, probabilistic, and/or machine learning algorithms specific to a type of malware attack. Consequently, a particular attack alert may be compared with previously known attacks, incidences, feature sets, vulnerabilities, attack signatures, and the like, to determine correspondence with respect to a plurality of time-dependent and time-independent features. In one embodiment, the time dependent features may comprise the number of request-response sessions, and/or the time, day, and month of the attack. Similarly, in one embodiment, time-independent features may comprise the time-independent features such as the geographic location of the attack target, industry, employees of an organization, either alone or in combination, without limitation. The combination of time-dependent and time-independent features are then examined using a plurality of correlation techniques, so as to determine a degree of similarity based on the presence and/or volume of the time-dependent and time-independent features and generate an attack-specific engine result 140 that is communicated to the correlation engine 145.


Using probabilistic or machine-learning algorithms, the correlation engine 145 is configured to determine an “attack value”, which in one embodiment comprises a real-time value that may be based on at least the attack-specific engine result 140, time-dependent and time-independent features, and a consideration of potential attack targets, for example. The correlation engine 145 is configured to compare the attack value with a predetermined threshold value to determine whether an early warning alert should be generated.


In one embodiment, the predetermined threshold value may represent, for example, certain incidences, feature sets, vulnerabilities, and/or attack signatures specific to any of various malware attacks. More specifically, it is envisioned that the predetermined threshold value may comprise any plurality of characteristics of a particular malware attack, including by way of non-limiting example, the number and/or existence of various API calls, request-response sessions, and geographical information regarding the most recent, and/or previously targeted parties. It should be understood that the predetermined threshold value might vary for different types of malware attacks. Thus, for certain malware attacks, only one characteristic may be required to be present so that the attack value matches or exceeds the threshold value. Of course, in other instances, the threshold value may be adapted to accommodate any number of characteristics depending on the type of malware attack.


In general, if the attack value matches or exceeds the predetermined threshold value, then a correlated result 150 is generated and communicated to the reporting engine 155 for final processing and reporting. In the event that the attack value fails to exceed the predetermined threshold, then the correlated results 150 may indicate, for example, that the reporting engine 155 should not generate an early warning alert or report 160. The correlated results 150 may be stored in a database for future reference.


If the correlated results 150 indicate that an early warning alert or report 160 should be generated, then at least portions of the correlated results 150 and attack-specific engine results 140 may be combined and communicated to the reporting engine 155. The reporting engine 155 may issue an early warning alert or report 160 (e.g., an email message, text message, display screen image, etc.) to security administrators for example, communicating the urgency in handling and preferably preventing one or more predicted attacks.


Alternatively, the early warning alert or report 160 may trigger further analysis of the object by the MCD system 102, for example, to verify behavior of the object as an exploit. The early warning alert or report 160 may also include detailed instructions pertaining to specific attack types, potential issues thereto, security holes, and best practices to prevent one or more predicted malware attacks. It should be appreciated that the reporting engine 155 may also be configured to update the threat intelligence network 105 with information corresponding to the instantly analyzed attack alert for future reference and/or further processing.


B. General Architecture of Network Device Deploying Early Warning Alert Generation Logic


Referring to FIG. 2A, an exemplary block diagram of an EWS detection environment 200 communicatively coupled to a communication network 261 is shown. The EWS detection environment 200 comprises a server device 260, an optional firewall 262, an optional network interface 270, a MCD system 263, a client device 264, and a threat intelligence network 265 that is communicatively coupled with the MCD system 263 and the exemplary EWS 100.


According to the embodiment illustrated in FIG. 2A, the MCD system 263 is a network device that is adapted to analyze information associated with network traffic routed over a communication network 261 between at least one server device 260 and at least one client device 264. The communication network 261 may include a public network such as the Internet, in which case an optional firewall 262 (represented by dashed lines) may be interposed on the communication path between the public network and the client device 264. Alternatively, the communication network 261 may be a private network such as a wireless data telecommunication network, wide area network, a type of local area network (LAN), or a combination of networks.


As shown, the EWS 100 may be communicatively coupled with the communication network 261 via a network interface 270. In general, the network interface 270 operates as a data capturing device (sometimes referred to as a “tap” or “network tap”) that is configured to receive data propagating to/from the client device 264 and provide at least some of this data to the MCD system 263. Alternatively, the MCD system 263 may be positioned behind the firewall 262 and in-line with client device 264.


According to one embodiment of the disclosure, the network interface 270 is capable of receiving and routing objects associated with network traffic to the MCD system 263. The network interface 270 may provide the entire traffic or a certain subset of the network traffic, for example, such as one or more files that are part of a set of flows, packet payloads, or the like. In some embodiments, although not shown, network interface 270 may be contained within the MCD system 263.


As further shown in FIG. 2A, the EWS 100 comprises input engine 210, attack-specific engine 220, correlation engine 230, and reporting logic 240. Although the components disposed within the EWS 100 are shown in a communicatively coupled serial configuration, it is envisioned that other topologies may also be implemented, such as, for example, parallel and daisy-chain configurations. It should be appreciated that the input engine 210, attack-specific engine 220, correlation engine 230, and reporting logic 240 may each be separate and distinct components, but the combination of components may also be implemented in a single block and/or core.


In some embodiments, as best shown in FIG. 2B, the input engine 210 comprises one or more software modules that, when executed by one or more processors, receives the attack alert 110 from the threat intelligence network 265 for classification, prior to being communicated to the attack-specific engine 220. In some embodiments, as shown in FIG. 2A, the input engine 210 may comprise one or more software modules such as attack alert logic 211, when executed by one or more processors, extracts certain data from the attack alert 110 so as to classify the attack using heuristics, exploit signature checks and/or vulnerability signature checks, for example. It should be understood that the attack alert logic 211 and the input engine may be one or more software modules executed by the same processor or different processors, where these different processors may be located within the same processor package (e.g., different processor cores) and/or located at remote or even geographically remote locations that are communicatively coupled (e.g., by a dedicated communication link) or a network.


Referring again to FIG. 2A, the attack alert logic 211 may comprise modules dedicated to certain tasks, such as, by way of non-limiting example, heuristics logic 212, exploit/vulnerability matching logic 214, and/or parsing logic 215. The heuristics logic 212 may be adapted for analysis of certain portions of network traffic under analysis to determine whether any portion thereof corresponds to either (i) a “suspicious” identifier such as either a particular Uniform Resource Locator “URL” that has previously been determined as being associated with known exploits, a particular source or destination (IP or MAC) address that has previously been determined as being associated with known exploits; (ii) a particular exploit pattern; or (iii) a particular shellcode pattern, alone or in combination, without limitation. When deployed, the attack alert logic 211 may be adapted to perform exploit signature checks, which may involve a comparison of an object under analysis against one or more pre-stored exploit signatures (e.g., pre-configured and predetermined attack patterns) from database 216. Additionally or in the alternative, the attack alert logic 211 may be configured with parsing logic 215 so as to separate various aspects of the attack alert 110 for more efficient and timely processing. For example, the parsing logic 215 may be configured so as to receive data associated with the attack alert 110 to construct a data structure, including by way of non-limiting example, a parse tree, abstract syntax tree or any other hierarchical structure, thereby providing a structural representation of data associated with the attack alert 110.


Additionally or in the alternative, the attack alert logic 211 may be configured with exploit/vulnerability matching logic 214 that is adapted to perform vulnerability signature checks, namely a process of uncovering deviations in messaging practices set forth in applicable communication protocols (e.g., HTTP, TCP, etc.). The term “signature” designates an indicator of a set of characteristics and/or behaviors exhibited by one or more exploits that may not be unique to those exploit(s). Thus, a match of the signature may indicate to some level of probability, often well less than 100%, that the attack alert 110 comprises a certain exploit. In some contexts, those of skill in the art have used the term “signature” as a unique identifier or “fingerprint,” for example, of a specific virus or virus family (or other exploit), which is generated for instance as a hash of its machine code, and that is a special sub-case for purposes of this disclosure.


As further shown in FIG. 2A, once the attack alert 110 has been analyzed, the input engine 210 generates classified results 125 based on determinations of the attack alert logic 110. The classified results 125 may, among others, classify any malware and/or exploits detected into a family of malware and/or exploits, describe the malware and/or exploits and provide the metadata associated with any object(s) within which the malware and/or exploits were detected. Furthermore, the attack alert logic 110 may store the classified results 125 in the database 216 for future reference.


