Cyber-security system and method for weak indicator detection and correlation to generate strong indicators

Information

  • Patent Grant
  • 10601848
  • Patent Number
    10,601,848
  • Date Filed
    Thursday, June 29, 2017
    7 years ago
  • Date Issued
    Tuesday, March 24, 2020
    4 years ago
Abstract
A method for detecting a cyber-attack is described. The method features (i) collecting a first plurality of weak indicators, (ii) grouping a second plurality of weak indicators from the first plurality of weak indicators where the second plurality of weak indicators being lesser in number than the first plurality of weak indicators, and (iii) performing a correlation operation between the second plurality of weak indicators and one or more patterns or sequences of indicators associated with known malware. A weak indicator of the first plurality of weak indicators corresponds to data that, by itself, is not definitive as to whether the data is associated with a cyber-attack being conducted on a source of the weak indicator.
Description
FIELD

Embodiments of the disclosure relate to cyber security. More particularly, one embodiment of the disclosure relates to a rules-based system and method for detecting cyber-attacks.


GENERAL BACKGROUND

Electronic computing systems provide useful and necessary services that assist individuals in business and in their everyday lives. In recent years, a growing number of cyber-attacks are being conducted on governmental agencies and private enterprises. These cyber-attacks tend to focus on computing systems with network connectivity (referred to as “network devices”) communicatively coupled to a network within the governmental agency or private enterprise. These cyber-attacks are orchestrated in an attempt to gain access to content stored on these computing systems for illicit (i.e., unauthorized) purposes, such as spying or other malicious or nefarious activities.


Normally, cyber-attacks against computing systems are started by exploiting a weakness in software installed on the computing systems or a weakness in training where a person unknowingly compromises his or her computing system by allowing malicious software to be loaded thereon. Upon loading the malicious software, the attacker may gain entry to stored network resources maintained by the governmental agency or private company. Herein, the malicious software may include any software that is used to (i) monitor activity on a target computing system, (ii) cause harm to the target computing system, such as intentional corruption of data stored on the computing system, data theft (e.g., credentials, financial information such as credit card information, identity information, or the like), or (iii) assist in an exfiltration of data from the target computing system. Examples of malicious software may include, but are not limited or restricted to, viruses, trojan horses, rootkits, worms, advanced persistent threats (APTs), keyloggers, and/or other programs intended to compromise computing systems as well as the data stored on the computing system and other computing systems connected to the network.


Many computing systems within enterprises are monitored for purposes of security with a view to identifying indicators of compromise (IOCs) evidencing, verifying or tracking a cyber-attack. The resulting data can be presented to network or security administrators for her or his review, evaluation and, if appropriate, remedial action. This IOC detection process can be challenging as, after infiltration of the malicious software, the operations by the malicious software may bear a strong similarity to legitimate and typical communications exchanged within a network. Currently, some existing cybersecurity solutions may experience a high number of false positives or false negatives because actual malware within network traffic may be more subtle to detect than IOCs associated with detecting a breach of the network itself.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the disclosure are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:



FIG. 1 is an exemplary block diagram of a general, physical representation of a cyber-attack analysis device.



FIG. 2 is an exemplary block diagram of a logical representation of the cyber-attack analysis device of FIG. 1 including operability of correlation logic for use in generating a strong indicator from a group of weak indicators.



FIG. 3 is an exemplary embodiment illustrating weak indicator detection logic of FIG. 2.



FIG. 4 is an exemplary embodiment of a flowchart illustrating operations of the weak indicator detection logic of FIG. 3.



FIGS. 5A and 5B provide a more detailed embodiment of a flowchart illustrating the operations of the weak indicator detection logic of FIG. 3.



FIGS. 6A and 6B are exemplary block diagrams of the operability of the weak indicator detection logic of FIG. 3.





DETAILED DESCRIPTION
I. Overview

In general, embodiments of the disclosure describe a cyber-attack analysis device that includes rule-based correlation logic configured to identify and collect indicators associated with analyzed content to form a set of indicators. An “indicator” is analytical information resulting from an analysis (static analysis) of the characteristics of an object and/or behaviors monitored during processing of the object (dynamic analysis). From the set of indicators, the correlation logic is configured to assemble one or more groups of “weak” indicators, each group consisting of multiple (i.e., two or more) “weak” indicators. A weak indicator corresponds to data that, by itself, is not definitive as to a determination of a cyber-attack. The indicators may be assigned to a group based on one or more “relatedness” (grouping) factor that the indicators of a group share in common, sometimes referred to as an index parameter. For example, the “weak” indicators may be grouped according to a selected time period during which each of these indicators was detected. The detection may occur during static analysis of an object (e.g., analysis of the characteristics of the object without execution of the object) or during dynamic analysis of an object (e.g., executing the object and monitoring the behavior of the object and/or the software used in execution of the object). Furthermore, the set of indicators may be grouped in accordance with dynamically modifiable rules available to the correlation logic. After this grouping, the correlation logic conducts an analysis to determine whether the group of indicators is correlated with known malicious patterns or sequences (ordering) of indicators, thereby producing a “strong” indicator. A strong indicator assists the cyber-attack analysis device in determining that a cyber-attack is being conducted on a particular computing system or enterprise, and a presence of the strong indicator may be reported as part of an alert (warning) to a network administrator.


As described below, correlation logic is configured to improve malware detection effectiveness while monitoring enterprise network traffic (e.g., identifying compromised computing systems communicating inside an enterprise network). More specifically, based on a plurality of prescribed correlation rules that are formulated and coded from experiential knowledge and previous malware analysis results, the correlation logic is configured to generate a “strong” indicator of compromise (hereinafter, “indicator”) from a group of weak indicators. Herein, a “strong indicator” corresponds to data that, based on its presence alone, represents a high likelihood (e.g., probability exceeds a first selected threshold (e.g., percentage) of a cyber-attack. A “weak indicator” corresponds to data that, based on its presence alone, is not definitive as to whether the data is associated with a cyber-attack (e.g., weak indicator may represent a likelihood less than the first selected threshold of a cyber-attack. The weak indicator has (i) a low correlation with known cyber-attacks (e.g., malware), (ii) a high correlation with normal or expected characteristics or behaviors (during execution) of network traffic and/or conventional computer systems, or (iii) both. The correlation levels for a weak indicator are such that a conventional malware analysis schemes would not generally base a determination of a cyber-attack (e.g., malware) on such a weak indicator without a high risk (likelihood) of the determination being a false positive.


According to one embodiment of the disclosure, operating in accordance with the prescribed correlation rules, the correlation logic receives a plurality of indicators from one or more sources of the indicators (e.g., endpoint devices, security appliances, cloud-based malware analysis services, internal malware analysis logic, etc.) and may separate the strong indicators from the weak indicators. In conventional malware analysis schemes, the weak indicators may be discarded; however, as set forth in this disclosure, some or all of the received weak indicators are combined to form one or more groups (i.e., combinations) of indicators, each group includes multiple weak indicators. The group of indicators may be based on a temporal relationship such as, for example, each weak indicator from the group occurred during a predetermined period of time. Besides receipt (or occurrence) of the indicators within the predetermined time period, the group of indicators may be based, at least in part, on particulars associated with the prescribed correlation rules. These particulars may include weightings assigned to each type of weak indicator or frequency of occurrence of certain weak indicators for example.


After forming the group of indicators, the correlation logic conducts an analysis to determine whether the group of indicators (or a portion thereof) corresponds to a strong indicator. This analysis is conducted to determine compliance (or non-compliance) with the prescribed correlation rules that constitute rule-encoded attack characteristics and/or behaviors. Stated differently, the correlation logic determines, through experiential knowledge and intelligence from a variety of sources (e.g., deployed malware detection systems, incident response findings, and intelligence on malicious actors), whether there is a first prescribed level of correlation between the group of indicators and different patterns and/or sequences (ordering) of indicators of known malware (e.g., identical indicators, or substantially similar indicators, e.g., prescribed comparison rate, etc.). Responsive to determining that the first prescribed level of correlation has been achieved, the group of indicators collectively corresponds to a newly determined strong indicator. The correlation logic provides information associated with the newly determined strong indicator to reporting logic while, depending on the correlation rules governing the analysis, certain groups of indicators (e.g., a group of indicators that almost constitutes a “strong” indicator) may be returned to the correlation logic for further malware analysis


The further analysis may involve, for example, combining the group of weak indicators with one or more additional indicators, modifying the prescribed level of correlation (matching) to thereby reconstitute the group (eliminating some indictors or adding additional ones, or otherwise modifying the group). Furthermore, the prescribed correlation rules may be updated and modified, as the strength of indicators typically change over time as the threat landscape evolves. Also, the rules may be altered based on new intelligence gathered from internal heuristics, incident response filing, third party sources, or the like.


A cyber-attack analysis device implementing the above-described correlation logic may be resident in a network appliance that resides on-premises, namely connected to a network such as an enterprise network (e.g., local area network) of a person or an organization for example. The cyber-attack analysis device is configured to receive information (including weak indicators) from other remotely located network appliances. As an additional feature, the cyber-attack analysis device may be configured to monitor network traffic propagating over the enterprise network to extract objects for malware analysis, where the indicators constitute a portion of the results from the malware analysis.


As an alternative embodiment, the cyber-attack analysis device may be a network appliance remotely located from the enterprise network (and organization), where the network appliance operates as a remote analysis service that receives indicators and/or objects from other network devices, including, for example, webpages, files, and/or emails. As yet another alternative embodiment, the cyber-attack analysis device may be a virtual (software) deployment, with the operability of the cyber-attack analysis device being provided, at least in part, by an operating system or other software running on an on-premises network device or remote analysis service. Regardless of the deployment architecture, the cyber-attack analysis device groups, correlates and classifies received indicators and, when applicable, issues alerts to network administrators to identify threats resident in the enterprise network.


An illustrative example of the operations conducted by the correlation logic to generate a “strong” indicator from a group of “weak” indicators is described below. First, the correlation engine receives indicators, which may include strong indicators and/or weak indicators. Second, according to one embodiment of the disclosure, a plurality of the received indicators, wholly or at least primarily weak indicators, are extracted from the received information. Third, the correlation logic conducts (i) a first grouping operation on the plurality of indicators in accordance with a first index parameter (i.e., first factor) to produce a first group (e.g., two or more) of indicators and (ii) a second grouping operation on the first group of indicators in accordance with a second index parameter (i.e., second factor) to produce a second group (e.g., two or more) of indicators. Weak indicator correlation rules specify a grouping scheme based on specified indicator factors and index parameters. The first index parameter may be a time-based index parameter (e.g., indicators occurring or detected during a predetermined period of time) while the second index parameter may be based on certain context information that may accompany the indicators such as a source identifier that identifies the network device providing the received indicator (e.g., source Internet Protocol “IP” address, host name, user name, etc.). Fourth, the correlation logic determines, for each of the first and second groups, whether there exists a first prescribed level of correlation between the group of indicators and different patterns and/or sequences of indicators of known cyber-attacks (e.g., malware) or, where a positive determination means that one or both of the first and second groups is a strong indicator. Fifth, the correlation logic determines that a cyber-attack is in progress or has occurred based, at least in part, on the strong indicator or indicators represented by the first and second groups. Finally, reporting logic issues an alert to a security admin, e.g., over a communication or computer network, as to the classification indicating a cyber-attack.


Aspects of the invention may find application in a variety of cybersecurity contexts—for instance, in analyzing the network traffic between network endpoints during or after a potential cyber-attacks, and/or in analyzing network traffic between the network periphery and network endpoints, etc.—thereby enhancing the detection of malware communicating between network devices in a protected network (the network under analysis).


Hence, the cyber-attack analysis device is advantageous over conventional analyses in that it further refines detection of malware by using already collected information in a superior manner to improve the accuracy of malware detection and more accurate determination of an on-going cyber-attack.


II. Terminology

In the following description, certain terminology is used to describe various features of the invention. For example, each of the terms “logic” and “component” may be representative of hardware, firmware or software that is configured to perform one or more functions. As hardware, the term logic (or component) may include circuitry having data processing and/or storage functionality. Examples of such circuitry may include, but are not limited or restricted to a hardware processor (e.g., microprocessor, one or more processor cores, a digital signal processor, a programmable gate array, a microcontroller, an application specific integrated circuit “ASIC”, etc.), a semiconductor memory, or combinatorial elements.


Additionally, or in the alternative, the logic (or component) may include software such as one or more processes, one or more instances, Application Programming Interface(s) (API), subroutine(s), function(s), applet(s), servlet(s), routine(s), source code, object code, shared library/dynamic link library (dll), or even one or more instructions. This software may be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of a non-transitory storage medium may include, but are not limited or restricted to a programmable circuit; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); or persistent storage such as non-volatile memory (e.g., read-only memory “ROM”, power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or a portable memory device. As firmware, the logic (or component) may be stored in persistent storage.