As shown, the classified results 125 are communicated to the attack-specific engine 220. The attack-specific engine 220 comprises attack-specific logic 135 that comprises a plurality of attack cores 2221-222N, each specific to one of various types of malware attacks, including by way of non-limiting example, APT, POS, and Crimeware attacks. The attack-specific engine 220 further comprises routing logic 223 that is configured so as to route the classified result 125 to one of the appropriate attack cores 2221-222N. It is envisioned that each of the attack cores 2221-222N is configured so as to analyze the content of the attack alert 110 and apply a plurality of analysis mechanisms specific to the type of malware attack. In one embodiment, each of the attack cores 2221-222N may be configured as a plug-in, extension, and/or an add-on, for example, so as to apply analysis mechanisms specific to the type of malware attack. Each of the plug-ins may include feature set logic 224 specific to each type of attack, including, but not limited to network and operating system behavior when a client device and/or network is under a specific type of malware attack, as explained in further detail below. It is envisioned that each of the plug-ins may be configured so as to cooperate with any real-time data collection and/or processing capabilities of the EWS 100.


In one embodiment, each of the plurality of attack cores 2221-222N comprises feature set logic 224 specific to each type of attack, based on, for example, attacks stored in a feature-set database 225 comprising historical data corresponding to known and/or previously analyzed attacks. More specifically, the feature set logic 224 may comprise time-dependent features and time-independent features. With respect to time-dependent features, a particular attack alert may be compared with previously known attacks, incidences, attack signatures, and the like, so as to determine correspondence with respect to a plurality of time-dependent features such as the number of methods for a request-response over a predetermined period of time, the time of day of the attack, the duration of the attack, the month, year, execution time of the attack, and the like, without limitation. Furthermore, a plurality of time-independent features, as the name implies, may comprise features such as the geographic location of the attack target, industry, role/title of a specific party etc., without limitation. For example, in one embodiment, in the event that there is an APT attack, the feature-set database 225 may have information stored thereon relating to known APT attacks, such as the medium most often used in such attacks, e.g., a document, or PDF file, and the like; along with any correspondingly suspicious instructions, commands, and/or processes.


As shown in FIG. 2A, each of the attack cores 2221-222N further comprises one or more logic models 228 for further analysis of the classified result 125. It should be appreciated that the logic models 228 may comprise one or more software modules such as probabilistic logic, heuristic logic, and deterministic logic, that, when executed by one or more processors, extracts certain data from the classified result 125 so as to analyze it, at least in part, based on attack-specific (i) pattern matches; (ii) heuristic, probabilistic, or determinative analysis results; (iii) analyzed deviations in messaging practices set forth in applicable communication protocols (e.g., HTTP, TCP, etc.); (iv) analyzed compliance with certain message formats established for the protocol (e.g., out-of-order commands); and/or (v) analyzed header or payload parameters to determine compliance.


It should be understood that the logic models 228 may comprise one or more software modules executed by the same processor or different processors, where these different processors may be located within the same processor package (e.g., different processor cores) and/or located at remote or even geographically remote locations that are communicatively coupled (e.g., by a dedicated communication link) or a network. Once the attack-specific engine 220 has completed its analysis, an attack-specific result 140 comprising certain attack features is generated and communicated to the correlation engine 230. Furthermore, the attack-specific logic 135 may store the attack-specific result 140 in the feature-set database 225 for future reference.


The correlation engine 230 comprises alert value determination logic 231 and a database 232. The alert value determination logic 231 is communicatively coupled to the database 232, where it is envisioned that information regarding potential targets may be stored. Notable information that may be stored on the database 232 includes at least real time features corresponding to potential targets, such as geographic location, industries, segments, whether the target stores credit card information or other sensitive personal data, previous known attacks, alerts, current events, and specifics regarding the various targets' officers, board of directors, and the like.


The alert value determination logic 231 of the correlation engine 230 is configured using at least one of a probabilistic or machine-learning algorithm to determine, in real time, an attack value that represents a probability (or level of confidence) that a potential target may also be attacked. In doing so, the correlation engine 230 is configured so as to consider the attack features learned from the attack-specific engine 220, and real time features stored on the database 232. It is envisioned that the alert value determination logic 231 shall determine if the attack value matches or exceeds a predetermined threshold, so as to generate a correlated result 150 that indicates whether or not a probable target has been found, and therefore alerted with respect to the potential of a malware attack.


Consequently, the correlated result 150 is communicated to the alert generation logic 242 of the reporting logic 240, which may generate an alert for the client device 264 and/or route the alert to the threat intelligence network 265 for further analysis. In addition, the alert may be routed to the communication network 261 for further analysis by a network administrator, for example. The reporting logic 240 may issue an early warning alert or report 160 (e.g., an email message, text message, display screen image, etc.) to security administrators for example, communicating the urgency in handling one or more predicted attacks. The early warning alert or report 160 may trigger a further analysis of the object to verify the behavior of the object as an exploit. It is envisioned that the early warning alert or report 160 may also comprise instructions so as to prevent one or more predicted malware attacks. Finally, the reporting logic 240 may store the correlated results 150 in the database 242 for future reference.


Referring now to FIG. 2B, an exemplary embodiment of a logical representation of the cyber attack early warning system 100 of FIG. 2A is shown. In one embodiment, a network appliance 285 comprises a housing 280, which is made entirely or partially of a rigid material (e.g., hardened plastic, metal, glass, composite or any combination thereof) that protect circuitry within the housing 280, namely one or more processors 275 that are coupled to communication interface logic 278 via a first transmission medium 284. Communication interface logic 278 enables communications with other cyber attack early warning systems 100 and/or the threat intelligence network 265 of FIG. 2A, for example. According to one embodiment of the disclosure, communication interface logic 278 may be implemented as a physical interface including one or more ports for wired connectors. Additionally, or in the alternative, communication interface logic 278 may be implemented with one or more radio units for supporting wireless communications with other electronic devices.


Processor(s) 275 may further be coupled to persistent storage 290 via a second transmission medium 286. According to one embodiment of the disclosure, persistent storage 290 may include the cyber attack early warning system 100, which in one embodiment comprises (a) input engine 210; (b) attack-specific engine 220; (c) correlation engine 230; and reporting logic 240. It is envisioned that one or more of these engines (or logic units) could be implemented externally from the cyber attack early warning system 100 without extending beyond the spirit and scope of the present disclosure.


Referring now to FIG. 3, a flowchart of an exemplary method for providing early warning of a potential attack on a system or device based on a real-time analysis. In block 301, upon detection of potentially malicious network traffic, the MCD system is configured to generate an attack alert. In block 302, the attack alert is received by the EWS 100 and communicated to the input engine 120. In block 303, the input engine 120 performs feature extraction and classification with respect to the attack alert. For example, the attack alert may correspond to any of various malware attack types, including without limitation APT, POS, Crimeware attacks, and the like. In block 304, once the attack alert is classified, the input engine's result is communicated to the attack-specific engine, which provides further in-depth analysis of the attack alert. As noted herein, the expert engine comprises a plurality of attack cores, each specific to one of various malware attacks, including by way of non-limiting example, APT, POS, and Crimeware attacks.


In block 305, each of the attack cores is configured to analyze the content of the attack alert and apply a plurality of analysis mechanisms specific to the type of malware attack. For example, utilizing the attack cores, a particular attack alert may be compared with previously known attacks, incidences, feature sets, attack signatures, etc. to determine correspondence with respect to a plurality of time-sensitive features such as the number of methods for a request-response, and/or the time of day of the attack. A plurality of time-insensitive features such as geographic location of the present attack target, industry, etc. may also be analyzed, without limitation.


In block 306, after analyzing the combination of time-sensitive and time-insensitive features, an attack-specific result is generated and communicated to the correlation engine so as to correlate the result using real-time features across a plurality of potential targets. In block 307, using probabilistic and/or machine-learning algorithms, the correlation engine is configured to determine an “attack value” based on the attack-specific result, and a consideration of probable attack targets. For example, probable attack targets may include companies in the same industry, geographic region, and/or companies having the same size/scale of a presently attacked target, without limitation. In block 308, if the determined attack value matches or exceeds a predetermined threshold value, then an early warning alert is provided in block 310 and communicated to probable targets of a malware attack. If the attack value is less than the predetermined threshold, then, at block 309, the early warning alert is not generated. In either event, however, the threat intelligence network 265 is updated with respect to any potential incident, and the corresponding results thereto.