Herein, a “communication” generally refers to related data that is received, transmitted, or exchanged within a communication session. The data may include a plurality of packets, where a “packet” broadly refers to a series of bits or bytes having a prescribed format. Alternatively, the data may include a collection of data that may take the form of an individual or a number of packets carrying related payloads, e.g., a single webpage received over a network.


The term “object” generally relates to content (or a reference for accessing such content) having a logical structure or organization that enables it to be classified for purposes of malware analysis. The content may include an executable (e.g., an application, program, code segment, a script, dynamic link library “dll” or any file in a format that can be directly executed by a computer such as a file with an “.exe” extension, etc.), a non-executable (e.g., a storage file; any document such as a Portable Document Format “PDF” document; a word processing document such as Word® document; an electronic mail “email” message, web page, etc.), or simply a collection of related data (e.g., packets).


The term “computerized” generally represents that any corresponding operations are conducted by hardware in combination with software and/or firmware. The term “data store” generally refers to a data storage device such as the non-transitory storage medium described above, which may include a repository for non-persistent or persistent storage of collected data.


According to one embodiment of the disclosure, the term “malware” may be broadly construed as any code, communication or activity that initiates or furthers a cyber-attack. Malware may prompt or cause unauthorized, anomalous, unintended and/or unwanted behaviors or operations constituting a security compromise of information infrastructure. For instance, malware may correspond to a type of malicious computer code that, as an illustrative example, executes an exploit to take advantage of a vulnerability in a network, network device or software, to gain unauthorized access, harm or co-opt operations of the network, the network device of the software or to misappropriate, modify or delete data. Alternatively, as another illustrative example, malware may correspond to information (e.g., executable code, script(s), data, command(s), etc.) that is designed to cause a network device to experience anomalous (unexpected or undesirable) behaviors. The anomalous behaviors may include a communication-based anomaly or an execution-based anomaly, which, for example, could (1) alter the functionality of a network device executing application software in an atypical manner; (2) alter the functionality of the network device executing that application software without any malicious intent; and/or (3) provide unwanted functionality which may be generally acceptable in another context.


A “characteristic” includes data associated with an object under analysis that may be collected without execution of the object such as metadata associated with the object (e.g., size, name, path, etc.) or content of the object (e.g., portions of code) without execution of the selected object. A “behavior” is an activity that is performed in response to execution of the object.


The term “network device” may be construed as any electronic computing system with the capability of processing data and connecting to a network. The network may be a public network such as the Internet or a private network such as a wireless data telecommunication network, wide area network, a type of local area network (LAN), or a combination of networks. Examples of a network device may include, but are not limited or restricted to, a laptop, a mobile phone, a tablet, a computer, a standalone appliance, a server, a router or other intermediary communication device, a firewall, etc.


The term “transmission medium” may be construed as a physical or logical communication path between two or more network devices or between components within a network device. For instance, as a physical communication path, wired and/or wireless interconnects in the form of electrical wiring, optical fiber, cable, bus trace, or a wireless channel using radio frequency (RF) or infrared (IR), may be used. A logical communication path may simply represent a communication path between two or more network devices or between components within a network device.


Finally, the terms “or” and “and/or” as used herein are to be interpreted as inclusive or meaning any one or any combination. Therefore, “A, B or C” or “A, B and/or C” mean “any of the following: A; B; C; A and B; A and C; B and C; A, B and C.” An exception to this definition will occur only when a combination of elements, functions, steps or acts are in some way inherently mutually exclusive.


As this invention is susceptible to embodiments of many different forms, it is intended that the present disclosure is to be considered as an example of the principles of the invention and not intended to limit the invention to the specific embodiments shown and described.


III. General Architecture

Referring to FIG. 1, an exemplary block diagram of an embodiment of an architecture of a cyber-attack analysis device 100 is shown. Herein, the cyber-attack analysis device 100 comprises a plurality of components, including one or more hardware processors (referred to as “processor”) 110, a memory 120, one or more data stores (hereinafter, “data store”) 130, a rules database 140 and/or one or more interfaces 1501-150M (M≥1), which may include network interfaces and/or input/output (I/O) interfaces. According to this embodiment of the disclosure, these components may be communicatively coupled together by a transmission medium 160 such as any type of interconnect (e.g., bus, wires, printed connections, one or more APIs, etc.), and the components are at least partially encased in a housing 170 made entirely or partially of a rigid material (e.g., hardened plastic, metal, glass, composite, or any combination thereof). The housing 170 protects these components from environmental conditions.


The processor 110 is a multi-purpose, programmable component that accepts digital data as input, processes the input data according to stored instructions, and provides results as output. One example of a processor may include an Intel® x86 central processing unit (CPU) with an instruction set architecture. Alternatively, the processor 110 may include another type of CPU, a digital signal processor (DSP), an Application Specific Integrated Circuit (ASIC), a field-programmable gate array (FPGA), or the like.


According to one embodiment of the disclosure, the processor 110 is communicatively coupled to the memory 120 and the data store 130 via the transmission medium 160. The data store 130 is adapted to store at least indicators of compromise (hereinafter, “indicators”). These indicators include characteristics and/or behaviors collected from malware analyses conducted remotely from the cyber-attack analysis device 100 (e.g., indicators from different network devices such as endpoint device, security appliance, and/or cloud-based security services). Additionally, or in the alternative, the indicators may be based on malware analyses conducted internally within the cyber-attack analysis device 100.


Referring still to FIG. 1, the cyber-attack analysis device 100 may include interface logic 1501, which may be implemented as a capturing device (e.g., network tap that extracts objects from the network traffic, one or more ports, etc.) that provides the objects associated with the network traffic to a first portion 131 of the data store 130 (referred to as “raw data store” 131). The processor 110 may conduct malware analyses on the objects stored in the raw data store 131 upon execution of static analysis logic 122 and/or dynamic analysis logic 124 stored in the memory 120. When executed by the processor 110, the static analysis logic 122 is configured to analyze contents (i.e., characteristics) of an object under analysis. When executed by the processor 110, the dynamic analysis logic 124 provisions at least one virtual machine (VM), which executes the object and monitors behaviors of the object and/or any applications executing the object within the VM. The monitored behaviors of the object and/or applications running in the VM are indicators provided to a second portion 132 of the data store 130 (referred to as “indicator data store 132”).


Besides the static analysis logic 122 and the dynamic analysis logic 124, the memory 120 includes software that controls functionality of the processor 110, such as correlation logic 180. The correlation logic 180 analyzes certain received indicators for patterns and/or sequences that are associated with known (e.g., previously detected) malware or cyber-attacks, as described below. The analyses conducted by the correlation logic 180 are governed, at least in part, by correlation rules loaded into the rules database 140.