C. Exemplary Alert


Referring to FIG. 4, a network device may be configured to receive an early warning alert or report 160. In FIG. 4, for illustrative purposes, the network device is represented as a mobile network device 400 (e.g., smartphone, tablet, laptop computer, netbook, etc.). The mobile network device 400 includes a display screen 410; a receiver and/or transmitter (e.g. transceiver) such as an antenna 411.


In one embodiment, the exemplary alert 450 (e.g., an email message, text message, display screen image, etc.) is communicated to security administrators for receipt/viewing on the mobile network device 400. For example, the exemplary alert 450 may indicate the urgency in handling one or more predicted attacks. Furthermore, the exemplary alert 450 may comprise instructions so as to prevent one or more predicted malware attacks. The exemplary alert 450 may also comprise information with respect to the origination of the potential attack, along with suspicious behavior that might confirm the attack with respect to a potential target.


In the foregoing description, the invention is described with reference to specific exemplary embodiments thereof. However, it will be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims.

Claims
  • 1. A computerized method, comprising: receiving data associated with an attack alert, the attack alert indicating detection of a malware attack from a remote source;classifying the received data to produce a classified result, the classified result is to identify at least a type of the malware attack;analyzing the classified result using an attack-specific engine that is configured to analyze the classified result according to the identified malware attack and generate an attack-specific result, the analyzing of the classified result comprises comparing, by each of a plurality of attack cores, features included in the classified results to features associated with a known type of malware attack, wherein each attack core of the plurality of attack cores is configured as a plug-in;computing an attack value based on the attack-specific result and an analysis of potential attack targets, wherein the attack value is compared to a threshold value to determine whether or not to generate an early warning alert; andgenerating the early warning alert when the attack value matches or exceeds the threshold value.
  • 2. The computerized method of claim 1, wherein the classified result includes metadata associated with one or more objects associated with the malware attack.
  • 3. The computerized method of claim 1, wherein the features of the attack alert comprise at least one of various analysis logs from at least one of (i) one or more virtual machines, (ii) the metadata associated with the malware attack, or (iii) communication logs from a malicious content detection system.
  • 4. The computerized method of claim 1, wherein the attack-specific engine is configured to analyze a variety of time-dependent and time-independent features.
  • 5. The computerized method of claim 1, wherein the correlation engine is configured to receive the attack-specific result from the attack-specific engine prior to generating the early warning alert.
  • 6. The computerized method of claim 1, wherein the attack-specific engine comprises a plurality of cores that are configured to analyze the content of the attack alert and apply a plurality of analysis mechanisms that are specific to a malware attack type.
  • 7. The computerized method of claim 1, wherein generating an early warning alert comprises at least one of communicating an email message, text message, or a display a screen image.
  • 8. The computerized method of claim 1, wherein the early warning alert is communicated to security administrators to indicate the urgency in handling one or more predicted attacks.
  • 9. The computerized method of claim 4, where the time-dependent features comprise at least one of the number of request-response sessions over a predetermined period of time, the time of day of the malware attack, the duration of the malware attack, the month, year, or the execution time of the malware attack.
  • 10. The computerized method of claim 4, where the time-independent features comprise at least one of the geographic location of the malware attack target, industry, or the role or title of a specific party.
  • 11. The computerized method of claim 5, wherein the correlation engine is configured to determine the attack value and compare the attack value with the threshold value.
  • 12. The computerized method of claim 6, wherein the analysis mechanisms comprise at least one of probabilistic logic, heuristic logic, or deterministic logic.
  • 13. A system comprising: one or more processors;a storage module communicatively coupled to the one or more processors, the storage module including an input engine to receive data associated with an attack alert that indicates detection of a malware attack from a remote source, and classify the received data to produce a classified result, the classified result is to identify at least a type of the malware attack,an attack-specific engine, communicatively coupled to the input engine, to analyze the classified result according to the identified malware attack and to generate an attack-specific result, the attack-specific engine comprises (i) a plurality of attack cores and (ii) routing logic configured to route the classified result to at least one of the plurality of attack cores, each of the plurality of attack cores being configured as a plug-in that compares features included in the classified results with features associated with a known malware attack,a correlation engine communicatively coupled to the attack-specific engine, the correlation engine to compute an attack value based on the attack-specific result and a consideration of potential attack targets, wherein the attack value is compared to a threshold value to determine whether or not to generate an early warning alert, andreporting engine communicatively coupled to the correlation engine, the reporting engine to generate an early warning alert when the attack value matches or exceeds the threshold value.
  • 14. The system of claim 13, wherein each corresponding attack core of the plurality of attack cores compares the features included in the classified results with specific features associated with a specific type of malware attack.
  • 15. The system of claim 13, wherein the attack-specific engine is configured to analyze the features included in the classified results to a variety of time-dependent and time-independent features.