The rules database 140 includes a first plurality of correlation rules for use in determining “strong” indicators from a subset of the indicators stored in the indicator data store 132 along with a second plurality of correlation rules for use in determining whether any “strong” indicators are uncovered from a combination of a plurality of “weak” indicators. The second plurality of correlation rules are configured to now analyze indicators that were not fully considered. It is contemplated that the correlation rules within the rules database 140 may be dynamic to select various combinations of indicators for analysis, where the selected combinations (groups) may be static (i.e. preselected indicators) or dynamic in nature. The dynamically selected groups may be based on a weighting scheme where certain combinations of “weak” indicators, which are generally known from machine learning or experiential knowledge from past analyses of indicators known to have higher levels of correlation to indicators associated with known malware, are selected as part of the group.


The network interfaces 1501-150M may include one or more network ports containing the mechanical, electrical and/or signaling circuitry needed to connect the cyber-attack analysis device 100 to a network to thereby facilitate communications to other remotely located electronic devices. To that end, the interfaces 1501-150M may be configured to transmit and/or receive messages using a variety of communication protocols including, inter alia, Transmission Control Protocol/Internet Protocol (TCP/IP), Hypertext Transfer Protocol (HTTP), or HTTP Secure (HTTPS). As an illustrated example, a first interface 1501 may be adapted to receive data traffic propagating over the monitored network (or a copy thereof) while a second interface 1502 may be adapted to receive indicators from one or more network (source) devices 190 remotely located from the cyber-attack analysis device 100. Additionally, a third network interface 1503 may be adapted to receive security content including software-based correlation rules 195 from a remote source. The correlation rules 195 are processed by the correlation logic 180 in determining whether any combination of (weak) indicators results in the finding of a strong indicator. The contents of the strong indicator are reported by a network administrator by reporting logic 185 via a fourth interface 1504 (described below).


IV. Operability of the Cyber-Attack Analysis Device

Referring now to FIG. 2, an exemplary block diagram of a logical representation of the cyber-attack analysis device 100 of FIG. 1 that illustrates the correlation logic 180 for use in generating a strong indicator from a plurality of weak indicators is shown. Herein, the cyber-attack analysis device 100 features an optional data analyzer 200, the correlation logic 180, and the reporting logic 185. The data analyzer 200 is adapted to receive data 210 as one or more objects from data traffic 205 being routed over an enterprise network 290. The functionality of the data analyzer 200 is based, at least in part, on the static analysis logic 122 and/or the dynamic analysis logic 124 as described above.


More specifically, the data analyzer 200 (e.g., static analysis logic 122 functionality) may be configured to analyze the contents of one or more objects (hereinafter, “object”) 210 being transmitted as part of the network traffic 205. Hence, the data analyzer 200 (e.g., static analysis logic 122 functionality) may determine characteristics of the object 210, such as the object name, object type, object size, path, presence of particular code structures, or the like. The characteristics may be provided as part of the indicators 230 to the correlation logic 180 along with metadata associated with these characteristics. Examples of metadata may include, but are not limited or restricted to time-stamps each identifying the time of detection of the characteristics for example.


The dynamic analysis logic 124 is configured to process the object 210, where such processing may occur before, after or contemporaneously (i.e., at least partially occurring at the same time) with the analysis performed by the static analysis logic 122. The processing may be performed by at least one virtual machine (VM) 215, operating as part of the dynamic analysis logic 124, which executes the object 210 and monitors resultant behaviors 225. The monitored behaviors 225 may include (i) behaviors of the object 210 during processed within the VM 215, (ii) behaviors of software (e.g., operating system, applications, etc.) that is processing the object 210 within the VM 215, and/or (iii) behaviors of the VM 215 itself. Metadata 227 associated with the behaviors 225, such as a time-stamp identifying the time of occurrence of each behavior or a source of code whose execution caused the behavior for example, may be collectively provided as indicators 235 to the correlation logic 180. These indicators 230 and 235 are identified as being sourced by the cyber-attack analysis device 100.


Furthermore, in some embodiments, indicators (e.g., characteristics and/or behaviors) 240 resulting from malware analyses by one or more network devices (not shown) geographically separated from the cyber-attack analysis device 100 (e.g., network devices 190 of FIG. 1) are provided to the correlation logic 180. These indicators 240 circumvent the data analyzer 200.


The correlation logic 180 comprises indicator detection logic 250. According to one embodiment of the disclosure, the indicator detection logic 250 features a strong indicator detection logic 260 and a weak indicator detection logic 270. The strong indicator detection logic 260 and the weak indicator detection logic 270 may be deployed as separate logic or portions of the same logic that operates iteratively to detect any strong indicators 262. The detected strong indicators 262 are provided to the reporting logic 185, and thereafter, the remaining (weak) indicators 264 are grouped for further analysis as illustrated in FIG. 3 and described below.


Operating in accordance with a first plurality of correlation rules 266, which may be formulated through machine learning (e.g., prior results from analyses of other objects by the cyber-attack analysis device 100) and intelligence gathered from other sources (e.g., incident response analytics, third party analytics, etc.), the strong indicator detection logic 260 determines whether a first prescribed level of correlation exists between each of the indicators 235 and/or 240 and the indicators associated with known malware. This correlation activity may include conducting comparisons between (i) any or all of the individuals indicators 235 and/or 240 and (ii) indicators associated with known malware, and optionally, one or more comparisons between (a) a plurality of the indicators 235 and/or 240 assembled in accordance with a first grouping scheme and (b) a first plurality of patterns and/or sequences of indicators associated with known malware. Although not shown, the indicators associated with known malware and the first plurality of patterns and/or sequences of indicators associated with known malware may be statically or dynamically stored and accessible by the first plurality of correlation rules 266.


In response to the correlation exceeding a first threshold (e.g., a level of correlation greater than a particular threshold (e.g., percentage)), the individual indicator or indicators assembled in accordance with a first grouping scheme is provided as a strong indicator 262 to the reporting logic 185. Additionally, the individual indicators 235 and/or 240 that do not constitute “strong” indicators, referred to as the “set of indicators” 264, are provided to the weak indicator detection logic 270.


Operating in accordance with a second plurality of correlation rules 272, the weak indicator detection logic 270 determines whether a second prescribed level of correlation exists between certain groups of indicators assembled from the set of indicators 264 and a second plurality of patterns and/or sequences of indicators associated with known malware. The second plurality of correlation rules 272, also formulated through machine learning and intelligence gathered from other sources, is different than the first plurality of correlation rules 266. For instance, the second plurality of correlation rules 272 may be directed on one or more patterns or sequences that are observed less frequently (or associated with less harmful malware) than patterns and/or sequences set forth in the first plurality of correlation rules 266. Also, the second prescribed level of correlation may be identical to, less, or greater than the first prescribed level of correlation.