  • 16. The system of claim 13, wherein the time-dependent features include at least one of (i) a time of day of a detected malware attack or (ii) a duration of the malware attack while the time-independent features include at least one of (i) a geographic location of a target of the malware attack or (ii) an industry attacked by the malware attack.
  • 17. The system of claim 13, wherein the attack-specific engine comprises a plurality of cores that are configured to analyze the content of the attack alert and apply a plurality of analysis mechanisms specific to the type of malware attack.
  • 18. The system of claim 13, wherein the early warning alert comprises at least one of an email message, text message, or a display screen image.
  • 19. The system of claim 13, wherein the early warning alert is communicated to security administrators to indicate the urgency in handling one or more predicted malware attacks.
  • 20. The system of claim 15, wherein the time-dependent features comprise at least one of the number of request-response sessions over a predetermined period of time, the time of day of the malware attack, the duration of the attack, the month, year, or the execution time of the malware attack; andwherein the time-independent features comprise at least one of the geographic location of the malware attack target, industry, or the role or title of a specific party.
US Referenced Citations (588)
Number Name Date Kind
4292580 Ott et al. Sep 1981 A
5175732 Hendel et al. Dec 1992 A
5440723 Arnold et al. Aug 1995 A
5490249 Miller Feb 1996 A
5657473 Killean et al. Aug 1997 A
5842002 Schnurer et al. Nov 1998 A
5978917 Chi Nov 1999 A
6088803 Tso et al. Jul 2000 A
6094677 Capek et al. Jul 2000 A
6108799 Boulay et al. Aug 2000 A
6269330 Cidon et al. Jul 2001 B1
6272641 Ji Aug 2001 B1
6279113 Vaidya Aug 2001 B1
6298445 Shostack et al. Oct 2001 B1
6357008 Nachenberg Mar 2002 B1
6424627 S.o slashed.rhaug et al. Jul 2002 B1
6442696 Wray et al. Aug 2002 B1
6484315 Ziese Nov 2002 B1
6487666 Shanklin et al. Nov 2002 B1
6493756 O'Brien et al. Dec 2002 B1
6550012 Villa et al. Apr 2003 B1
6775657 Baker Aug 2004 B1
6831893 Ben Nun et al. Dec 2004 B1
6832367 Choi et al. Dec 2004 B1
6895550 Kanchirayappa et al. May 2005 B2
6898632 Gordy et al. May 2005 B2
6907396 Muttik et al. Jun 2005 B1
6941348 Petry et al. Sep 2005 B2
6971097 Wallman Nov 2005 B1
6981279 Arnold et al. Dec 2005 B1
7007107 Ivchenko et al. Feb 2006 B1
7028179 Anderson et al. Apr 2006 B2
7043757 Hoefelmeyer et al. May 2006 B2
7069316 Gryaznov Jun 2006 B1
7080407 Zhao et al. Jul 2006 B1
7080408 Pak et al. Jul 2006 B1
7093002 Wolff et al. Aug 2006 B2
7093239 van der Made Aug 2006 B1
7096498 Judge Aug 2006 B2
7100201 Izatt Aug 2006 B2
7107617 Hursey et al. Sep 2006 B2
7159149 Spiegel Jan 2007 B2
7213260 Judge May 2007 B2
7231667 Jordan Jun 2007 B2
7240364 Branscomb et al. Jul 2007 B1
7240368 Roesch et al. Jul 2007 B1
7243371 Kasper et al. Jul 2007 B1
7249175 Donaldson Jul 2007 B1
7287278 Liang Oct 2007 B2
7308716 Danford et al. Dec 2007 B2
7328453 Merkle, Jr. et al. Feb 2008 B2
7346486 Ivancic et al. Mar 2008 B2
7356736 Natvig Apr 2008 B2
7386888 Liang et al. Jun 2008 B2
7392542 Bucher Jun 2008 B2
7418729 Szor Aug 2008 B2
7428300 Drew et al. Sep 2008 B1
7441272 Durham et al. Oct 2008 B2
7448084 Apap et al. Nov 2008 B1
7458098 Judge et al. Nov 2008 B2
7464404 Carpenter et al. Dec 2008 B2
7464407 Nakae et al. Dec 2008 B2
7467408 O'Toole, Jr. Dec 2008 B1
7478428 Thomlinson Jan 2009 B1
7480773 Reed Jan 2009 B1
7487543 Arnold et al. Feb 2009 B2
7496960 Chen et al. Feb 2009 B1
7496961 Zimmer et al. Feb 2009 B2
7519990 Xie Apr 2009 B1
7523493 Liang et al. Apr 2009 B2
7530104 Thrower et al. May 2009 B1
7540025 Tzadikario May 2009 B2
7546638 Anderson et al. Jun 2009 B2
7565550 Liang et al. Jul 2009 B2
7568233 Szor et al. Jul 2009 B1
7584455 Ball Sep 2009 B2
7603715 Costa et al. Oct 2009 B2
7607171 Marsden et al. Oct 2009 B1
7620986 Jagannathan Nov 2009 B1
7639714 Stolfo et al. Dec 2009 B2
7644441 Schmid et al. Jan 2010 B2
7657419 van der Made Feb 2010 B2
7676841 Sobchuk et al. Mar 2010 B2
7698548 Shelest et al. Apr 2010 B2
7707633 Danford et al. Apr 2010 B2
7712136 Sprosts et al. May 2010 B2
7730011 Deninger et al. Jun 2010 B1
7739740 Nachenberg et al. Jun 2010 B1
7743419 Mashevsky Jun 2010 B1
7779463 Stolfo et al. Aug 2010 B2
7784097 Stolfo et al. Aug 2010 B1
7832008 Kraemer Nov 2010 B1
7836502 Zhao et al. Nov 2010 B1
7849506 Dansey et al. Dec 2010 B1
7854007 Sprosts et al. Dec 2010 B2
7869073 Oshima Jan 2011 B2
7877803 Enstone et al. Jan 2011 B2
7904959 Sidiroglou et al. Mar 2011 B2
7908660 Bahl Mar 2011 B2
7930738 Petersen Apr 2011 B1
7937387 Frazier et al. May 2011 B2
7937761 Bennett May 2011 B1
7949849 Lowe et al. May 2011 B2
7996556 Raghavan et al. Aug 2011 B2
7996836 McCorkendale et al. Aug 2011 B1
7996904 Chiueh et al. Aug 2011 B1
7996905 Arnold et al. Aug 2011 B2
8006305 Aziz Aug 2011 B2
8010667 Zhang et al. Aug 2011 B2
8020206 Hubbard et al. Sep 2011 B2
8028338 Schneider et al. Sep 2011 B1
8042184 Batenin Oct 2011 B1
8045094 Teragawa Oct 2011 B2
8045458 Alperovitch et al. Oct 2011 B2
8069484 McMillan et al. Nov 2011 B2
8087086 Lai et al. Dec 2011 B1
8171553 Aziz et al. May 2012 B2
8176049 Deninger et al. May 2012 B2
8176480 Spertus May 2012 B1
8201246 Wu et al. Jun 2012 B1
8204984 Aziz et al. Jun 2012 B1
8209748 Nordstrom et al. Jun 2012 B1
8214905 Doukhvalov et al. Jul 2012 B1
8220055 Kennedy Jul 2012 B1
8225288 Miller et al. Jul 2012 B2
8225373 Kraemer Jul 2012 B2
8233882 Rogel Jul 2012 B2
8234640 Fitzgerald et al. Jul 2012 B1
8234709 Viljoen et al. Jul 2012 B2
8239944 Nachenberg et al. Aug 2012 B1
8260914 Ranjan Sep 2012 B1
8266091 Gubin et al. Sep 2012 B1
8286251 Eker et al. Oct 2012 B2
8291499 Aziz et al. Oct 2012 B2
8307435 Mann et al. Nov 2012 B1
8307443 Wang et al. Nov 2012 B2
8310923 Nordstrom et al. Nov 2012 B1
8312545 Tuvell et al. Nov 2012 B2
8321936 Green et al. Nov 2012 B1
8321941 Tuvell et al. Nov 2012 B2
8332571 Edwards, Sr. Dec 2012 B1
8365286 Poston Jan 2013 B2
8365297 Parshin et al. Jan 2013 B1
8370938 Daswani et al. Feb 2013 B1
8370939 Zaitsev et al. Feb 2013 B2
8375444 Aziz et al. Feb 2013 B2
8381299 Stolfo et al. Feb 2013 B2
8402529 Green et al. Mar 2013 B1
8464340 Ahn et al. Jun 2013 B2
8479174 Chiriac Jul 2013 B2
8479276 Vaystikh et al. Jul 2013 B1
8479291 Bodke Jul 2013 B1
8510827 Leake et al. Aug 2013 B1
8510828 Guo et al. Aug 2013 B1
8510842 Amit et al. Aug 2013 B2
8516478 Edwards et al. Aug 2013 B1
8516590 Ranadive et al. Aug 2013 B1
8516593 Aziz Aug 2013 B2
8522348 Chen et al. Aug 2013 B2
8528086 Aziz Sep 2013 B1
8533824 Hutton et al. Sep 2013 B2
8539582 Aziz et al. Sep 2013 B1
8549638 Aziz Oct 2013 B2
8555391 Demir et al. Oct 2013 B1
8561177 Aziz et al. Oct 2013 B1
8566476 Shiffer et al. Oct 2013 B2
8566946 Aziz et al. Oct 2013 B1
8584094 Dadhia et al. Nov 2013 B2
8584234 Sobel et al. Nov 2013 B1
8584239 Aziz et al. Nov 2013 B2
8595834 Xie et al. Nov 2013 B2
8627476 Satish et al. Jan 2014 B1
8635696 Aziz Jan 2014 B1
8682054 Xue et al. Mar 2014 B2
8682812 Ranjan Mar 2014 B1
8689333 Aziz Apr 2014 B2
8695096 Zhang Apr 2014 B1
8713631 Pavlyushchik Apr 2014 B1
8713681 Silberman et al. Apr 2014 B2
8726392 McCorkendale et al. May 2014 B1
8739280 Chess et al. May 2014 B2
8776180 Kumar et al. Jul 2014 B2
8776229 Aziz Jul 2014 B1
8782792 Bodke Jul 2014 B1
8789172 Stolfo et al. Jul 2014 B2
8789178 Kejriwal et al. Jul 2014 B2
8793278 Frazier et al. Jul 2014 B2
8793787 Ismael et al. Jul 2014 B2
8805947 Kuzkin et al. Aug 2014 B1
8806647 Daswani et al. Aug 2014 B1
8832829 Manni et al. Sep 2014 B2
8850570 Ramzan Sep 2014 B1
8850571 Staniford et al. Sep 2014 B2
8881234 Narasimhan et al. Nov 2014 B2
8881271 Butler, II Nov 2014 B2
8881282 Aziz et al. Nov 2014 B1
8898788 Aziz et al. Nov 2014 B1
8935779 Manni et al. Jan 2015 B2
8949257 Shiffer et al. Feb 2015 B2
8984638 Aziz et al. Mar 2015 B1
8990939 Staniford et al. Mar 2015 B2
8990944 Singh et al. Mar 2015 B1
8997219 Staniford et al. Mar 2015 B2
9009822 Ismael et al. Apr 2015 B1
9009823 Ismael et al. Apr 2015 B1
9027135 Aziz May 2015 B1
9071638 Aziz et al. Jun 2015 B1
9092616 Kumar et al. Jul 2015 B2
9104867 Thioux et al. Aug 2015 B1
9106630 Frazier et al. Aug 2015 B2
9106694 Aziz et al. Aug 2015 B2
9118715 Staniford et al. Aug 2015 B2
9124625 Seger Sep 2015 B1
9159035 Ismael et al. Oct 2015 B1
9171160 Vincent et al. Oct 2015 B2
9176843 Ismael et al. Nov 2015 B1
9189627 Islam Nov 2015 B1
9195829 Goradia et al. Nov 2015 B1
9197664 Aziz et al. Nov 2015 B1
9223972 Vincent et al. Dec 2015 B1
9225740 Ismael et al. Dec 2015 B1
9241010 Bennett et al. Jan 2016 B1
9251343 Vincent et al. Feb 2016 B1
9262635 Paithane et al. Feb 2016 B2
9268936 Butler Feb 2016 B2
9275229 LeMasters Mar 2016 B2
9282109 Aziz et al. Mar 2016 B1
9294501 Mesdaq et al. Mar 2016 B2
9300686 Pidathala et al. Mar 2016 B2
9306960 Aziz Apr 2016 B1
9306974 Aziz et al. Apr 2016 B1
9311479 Manni et al. Apr 2016 B1
9363280 Rivlin Jun 2016 B1
9386030 Vashist et al. Jul 2016 B2
9413781 Cunningham et al. Aug 2016 B2
20010005889 Albrecht Jun 2001 A1
20010047326 Broadbent et al. Nov 2001 A1
20020018903 Kokubo et al. Feb 2002 A1
20020038430 Edwards et al. Mar 2002 A1
20020091819 Melchione et al. Jul 2002 A1
20020095607 Lin-Hendel Jul 2002 A1
20020116627 Tarbotton et al. Aug 2002 A1
20020144156 Copeland Oct 2002 A1
20020162015 Tang Oct 2002 A1
20020166063 Lachman et al. Nov 2002 A1
20020169952 DiSanto et al. Nov 2002 A1
20020184528 Shevenell et al. Dec 2002 A1
20020188887 Largman et al. Dec 2002 A1
20020194490 Halperin et al. Dec 2002 A1
20030021728 Sharpe et al. Jan 2003 A1
20030074578 Ford et al. Apr 2003 A1
20030084318 Schertz May 2003 A1
20030101381 Mateev et al. May 2003 A1
20030115483 Liang Jun 2003 A1
20030188190 Aaron et al. Oct 2003 A1
20030191957 Hypponen et al. Oct 2003 A1
20030200460 Morota et al. Oct 2003 A1
20030212902 van der Made Nov 2003 A1
20030229801 Kouznetsov et al. Dec 2003 A1
20030237000 Denton et al. Dec 2003 A1
20040003323 Bennett et al. Jan 2004 A1
20040006473 Mills et al. Jan 2004 A1
20040015712 Szor Jan 2004 A1
20040019832 Arnold et al. Jan 2004 A1
20040047356 Bauer Mar 2004 A1
20040083408 Spiegel et al. Apr 2004 A1
20040088581 Brawn et al. May 2004 A1
20040093513 Cantrell et al. May 2004 A1
20040111531 Staniford et al. Jun 2004 A1
20040117478 Triulzi et al. Jun 2004 A1
20040117624 Brandt et al. Jun 2004 A1
20040128355 Chao et al. Jul 2004 A1
20040165588 Pandya Aug 2004 A1
20040236963 Danford et al. Nov 2004 A1
20040243349 Greifeneder et al. Dec 2004 A1
20040249911 Alkhatib et al. Dec 2004 A1
20040255161 Cavanaugh Dec 2004 A1
20040268147 Wiederin et al. Dec 2004 A1
20050005159 Oliphant Jan 2005 A1
20050021740 Bar et al. Jan 2005 A1
20050033960 Vialen et al. Feb 2005 A1
20050033989 Poletto et al. Feb 2005 A1
20050050148 Mohammadioun et al. Mar 2005 A1
20050086523 Zimmer et al. Apr 2005 A1
20050091513 Mitomo et al. Apr 2005 A1
20050091533 Omote et al. Apr 2005 A1
20050091652 Ross et al. Apr 2005 A1
20050108562 Khazan et al. May 2005 A1
20050114663 Cornell et al. May 2005 A1
20050125195 Brendel Jun 2005 A1
20050149726 Joshi et al. Jul 2005 A1
20050157662 Bingham et al. Jul 2005 A1
20050183143 Anderholm et al. Aug 2005 A1
20050201297 Peikari Sep 2005 A1
20050210533 Copeland et al. Sep 2005 A1
20050238005 Chen et al. Oct 2005 A1
20050240781 Gassoway Oct 2005 A1
20050262562 Gassoway Nov 2005 A1
20050265331 Stolfo Dec 2005 A1
20050283839 Cowburn Dec 2005 A1
20060010495 Cohen et al. Jan 2006 A1
20060015416 Hoffman et al. Jan 2006 A1
20060015715 Anderson Jan 2006 A1
20060015747 Van de Ven Jan 2006 A1
20060021029 Brickell et al. Jan 2006 A1
20060021054 Costa et al. Jan 2006 A1
20060031476 Mathes et al. Feb 2006 A1
20060047665 Neil Mar 2006 A1
20060070130 Costea et al. Mar 2006 A1
20060075496 Carpenter et al. Apr 2006 A1
20060095968 Portolani et al. May 2006 A1
20060101516 Sudaharan et al. May 2006 A1
20060101517 Banzhof et al. May 2006 A1
20060117385 Mester et al. Jun 2006 A1
20060123477 Raghavan et al. Jun 2006 A1
20060143709 Brooks et al. Jun 2006 A1
20060150249 Gassen et al. Jul 2006 A1
20060161983 Cothrell et al. Jul 2006 A1
20060161987 Levy-Yurista Jul 2006 A1
20060161989 Reshef et al. Jul 2006 A1
20060164199 Gilde et al. Jul 2006 A1
20060173992 Weber et al. Aug 2006 A1
20060179147 Tran et al. Aug 2006 A1
20060184632 Marino et al. Aug 2006 A1
20060191010 Benjamin Aug 2006 A1
20060221956 Narayan et al. Oct 2006 A1
20060236393 Kramer et al. Oct 2006 A1
20060242709 Seinfeld et al. Oct 2006 A1
20060248519 Jaeger et al. Nov 2006 A1
20060248582 Panjwani et al. Nov 2006 A1
20060251104 Koga Nov 2006 A1
20060288417 Bookbinder et al. Dec 2006 A1
20070006288 Mayfield et al. Jan 2007 A1
20070006313 Porras et al. Jan 2007 A1
20070011174 Takaragi et al. Jan 2007 A1
20070016951 Piccard et al. Jan 2007 A1
20070019286 Kikuchi Jan 2007 A1
20070033645 Jones Feb 2007 A1
20070038943 FitzGerald et al. Feb 2007 A1
20070064689 Shin et al. Mar 2007 A1
20070074169 Chess et al. Mar 2007 A1
20070094730 Bhikkaji et al. Apr 2007 A1
20070101435 Konanka et al. May 2007 A1
20070128855 Cho et al. Jun 2007 A1
20070142030 Sinha et al. Jun 2007 A1
20070143827 Nicodemus et al. Jun 2007 A1
20070156895 Vuong Jul 2007 A1
20070157180 Tillmann et al. Jul 2007 A1
20070157306 Elrod et al. Jul 2007 A1
20070168988 Eisner et al. Jul 2007 A1
20070171824 Ruello et al. Jul 2007 A1
20070174915 Gribble et al. Jul 2007 A1
20070192500 Lum Aug 2007 A1
20070192858 Lum Aug 2007 A1
20070192859 Shahar Aug 2007 A1
20070198275 Malden et al. Aug 2007 A1