The correlation operations performed by the weak indicator detection logic 270 may include one or more comparisons between (a) one or more groups of indicators assembled from the set of indicators 264 in accordance with a second grouping scheme and (b) the second plurality of patterns and/or sequences of indicators associated with known malware, which partially or wholly differs from the first plurality of patterns and/or sequences of indicators associated with known malware. Although not shown, the patterns and/or sequences of indicators associated with known malware may be statically or dynamically stored and accessible by the second plurality of correlation rules 272.


Responsive to the comparison resulting in a measured correlation greater than a second prescribed threshold (e.g., the level of correlation being greater than a selected comparison percentage), the particular group or groups of indicators are provided as strong indicators 274 to the reporting logic 185. However, depending on the correlation rules 272, a particular group of indicators may be provided as feedback over line 276 to the weak indicator detection logic 270 for use in subsequent malware analyses. Of course, it is contemplated that the recursive feedback of indicators may be conducted for each weak indicator individually where the weak indicators may be grouped separately in subsequent malware analyses or a recursive feedback may be conducted for one or more strong indicators.


It is contemplated that the correlation logic 180 is rules driven. Hence, the correlation logic may be configured to issue an alert or not, reinject one or more weak indicator back into an internal data store of the weak indicator detection logic 270 for subsequent correlation analyses or reinject one or more strong indicators back into an internal data store of the strong indicator detection logic 260 for subsequent correlation analyses is rules dependent. According to one embodiment of the disclosure, once an indicator is identified as a strong indicator (e.g., results in an alert), the indicator will continue to remain as a strong indicator; however, one or more weak indicators, especially a pattern of a plurality of weak indicators, may be collectively determined to constitute a strong indicator.


The reporting logic 185 is configured to receive the “strong” indicators 262 and 274 from both the strong indicator detection logic 260 and the weak indicator detection logic 270, respectively. The reporting logic 185 is further configured to generate alerts 280 for display and evaluation by network administrators. In accordance with one embodiment, an “alert” includes a message that includes display or other user presentation of information that specifies a cyber-attack is in progress or has occurred and may also identify the strong indicators that support the determination of the cyber-attack.


Referring to FIG. 3, an exemplary embodiment illustrating the weak indicator detection logic 270 of FIG. 2 is shown. The weak indicator detection logic 270 features grouping logic 300, a first data store 310 (separate or part of data store 130), and weak indicator analysis logic 320. The grouping logic 300 is configured to organize the set of indicators 264 into a prescribed schema for storage in the first data store 310. The first schema allows for selective fetching of indicators by the weak indicator analysis logic 270 in accordance with the second plurality of correlation rules 272. For instance, as an illustrative example, indicators 330 partially forming the set of indicators 264 may be stored within the first data store 310 in accordance with the first schema. The indicators 330 may be indexed according to a first index parameter 340 (e.g., time as represented by a timestamp issued when the indicator is detected) and a second index parameter 350 (e.g., the source that provided the indicators 330, which may be represented by a source identifier such as a source IP address, host name, user name, media access control “MAC” address, or the like). Of course, besides the first schema, other schemas may be utilized by the grouping logic 300.


Based on the second plurality of correlation rules 272, the weak indicator analysis logic 320 accesses one or more groups of indicators within the first data store 310 via medium 360. Within the first data store 310, the indicators 330 are organized in accordance with selected index parameters (e.g., a time window, source identifier, destination identifier, geographic location identifiers, etc.). Based on the correlation rules 272, a group of indicators 370 from a particular source or sources and/or within a selected time window (e.g., a sliding time window normally less than two minutes) may be fetched by the weak indicator analysis logic 320. The group of indicators 370 is analyzed by the weak indicator analysis logic 320 to determine whether a measured correlation greater than the second prescribed threshold exists between (i) the indicators 330 and (ii) the second plurality of patterns and/or sequences of indicators associated with known malware. If so, the group of indicators 370 constitutes a “strong” indicator and information associated with the group of indicators 370 (and/or the indicators 370 as well) may be provided to the reporting logic 185.


Referring to FIG. 4, an exemplary embodiment of a flowchart illustrating operations of the weak indicator detection logic of FIG. 3 is shown. Initially, data is received from one or more sources (block 400). The data may include indicators that represent characteristics uncovered by or behaviors monitored during malware analyses of objects conducted by one or more sources different than the cyber-attack analysis device. As an optional additional source, the cyber-attack analysis device may further receive and analyze objects from network traffic propagating over an enterprise network, and if so, any indicators produced from the analysis of the network traffic by the cyber-attack analysis device are aggregated with the incoming indicators (blocks 410, 415 and 420). For these aggregated indicators, each indicator has insufficient correlation with indicators associated with known malware to cause the weak indicator analysis device to conclude that the indicator represents a “strong” indicator by itself.


Thereafter, the aggregated indicators are organized in accordance with a plurality of index parameters forming the first schema (block 430). For instance, as an illustrated example, the aggregated indicators may be organized in accordance with a first index parameter (e.g., by time of occurrence of the indicator) and a second index parameter (e.g., by source identifier) as illustrated in blocks 435 and 440. The organization can be conducted in accordance with multiple index parameters utilized by the second plurality of correlation rules that at least partially control operability of the weak indicator detection logic 270 within the cyber-attack analysis device 100 of FIGS. 1-3. Other index parameters may include, but are not limited or restricted to destination identifier (e.g., destination IP address or other referencing information), geographic location identifier, or the like


In response to a triggering event (e.g., a predetermined amount of data is loaded in the first data store 310 of FIG. 3, the weak indicator detection logic accesses and operates in accordance with the second plurality of correlation rules by collecting those “weak” indicators that reside with the time and source type constraints set forth in the second plurality of correlation rules (blocks 450 and 460). Therefore, weak indicator detection logic performs a correlation operation on different combinations (groups) of collected weak indicators to patterns and/or sequences associated with known malware (block 470). If any of these groups correlates (i.e., matches to a sufficient degree) the patterns and/or sequences associated with known malware, the group is reported to the reporting logic (blocks 480 and 485). Otherwise, the weak indicators may not offer any additional information for assisting the cyber-attack analysis device in determining whether a cyber-attack is being conducted and which source (and identifiers) is associated with the cyber-attack.