20070208822 Wang et al. Sep 2007 A1
20070220607 Sprosts et al. Sep 2007 A1
20070240218 Tuvell et al. Oct 2007 A1
20070240219 Tuvell et al. Oct 2007 A1
20070240220 Tuvell et al. Oct 2007 A1
20070240222 Tuvell et al. Oct 2007 A1
20070250930 Aziz et al. Oct 2007 A1
20070256132 Oliphant Nov 2007 A2
20070271446 Nakamura Nov 2007 A1
20080005782 Aziz Jan 2008 A1
20080018122 Zierler et al. Jan 2008 A1
20080028463 Dagon et al. Jan 2008 A1
20080040710 Chiriac Feb 2008 A1
20080046781 Childs et al. Feb 2008 A1
20080066179 Liu Mar 2008 A1
20080072326 Danford et al. Mar 2008 A1
20080077793 Tan et al. Mar 2008 A1
20080080518 Hoeflin et al. Apr 2008 A1
20080086720 Lekel Apr 2008 A1
20080098476 Syversen Apr 2008 A1
20080115221 Yun May 2008 A1
20080120722 Sima et al. May 2008 A1
20080134178 Fitzgerald et al. Jun 2008 A1
20080134334 Kim et al. Jun 2008 A1
20080141376 Clausen et al. Jun 2008 A1
20080184367 McMillan et al. Jul 2008 A1
20080184373 Traut et al. Jul 2008 A1
20080189787 Arnold et al. Aug 2008 A1
20080201778 Guo et al. Aug 2008 A1
20080209557 Herley et al. Aug 2008 A1
20080215742 Goldszmidt et al. Sep 2008 A1
20080222729 Chen et al. Sep 2008 A1
20080263665 Ma et al. Oct 2008 A1
20080295172 Bohacek Nov 2008 A1
20080301810 Lehane et al. Dec 2008 A1
20080307524 Singh et al. Dec 2008 A1
20080313738 Enderby Dec 2008 A1
20080320594 Jiang Dec 2008 A1
20090003317 Kasralikar et al. Jan 2009 A1
20090007100 Field et al. Jan 2009 A1
20090013408 Schipka Jan 2009 A1
20090031423 Liu et al. Jan 2009 A1
20090036111 Danford et al. Feb 2009 A1
20090037835 Goldman Feb 2009 A1
20090044024 Oberheide et al. Feb 2009 A1
20090044274 Budko et al. Feb 2009 A1
20090064332 Porras et al. Mar 2009 A1
20090077666 Chen et al. Mar 2009 A1
20090083369 Marmor Mar 2009 A1
20090083855 Apap et al. Mar 2009 A1
20090089879 Wang et al. Apr 2009 A1
20090094697 Provos et al. Apr 2009 A1
20090113425 Ports et al. Apr 2009 A1
20090125976 Wassermann et al. May 2009 A1
20090126015 Monastyrsky et al. May 2009 A1
20090126016 Sobko et al. May 2009 A1
20090133125 Choi et al. May 2009 A1
20090144823 Lamastra et al. Jun 2009 A1
20090158430 Borders Jun 2009 A1
20090172815 Gu et al. Jul 2009 A1
20090187992 Poston Jul 2009 A1
20090193293 Stolfo et al. Jul 2009 A1
20090198651 Shiffer et al. Aug 2009 A1
20090198670 Shiffer et al. Aug 2009 A1
20090198689 Frazier et al. Aug 2009 A1
20090199274 Frazier et al. Aug 2009 A1
20090199296 Xie et al. Aug 2009 A1
20090228233 Anderson et al. Sep 2009 A1
20090241187 Troyansky Sep 2009 A1
20090241190 Todd et al. Sep 2009 A1
20090265692 Godefroid et al. Oct 2009 A1
20090271867 Zhang Oct 2009 A1
20090300415 Zhang et al. Dec 2009 A1
20090300761 Park et al. Dec 2009 A1
20090328185 Berg et al. Dec 2009 A1
20090328221 Blumfield et al. Dec 2009 A1
20100005146 Drako et al. Jan 2010 A1
20100011205 McKenna Jan 2010 A1
20100017546 Poo et al. Jan 2010 A1
20100030996 Butler, II Feb 2010 A1
20100031353 Thomas et al. Feb 2010 A1
20100037314 Perdisci et al. Feb 2010 A1
20100043073 Kuwamura Feb 2010 A1
20100054278 Stolfo et al. Mar 2010 A1
20100058474 Hicks Mar 2010 A1
20100064044 Nonoyama Mar 2010 A1
20100077481 Polyakov et al. Mar 2010 A1
20100083376 Pereira et al. Apr 2010 A1
20100115621 Staniford et al. May 2010 A1
20100132038 Zaitsev May 2010 A1
20100154056 Smith et al. Jun 2010 A1
20100180344 Malyshev et al. Jul 2010 A1
20100192223 Ismael et al. Jul 2010 A1
20100220863 Dupaquis et al. Sep 2010 A1
20100235831 Dittmer Sep 2010 A1
20100251104 Massand Sep 2010 A1
20100281102 Chinta et al. Nov 2010 A1
20100281541 Stolfo et al. Nov 2010 A1
20100281542 Stolfo et al. Nov 2010 A1
20100287260 Peterson et al. Nov 2010 A1
20100299754 Amit et al. Nov 2010 A1
20100306173 Frank Dec 2010 A1
20110004737 Greenebaum Jan 2011 A1
20110025504 Lyon et al. Feb 2011 A1
20110041179 St hlberg Feb 2011 A1
20110047594 Mahaffey et al. Feb 2011 A1
20110047620 Mahaffey et al. Feb 2011 A1
20110055907 Narasimhan et al. Mar 2011 A1
20110055925 Jakobsson Mar 2011 A1
20110078794 Manni et al. Mar 2011 A1
20110093951 Aziz Apr 2011 A1
20110099620 Stavrou et al. Apr 2011 A1
20110099633 Aziz Apr 2011 A1
20110099635 Silberman et al. Apr 2011 A1
20110113231 Kaminsky May 2011 A1
20110145918 Jung et al. Jun 2011 A1
20110145920 Mahaffey et al. Jun 2011 A1
20110145934 Abramovici et al. Jun 2011 A1
20110167493 Song et al. Jul 2011 A1
20110167494 Bowen et al. Jul 2011 A1
20110167495 Antonakakis Jul 2011 A1
20110173213 Frazier et al. Jul 2011 A1
20110173460 Ito et al. Jul 2011 A1
20110219449 St. Neitzel et al. Sep 2011 A1
20110219450 McDougal et al. Sep 2011 A1
20110225624 Sawhney et al. Sep 2011 A1
20110225655 Niemela et al. Sep 2011 A1
20110247072 Staniford et al. Oct 2011 A1
20110265182 Peinado et al. Oct 2011 A1
20110289582 Kejriwal et al. Nov 2011 A1
20110302587 Nishikawa et al. Dec 2011 A1
20110307954 Melnik et al. Dec 2011 A1
20110307955 Kaplan et al. Dec 2011 A1
20110307956 Yermakov et al. Dec 2011 A1
20110314546 Aziz et al. Dec 2011 A1
20120023593 Puder et al. Jan 2012 A1
20120054869 Yen et al. Mar 2012 A1
20120066698 Yanoo Mar 2012 A1
20120079596 Thomas et al. Mar 2012 A1
20120084859 Radinsky et al. Apr 2012 A1
20120096553 Srivastava et al. Apr 2012 A1
20120110667 Zubrilin et al. May 2012 A1
20120117652 Manni et al. May 2012 A1
20120121154 Xue et al. May 2012 A1
20120124426 Maybee et al. May 2012 A1
20120174186 Aziz et al. Jul 2012 A1
20120174196 Bhogavilli et al. Jul 2012 A1
20120174218 McCoy et al. Jul 2012 A1
20120198279 Schroeder Aug 2012 A1
20120210423 Friedrichs et al. Aug 2012 A1
20120222121 Staniford et al. Aug 2012 A1
20120255015 Sahita et al. Oct 2012 A1
20120255017 Sallam Oct 2012 A1
20120260342 Dube et al. Oct 2012 A1
20120266244 Green et al. Oct 2012 A1
20120278886 Luna Nov 2012 A1
20120297489 Dequevy Nov 2012 A1
20120330801 McDougal et al. Dec 2012 A1
20120331553 Aziz et al. Dec 2012 A1
20130014259 Gribble et al. Jan 2013 A1
20130031625 Lim Jan 2013 A1
20130036472 Aziz Feb 2013 A1
20130047257 Aziz Feb 2013 A1
20130074185 McDougal et al. Mar 2013 A1
20130086684 Mohler Apr 2013 A1
20130097699 Balupari et al. Apr 2013 A1
20130097706 Titonis et al. Apr 2013 A1
20130111587 Goel et al. May 2013 A1
20130117852 Stute May 2013 A1
20130117855 Kim et al. May 2013 A1
20130139264 Brinkley et al. May 2013 A1
20130160125 Likhachev et al. Jun 2013 A1
20130160127 Jeong et al. Jun 2013 A1
20130160130 Mendelev et al. Jun 2013 A1
20130160131 Madou et al. Jun 2013 A1
20130167236 Sick Jun 2013 A1
20130174214 Duncan Jul 2013 A1
20130185789 Hagiwara et al. Jul 2013 A1
20130185795 Winn et al. Jul 2013 A1
20130185798 Saunders et al. Jul 2013 A1
20130191915 Antonakakis et al. Jul 2013 A1
20130196649 Paddon et al. Aug 2013 A1
20130227691 Aziz et al. Aug 2013 A1
20130246370 Bartram et al. Sep 2013 A1
20130247186 LeMasters Sep 2013 A1
20130263260 Mahaffey et al. Oct 2013 A1
20130291109 Staniford et al. Oct 2013 A1
20130298243 Kumar et al. Nov 2013 A1
20130318038 Shiffer et al. Nov 2013 A1
20130318073 Shiffer et al. Nov 2013 A1
20130325791 Shiffer et al. Dec 2013 A1
20130325792 Shiffer et al. Dec 2013 A1
20130325871 Shiffer et al. Dec 2013 A1
20130325872 Shiffer et al. Dec 2013 A1
20130340079 Gottlieb Dec 2013 A1
20140032875 Butler Jan 2014 A1
20140053260 Gupta et al. Feb 2014 A1
20140053261 Gupta et al. Feb 2014 A1
20140082730 Vashist Mar 2014 A1
20140130158 Wang et al. May 2014 A1
20140137180 Lukacs et al. May 2014 A1
20140157405 Joll Jun 2014 A1
20140169762 Ryu Jun 2014 A1
20140179360 Jackson et al. Jun 2014 A1
20140181131 Ross Jun 2014 A1
20140189687 Jung et al. Jul 2014 A1
20140189866 Shiffer et al. Jul 2014 A1
20140189882 Jung et al. Jul 2014 A1
20140237599 Gertner Aug 2014 A1
20140237600 Silberman et al. Aug 2014 A1
20140280245 Wilson Sep 2014 A1
20140283037 Sikorski et al. Sep 2014 A1
20140283063 Thompson et al. Sep 2014 A1
20140328204 Klotsche et al. Nov 2014 A1
20140337836 Ismael Nov 2014 A1
20140344926 Cunningham Nov 2014 A1
20140351935 Shao et al. Nov 2014 A1
20140380473 Bu et al. Dec 2014 A1
20140380474 Paithane et al. Dec 2014 A1
20150007312 Pidathala et al. Jan 2015 A1
20150096022 Vincent et al. Apr 2015 A1
20150096023 Mesdaq et al. Apr 2015 A1
20150096024 Haq et al. Apr 2015 A1
20150096025 Ismael Apr 2015 A1
20150180886 Staniford et al. Jun 2015 A1
20150186645 Aziz et al. Jul 2015 A1
20150220735 Paithane et al. Aug 2015 A1
20150237068 Sandke Aug 2015 A1
20150319185 Kirti Nov 2015 A1
20150372980 Eyada Dec 2015 A1
20160044000 Cunningham Feb 2016 A1
20160127393 Aziz et al. May 2016 A1
Foreign Referenced Citations (11)
Number Date Country
2439806 Jan 2008 GB
2490431 Oct 2012 GB
0206928 Jan 2002 WO
0223805 Mar 2002 WO
2007117636 Oct 2007 WO
2008041950 Apr 2008 WO
2011084431 Jul 2011 WO
2011112348 Sep 2011 WO
2012075336 Jun 2012 WO
2012145066 Oct 2012 WO
2013067505 May 2013 WO
Non-Patent Literature Citations (75)
Entry
Marchette, David J., “Computer Intrusion Detection and Network Monitoring: A Statistical Viewpoint”, (“Marchette”), (2001).
Margolis, P.E. , “Random House Webster's ‘Computer & Internet Dictionary 3rd Edition’”, ISBN 0375703519, (Dec. 1998).
Moore, D. , et al., “Internet Quarantine: Requirements for Containing Self-Propagating Code”, INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003), pp. 1901-1910.
Morales, Jose A., et al., ““Analyzing and exploiting network behaviors of malware.””, Security and Privacy in Communication Networks. Springer Berlin Heidelberg, 2010. 20-34.
Mori, Detecting Unknown Computer Viruses, 2004, Springer-Verlag Berlin Heidelberg.
Natvig, Kurt , “SANDBOXII: Internet”, Virus Bulletin Conference, (“Natvig”), (Sep. 2002).
NetBIOS Working Group. Protocol Standard for a NetBIOS Service on a TCP/UDP transport: Concepts and Methods. STD 19, RFC 1001, Mar. 1987.
Newsome, J. , et al., “Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software”, In Proceedings of the 12th Annual Network and Distributed System Security, Symposium (NDSS '05), (Feb. 2005).
Newsome, J. , et al., “Polygraph: Automatically Generating Signatures for Polymorphic Worms”, In Proceedings of the IEEE Symposium on Security and Privacy, (May 2005).
Nojiri, D. , et al., “Cooperation Response Strategies for Large Scale Attack Mitigation”, DARPA Information Survivability Conference and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302.
Oberheide et al., CloudAV.sub.—N-Version Antivirus in the Network Cloud, 17th USENIX Security Symposium USENIX Security '08 Jul. 28-Aug. 1, 2008 San Jose, CA.
Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Roonald Perez, Leendert van Doom, John Linwood Griffin, Stefan Berger., sHype: Secure Hypervisor Appraoch to Trusted Virtualized Systems (Feb. 2, 2005) (“Sailer”).
Silicon Defense, “Worm Containment in the Internal Network”, (Mar. 2003), pp. 1-25.
Singh, S. , et al., “Automated Worm Fingerprinting”, Proceedings of the ACM/USENIX Symposium on Operating System Design and Implementation, San Francisco, California, (Dec. 2004).
Spitzner, Lance , “Honeypots: Tracking Hackers”, (“Spizner”), (Sep. 17, 2002).
The Sniffers's Guide to Raw Traffic available at: yuba.stanford.edu/.about.casado/pcap/section1.html, (Jan. 6, 2014).
Thomas H. Ptacek, and Timothy N. Newsham , “Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection”, Secure Networks, (“Ptacek”), (Jan. 1998).
U.S. Pat. No. 8,171,553 filed Apr. 20, 2006, Inter Parties Review Decision dated Jul. 10, 2015.
U.S. Pat. No. 8,291,499 filed Mar. 16, 2012, Inter Parties Review Decision dated Jul. 10, 2015.
Venezia, Paul , “NetDetector Captures Intrusions”, InfoWorld Issue 27, (“Venezia”), (Jul. 14, 2003).
Wahid et al., Characterising the Evolution in Scanning Activity of Suspicious Hosts, Oct. 2009, Third International Conference on Network and System Security, pp. 344-350.
Whyte, et al., “DNS-Based Detection of Scanning Works in an Enterprise Network”, Proceedings of the 12th Annual Network and Distributed System Security Symposium, (Feb. 2005), 15 pages.
Williamson, Matthew M., “Throttling Viruses: Restricting Propagation to Defeat Malicious Mobile Code”, ACSAC Conference, Las Vegas, NV, USA, (Dec. 2002), pp. 1-9.
Yuhei Kawakoya et al: “Memory behavior-based automatic malware unpacking in stealth debugging environment”, Malicious and Unwanted Software (Malware), 2010 5th International Conference on, IEEE, Piscataway, NJ, USA, Oct. 19, 2010, pp. 39-46, XP031833827, ISBN:978-1-4244-8-9353-1.
Zhang et al., The Effects of Threading, Infection Time, and Multiple-Attacker Collaboration on Malware Propagation, Sep. 2009, IEEE 28th International Symposium on Reliable Distributed Systems, pp. 73-82.
“Mining Specification of Malicious Behavior”—Jha et al, UCSB, Sep. 2007 https://www.cs.ucsb.edu/.about.chris/research/doc/esec07.sub.--mining.pdf—.
“Network Security: NetDetector—Network Intrusion Forensic System (NIFS) Whitepaper”, (“NetDetector Whitepaper”), (2003).
“Packet”, Microsoft Computer Dictionary, Microsoft Press, (Mar. 2002), 1 page.
“When Virtual is Better Than Real”, IEEEXplore Digital Library, available at, http://ieeexplore.ieee.org/xpl/articleDetails.isp?reload=true&arnumbe- r=990073, (Dec. 7, 2013).
Abdullah, et al., Visualizing Network Data for Intrusion Detection, 2005 IEEE Workshop on Information Assurance and Security, pp. 100-108.
Adetoye, Adedayo , et al., “Network Intrusion Detection & Response System”, (“Adetoye”), (Sep. 2003).
AltaVista Advanced Search Results. “attack vector identifier”. Http://www.altavista.com/web/results?Itag=ody&pg=aq&aqmode=aqa=Event+Orch- estrator . . . , (Accessed on Sep. 15, 2009).