Referring now to FIGS. 5A and 5B, a more detailed embodiment of a flowchart illustrating the operations of the weak indicator detection logic of FIG. 3 is shown. Herein, data is received from one or more sources (block 500). A first determination is made whether the received data represents an object obtain from the network traffic, and if so, the object undergoes one or more malware analyses, which produce a plurality of indicators to be utilized for analysis (blocks 505 and 510). Otherwise, the received data represents characteristics uncovered or behaviors monitored during malware analyses of objects conducted by one or more sources different than the cyber-attack analysis device, which constitute a plurality of indicators that are aggregated (block 515).


For these indicators, the “strong” indicators may be removed (block 520). More specifically, an analysis is conducted for each of these indicators to determine whether a correlation between that indicator and one or more indicators associated with known malware exceeds a first threshold. If so, the indicator is a “strong” indicator. The remaining indicators are considered to be the “weak” indicators.


Thereafter, the “weak” indicators are organized in accordance with a plurality of index parameters forming the first schema (block 525). As an illustrated example, the “weak” indicators may be organized in accordance with a first index parameter (e.g., by time of occurrence of the indicator) and a second index parameter, such as the identifier of the source of the indicator, referred to as the “source identifier.” In some embodiments, the organization can be conducted in accordance with a single parameter or multiple parameters.


In response to a selected triggering event (e.g., the “weak” indicators are loaded in a data store, expiration of a prescribed time where periodic analyses are conducted, receipt of the data, etc.), correlation operations are performed on different combinations (groups) of “weak” indicators and patterns and/or sequences associated with known malware (blocks 530, 535 and 540). The correlation operations may be in accordance with one or more of the second plurality of correlation rules. If any of these combinations correlates to any patterns and/or sequences associated with known malware, the combination of weak indicators corresponds to a strong indicator, and thus, information associated with the strong indicator (and perhaps the combination of weak indicators themselves) is reported to the reporting logic (blocks 545 and 550).


Otherwise (and concurrently or after the reporting of the strong indicator in blocks 545 and 550), a determination is made as to whether all of the second plurality of correlation rules have been considered in an analysis of the combination of weak indicators (block 555). If not, correlation operations in accordance with different correlation rule(s) may be performed on the combination of weak indicators (blocks 560 and 540-545). If so, a determination is made as to whether all combinations of the weak indicators have been evaluated (block 565). If all combinations of the weak indicators have not been evaluated, a new combination of weak indicators is selected and undergo the correlation operations with the patterns and/or sequences associated with known malware (blocks 570 and 535-550). Otherwise, the analysis of the received data is completed for the received data, but continues in an iterative manner (block 575).


Referring to FIGS. 6A and 6B, a first exemplary block diagram of the operability of the weak indicator detection logic 270 of FIG. 3 is shown. In general, the weak indicator detection logic 270 includes a weak indicator analysis logic 320 that is adapted to receive one or more rules that control its operability in grouping and subsequent analysis of weak indicators. The analysis is conducted to determine whether this particular grouping of weak indicators constitutes a “strong” indicator, which signals a potential cyber-attack. Exemplary pseudo-code 600 of a first rule is shown in FIG. 6A and the block diagram of the logical operations is show in FIG. 6B:


Herein, the “Rule Id 1” 610 is directed to an identifier assigned to a pattern (e.g., “pattern 1”) that includes a number of events (weak indicators). Any matching results are assigned a particular level of severity 620 (e.g., the highest severity being “10” out of 10). The severity 620 may identify, upon successful detection of the particular pattern (weak indicator 1 followed by weak indicator 2), a cyber-attack has been attempted (or is in process). Additionally, or in the alternative, the cyber-attack analysis device may utilize the severity 620 to determine an ordering of processing (e.g., rules associated with the highest severity are processed first with rules associated with lesser severity are processed as time permits).


The “name” field 630 is utilized to subsequently reference a particular collection (pattern) of indicators that are analyzed in accordance with a specified rule 640. The rule 640 identifies sources of the indicators (source field) 650, grouping scheme (group field) 660, analysis particulars (condition field) 670 and a pattern name 680 assigned to the newly analyzed patterns of weak indicators. The condition field 670 identifies what combination of index parameters are relied upon for grouping of the incoming indicators from sources. For this illustrative embodiment, the incoming indicators are group by IP source address and IP destination address, as identified in the group field 660. Of course, it is contemplated that other index parameters may be used. The condition field 670 specifically describes the particular pattern under review after grouping of the weak indicators. For this example, the cyber-attack analysis device is looking for a pattern in which a particular group (source and destination IP addresses) undercovers a targeted sequence 670 of events (e.g., first weak indicator “WI-1), second weak indicator “WI-2”). Upon detection of the matching sequence, a strong indicator has been determined from a sequence of weak indicators.


It is contemplated that the components forming the rules are modifiable and can be organized in a plurality of nesting arrangements. For example, as shown in FIG. 6B, the sequence of weak indicators associated with “pattern 1” 680 may be provided as input feedback 690 to the weak indicator analysis logic 320 (or data store 330) for subsequent correlation analysis as a separate weak indicator for a different correlation rule. Stated differently, certain rules may be coded to require that, instead of issuing an alert or a message as to detection of the sequence of weak indicators (i.e., “pattern 1” 680) that fail to arise to “strong” indicator status, the sequence of indicators is reinserted as input back into the analysis stage for future correlation. This may be accomplished by setting the Reinject keyword 635 to “Yes” instead of “No” (no feedback) as shown in FIG. 6A.


In the foregoing description, the invention is described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims.

Claims
  • 1. A computerized method for detecting a cyber-attack, the method comprising: performing one or more analyses of one or more objects associated with network traffic to determine a plurality of indicators;collecting a first plurality of weak indicators of the plurality of indicators, a first weak indicator of the first plurality of weak indicators corresponds to data that, by itself, is not definitive as to whether the data is associated with a cyber-attack being conducted on a source of the first weak indicator;grouping a second plurality of weak indicators from the first plurality of weak indicators, the second plurality of weak indicators being lesser in number than the first plurality of weak indicators;performing a correlation operation between the second plurality of weak indicators and one or more patterns or sequences of indicators associated with known malware; andgenerating and issuing a report based on the correlation operation.
  • 2. The computerized method of claim 1, wherein the first weak indicator represents an indicator having a probability less than a first prescribed probability level of the cyber-attack being conducted on the source of the first weak indicator.
  • 3. The computerized method of claim 2, wherein the collecting of the first plurality of weak indicators comprises separating strong indicators from a plurality of indicators where remaining indicators of the plurality of indicators correspond to the first plurality of weak indicators, a first strong indicator corresponds to data that, based on its presence alone, represents a likelihood above a second prescribed probability level of the cyber-attack conducted on at least the source of the first strong indicator.
  • 4. The computerized method of claim 1, wherein each of first plurality of weak indicators corresponds to data that represents, based on its presence alone, a likelihood below a first prescribed probability level of the cyber-attack.
  • 5. The computerized method of claim 1, wherein the grouping of the second plurality of weak indicators comprises combining two or more weak indicators in accordance with one or more grouping factors.
  • 6. The computerized method of claim 5, wherein the grouping factors are static in nature.
  • 7. The computerized method of claim 5, wherein the grouping factors each comprise an index parameter.
  • 8. The computerized method of claim 1, wherein the one or more analyses include a dynamic analysis performed by one or more virtual machines.
  • 9. A device for detecting a cyber-attack comprising: data analyzer logic including an analysis logic, the data analyzer logic configured to conduct an analysis of one or more objects and to output a first plurality of indicators based on the analysis;first indicator detection logic communicatively coupled to the data analyzer and operating in accordance with a first plurality of correlation rules, the first indicator detection logic to determine whether a prescribed level of correlation exists between each of the first plurality of indicators and an indicator associated with known malware to detect whether any of the first plurality of indicators constitutes a strong indicator that represents that a cyber-attack has potentially occurred on a source of the first plurality of indicators;second indicator detection logic communicatively coupled to the data analyzer and operating in accordance with a second plurality of correlation rules, the second indicator detection logic to perform a correlation operation between (i) two or more indicators of a second plurality of indicators being a subset of the first plurality of indicators and each of the two or more indicators, individually, is not definitive as to whether a cyber-attack is being conducted on the source, and (ii) one or more patterns or sequences of indicators associated with known malware, the correlation operation to determine whether the two or more indicators correspond to a strong indicator that represents the cyber-attack has potentially occurred on the source of the first plurality of indicators; andreporting logic communicatively coupled to the strong indicator detection logic and the weak indicator logic, the reporting logic to generate an alert at least in response to detection of the strong indicator by the second indicator detection logic.
  • 10. The device of claim 9, wherein the reporting logic further generates an alert in response to detection of the strong indicator by the first indicator detection logic.
  • 11. The device of claim 9, wherein the two or more indicators are assembled by grouping the two or more indicators in accordance with a first grouping scheme conducted in accordance with the second plurality of correlation rules.
  • 12. The device of claim 9, wherein the second indicator detection logic comprises: a data store to store the two or more indicators;grouping logic communicatively coupled to the data store, the grouping logic being configured to organize the second plurality of indicators; andweak indicator analysis logic communicatively coupled to the data store, the weak indicator analysis logic to selectively collect the two or more indicators and perform the correlation operation between (i) the two or more indicators and (ii) the one or more patterns or sequences of indicators associated with known malware in accordance with the second plurality of correlation rules.
  • 13. The device of claim 12, wherein the grouping logic is configured to organize the second plurality of indicators into a prescribed schema for storage in the data store.
  • 14. The device of claim 13, wherein the prescribed schema are indexed based on a first index parameter and a second index parameter.
  • 15. The device of claim 14, wherein the first index parameter includes an indexing of the second plurality of indicators based on a time of detection.
  • 16. The device of claim 14, wherein the second index parameter includes an indexing of the second plurality of indicators by source identifier.
  • 17. The device of claim 9, wherein the one or more analyses include a dynamic analysis performed by one or more virtual machines.