AltaVista Advanced Search Results. “Event Orchestrator”. Http://www.altavista.com/web/results?Itag=ody&pg=aq&aqmode=aqa=Event+Orch- esrator . . . , (Accessed on Sep. 3, 2009).
Apostolopoulos, George; hassapis, Constantinos; “V-eM: A cluster of Virtual Machines for Robust, Detailed, and High-Performance Network Emulation”, 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Sep. 11-14, 2006, pp. 117-126.
Aura, Tuomas, “Scanning electronic documents for personally identifiable information”, Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM, 2006.
Baecher, “The Nepenthes Platform: An Efficient Approach to collect Malware”, Springer-verlag Berlin Heidelberg, (2006), pp. 165-184.
Baldi, Mario; Risso, Fulvio; “A Framework for Rapid Development and Portable Execution of Packet-Handling Applications”, 5th IEEE International Symposium Processing and Information Technology, Dec. 21, 2005, pp. 233-238.
Bayer, et al., “Dynamic Analysis of Malicious Code”, J Comput Virol, Springer-Verlag, France., (2006), pp. 67-77.
Boubalos, Chris , “extracting syslog data out of raw pcap dumps, seclists.org, Honeypots mailing list archives”, available at http://seclists.org/honeypots/2003/q2/319 (“Boubalos”), (Jun. 5, 2003).
Chaudet, C. , et al., “Optimal Positioning of Active and Passive Monitoring Devices”, International Conference on Emerging Networking Experiments and Technologies, Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, CoNEXT '05, Toulousse, France, (Oct. 2005), pp. 71-82.
Chen, P. M. and Noble, B. D., “When Virtual is Better Than Real, Department of Electrical Engineering and Computer Science”, University of Michigan (“Chen”) (2001).
Cisco “Intrusion Prevention for the Cisco ASA 5500-x Series” Data Sheet (2012).
Cisco, Configuring the Catalyst Switched Port Analyzer (SPAN) (“Cisco”), (1992-2003).
Clark, John, Sylvian Leblanc,and Scott Knight. “Risks associated with usb hardware trojan devices used by insiders.” Systems Conference (SysCon), 2011 IEEE International. IEEE, 2011.
Cohen, M.I. , “PyFlag—An advanced network forensic framework”, Digital investigation 5, Elsevier, (2008), pp. S112-S120.
Costa, M. , et al., “Vigilante: End-to-End Containment of Internet Worms”, SOSP '05, Association for Computing Machinery, Inc., Brighton U.K., (Oct. 23-26, 2005).
Crandall, J.R. , et al., “Minos:Control Data Attack Prevention Orthogonal to Memory Model”, 37th International Symposium on Microarchitecture, Portland, Oregon, (Dec. 2004).
Deutsch, P. , “Zlib compressed data format specification version 3.3” RFC 1950, (1996).
Distler, “Malware Analysis: An Introduction”, SANS Institute InfoSec Reading Room, SANS Institute, (2007).
Dunlap, George W. , et al., “ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay”, Proceeding of the 5th Symposium on Operating Systems Design and Implementation, Usenix Association, (“Dunlap”), (Dec. 9, 2002).
Excerpt regarding First Printing Date for Merike Kaeo, Designing Network Security (“Kaeo”), (2005).
Filiol, Eric , et al., “Combinatorial Optimisation of Worm Propagation on an Unknown Network”, International Journal of Computer Science 2.2 (2007).
FireEye Malware Analysis & Exchange Network, Malware Protection System, FireEye Inc., 2010.
FireEye Malware Analysis, Modern Malware Forensics, FireEye Inc., 2010.
FireEye v.6.0 Security Target, pp. 1-35, Version 1.1, FireEye Inc., May 2011.
Gibler, Clint, et al. AndroidLeaks: automatically detecting potential privacy leaks in android applications on a large scale. Springer Berlin Heidelberg, 2012.
Goel, et al., Reconstructing System State for Intrusion Analysis, Apr. 2008 SIGOPS Operating Systems Review, vol. 42 Issue 3, pp. 21-28.
Gregg Keizer: “Microsoft's HoneyMonkeys Show Patching Windows Works”, Aug. 8, 2005, XP055143386, Retrieved from the Internet: URL:http://www.informationweek.com/microsofts-honeymonkeys-show-patching-windows-works/d/d-id/1035069? [retrieved on Jun. 1, 2016].
Heng Yin et al, Panorama: Capturing System-Wide Information Flow for Malware Detection and Analysis, Research Showcase @ CMU, Carnegie Mellon University, 2007.
Hjelmvik, Erik , “Passive Network Security Analysis with NetworkMiner”, (IN)Secure, Issue 18, (Oct. 2008), pp. 1-100.
Idika et al., A-Survey-of-Malware-Detection-Techniques, Feb. 2, 2007, Department of Computer Science, Purdue University.
IEEE Xplore Digital Library Sear Results for “detection of unknown computer worms”. Http//ieeexplore.ieee.org/searchresult.jsp?SortField=Score&SortOrder=desc- &ResultC . . . , (Accessed on Aug. 28, 2009).
Isohara, Takamasa, Keisuke Takemori, and Ayumu Kubota. “Kernel-based behavior analysis for android malware detection.” Computational intelligence and Security (CIS), 2011 Seventh International Conference on. IEEE, 2011.
Kaeo, Merike , “Designing Network Security”, (“Kaeo”), (Nov. 2003).
Kevin A Roundy et al: “Hybrid Analysis and Control of Malware”, Sep. 15, 2010, Recent Advances in Intrusion Detection, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 317-338, XP019150454 ISBN:978-3-642-15511-6.
Kim, H., et al., “Autograph: Toward Automated, Distributed Worm Signature Detection”, Proceedings of the 13th Usenix Security Symposium (Security 2004), San Diego, (Aug. 2004), pp. 271-286.
King, Samuel T., et al., “Operating System Support for Virtual Machines”, (“King”) (2003).
Krasnyansky, Max , et al., Universal TUN/TAP driver, available at https://www.kernel.org/doc/Documentation/networking/tuntap.txt (2002) (“Krasnyansky”).
Kreibich, C. , et al., “Honeycomb-Creating Intrusion Detection Signatures Using Honeypots”, 2nd Workshop on Hot Topics in Networks (HotNets-11), Boston, USA, (2003).
Kristoff, J. , “Botnets, Detection and Mitigation: DNS-Based Techniques”, NU Security Day, (2005), 23 pages.
Leading Colleges Select FireEye to Stop Malware-Related Data Breaches, FireEye Inc., 2009.
Li et al., A VMM-Based System Call Interposition Framework for Program Monitoring, Dec. 2010, IEEE 16th International Conference on Parallel and Distributed Systems, pp. 706-711.
Liljenstam, Michael , et al., “Simulating Realistic Network Traffic for Worm Warning System Design and Testing”, Institute for Security Technology studies, Dartmouth College (“Liljenstam”), (Oct. 27, 2003).
Lindorfer, Martina, Clemens Kolbitsch, and Paolo Milani Comparetti. “Detecting environment-sensitive malware.” Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, 2011.
Lok Kwong et al: “DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic Views for Dynamic Android Malware Analysis”, Aug. 10, 2012, XP055158513, Retrieved from the Internet: URL:https://www.usenix.org/system/files/conference/usenixsecurity12/sec12- -final107.pdf [retrieved on Dec. 15, 2014].