  • 18. A device for detecting a cyber-attack, comprising: a processor; anda memory coupled to the processor, the memory comprises: a first module that, upon execution by the processor, performs one or more analyses of one or more objects associated with network traffic to determine a plurality of indicators;a second module that, upon execution by the processor, collects a first plurality of weak indicators of the plurality of indicators, wherein each of the first plurality of weak indicators corresponds to data that, individually, is not definitive as to whether the data is associated with a cyber-attack,a third module that, upon execution by the processor, groups a second plurality of weak indicators from the first plurality of weak indicators, the second plurality of weak indicators being lesser in number than the first plurality of weak indicators, the second set of weak indicators bring grouped based on a grouping factor that the second plurality of weak indicators share, anda fourth module that, upon execution by the processor, performs a correlation operation between the second plurality of weak indicators and one or more patterns or sequences of indicators associated with known malware.
  • 19. The device of claim 18, wherein the first weak indicator represents an indicator having a probability less than a prescribed probability level of the cyber-attack being conducted on the source of the first weak indicator.
  • 20. The device of claim 18, wherein the one or more analyses include a dynamic analysis performed by one or more virtual machines.
US Referenced Citations (719)
Number Name Date Kind
4292580 Ott et al. Sep 1981 A
5175732 Hendel et al. Dec 1992 A
5319776 Hile et al. Jun 1994 A
5440723 Arnold et al. Aug 1995 A
5490249 Miller Feb 1996 A
5657473 Killean et al. Aug 1997 A
5802277 Cowlard Sep 1998 A
5842002 Schnurer et al. Nov 1998 A
5878560 Johnson Mar 1999 A
5960170 Chen et al. Sep 1999 A
5978917 Chi Nov 1999 A
5983348 Ji Nov 1999 A
6013455 Bandman et al. Jan 2000 A
6088803 Tso et al. Jul 2000 A
6092194 Touboul Jul 2000 A
6094677 Capek et al. Jul 2000 A
6108799 Boulay et al. Aug 2000 A
6154844 Touboul et al. Nov 2000 A
6269330 Cidon et al. Jul 2001 B1
6272641 Ji Aug 2001 B1
6279113 Vaidya Aug 2001 B1
6298445 Shostack et al. Oct 2001 B1
6357008 Nachenberg Mar 2002 B1
6424627 Sorhaug et al. Jul 2002 B1
6442696 Wray et al. Aug 2002 B1
6484315 Ziese Nov 2002 B1
6487666 Shanklin et al. Nov 2002 B1
6493756 O'Brien et al. Dec 2002 B1
6550012 Villa et al. Apr 2003 B1
6775657 Baker Aug 2004 B1
6831893 Ben Nun et al. Dec 2004 B1
6832367 Choi et al. Dec 2004 B1
6895550 Kanchirayappa et al. May 2005 B2
6898632 Gordy et al. May 2005 B2
6907396 Muttik et al. Jun 2005 B1
6941348 Petry et al. Sep 2005 B2
6971097 Wallman Nov 2005 B1
6981279 Arnold et al. Dec 2005 B1
7007107 Ivchenko et al. Feb 2006 B1
7028179 Anderson et al. Apr 2006 B2
7043757 Hoefelmeyer et al. May 2006 B2
7058822 Edery et al. Jun 2006 B2
7069316 Gryaznov Jun 2006 B1
7080407 Zhao et al. Jul 2006 B1
7080408 Pak et al. Jul 2006 B1
7093002 Wolff et al. Aug 2006 B2
7093239 van der Made Aug 2006 B1
7096498 Judge Aug 2006 B2
7100201 Izatt Aug 2006 B2
7107617 Hursey et al. Sep 2006 B2
7159149 Spiegel et al. Jan 2007 B2
7213260 Judge May 2007 B2
7231667 Jordan Jun 2007 B2
7240364 Branscomb et al. Jul 2007 B1
7240368 Roesch et al. Jul 2007 B1
7243371 Kasper et al. Jul 2007 B1
7249175 Donaldson Jul 2007 B1
7287278 Liang Oct 2007 B2
7308716 Danford et al. Dec 2007 B2
7328453 Merkle, Jr. et al. Feb 2008 B2
7346486 Ivancic et al. Mar 2008 B2
7356736 Natvig Apr 2008 B2
7386888 Liang et al. Jun 2008 B2
7392542 Bucher Jun 2008 B2
7418729 Szor Aug 2008 B2
7428300 Drew et al. Sep 2008 B1
7441272 Durham et al. Oct 2008 B2
7448084 Apap et al. Nov 2008 B1
7458098 Judge et al. Nov 2008 B2
7464404 Carpenter et al. Dec 2008 B2
7464407 Nakae et al. Dec 2008 B2
7467408 O'Toole, Jr. Dec 2008 B1
7478428 Thomlinson Jan 2009 B1
7480773 Reed Jan 2009 B1
7487543 Arnold et al. Feb 2009 B2
7496960 Chen et al. Feb 2009 B1
7496961 Zimmer et al. Feb 2009 B2
7519990 Xie Apr 2009 B1
7523493 Liang et al. Apr 2009 B2
7530104 Thrower et al. May 2009 B1
7540025 Tzadikario May 2009 B2
7546638 Anderson et al. Jun 2009 B2
7565550 Liang et al. Jul 2009 B2
7568233 Szor et al. Jul 2009 B1
7584455 Ball Sep 2009 B2
7603715 Costa et al. Oct 2009 B2
7607171 Marsden et al. Oct 2009 B1
7639714 Stolfo et al. Dec 2009 B2
7644441 Schmid et al. Jan 2010 B2
7657419 van der Made Feb 2010 B2
7676841 Sobchuk et al. Mar 2010 B2
7698548 Shelest et al. Apr 2010 B2
7707633 Danford et al. Apr 2010 B2
7712136 Sprosts et al. May 2010 B2
7730011 Deninger et al. Jun 2010 B1
7739740 Nachenberg et al. Jun 2010 B1
7779463 Stolfo et al. Aug 2010 B2
7784097 Stolfo et al. Aug 2010 B1
7832008 Kraemer Nov 2010 B1
7836502 Zhao et al. Nov 2010 B1
7849506 Dansey et al. Dec 2010 B1
7854007 Sprosts et al. Dec 2010 B2
7869073 Oshima Jan 2011 B2
7877803 Enstone et al. Jan 2011 B2
7904959 Sidiroglou et al. Mar 2011 B2
7908660 Bahl Mar 2011 B2
7930738 Petersen Apr 2011 B1
7937387 Frazier et al. May 2011 B2
7937761 Bennett May 2011 B1
7949849 Lowe et al. May 2011 B2
7996556 Raghavan et al. Aug 2011 B2
7996836 McCorkendale et al. Aug 2011 B1
7996904 Chiueh et al. Aug 2011 B1
7996905 Arnold et al. Aug 2011 B2
8006305 Aziz Aug 2011 B2
8010667 Zhang et al. Aug 2011 B2
8020206 Hubbard et al. Sep 2011 B2
8028338 Schneider et al. Sep 2011 B1
8042184 Batenin Oct 2011 B1
8045094 Teragawa Oct 2011 B2
8045458 Alperovitch et al. Oct 2011 B2
8069484 McMillan et al. Nov 2011 B2
8087086 Lai et al. Dec 2011 B1
8171553 Aziz et al. May 2012 B2
8176049 Deninger et al. May 2012 B2
8176480 Spertus May 2012 B1
8201246 Wu et al. Jun 2012 B1
8204984 Aziz et al. Jun 2012 B1
8214905 Doukhvalov et al. Jul 2012 B1
8220055 Kennedy Jul 2012 B1
8225288 Miller et al. Jul 2012 B2
8225373 Kraemer Jul 2012 B2
8233882 Rogel Jul 2012 B2
8234640 Fitzgerald et al. Jul 2012 B1
8234709 Viljoen et al. Jul 2012 B2
8239944 Nachenberg et al. Aug 2012 B1
8260914 Ranjan Sep 2012 B1
8266091 Gubin et al. Sep 2012 B1
8286251 Eker et al. Oct 2012 B2
8291499 Aziz et al. Oct 2012 B2
8307435 Mann et al. Nov 2012 B1
8307443 Wang et al. Nov 2012 B2
8312545 Tuvell et al. Nov 2012 B2
8321936 Green et al. Nov 2012 B1
8321941 Tuvell et al. Nov 2012 B2
8332571 Edwards, Sr. Dec 2012 B1
8365286 Poston Jan 2013 B2
8365297 Parshin et al. Jan 2013 B1
8370938 Daswani et al. Feb 2013 B1
8370939 Zaitsev et al. Feb 2013 B2
8375444 Aziz et al. Feb 2013 B2
8381299 Stolfo et al. Feb 2013 B2
8402529 Green et al. Mar 2013 B1
8464340 Ahn et al. Jun 2013 B2
8479174 Chiriac Jul 2013 B2
8479276 Vaystikh et al. Jul 2013 B1
8479291 Bodke Jul 2013 B1
8510827 Leake et al. Aug 2013 B1
8510828 Guo et al. Aug 2013 B1
8510842 Amit et al. Aug 2013 B2
8516478 Edwards et al. Aug 2013 B1
8516590 Ranadive et al. Aug 2013 B1
8516593 Aziz Aug 2013 B2
8522348 Chen et al. Aug 2013 B2
8528086 Aziz Sep 2013 B1
8533824 Hutton et al. Sep 2013 B2
8539582 Aziz et al. Sep 2013 B1
8549638 Aziz Oct 2013 B2
8555391 Demir et al. Oct 2013 B1
8561177 Aziz et al. Oct 2013 B1
8566476 Shiffer et al. Oct 2013 B2
8566946 Aziz et al. Oct 2013 B1
8584094 Dadhia et al. Nov 2013 B2
8584234 Sobel et al. Nov 2013 B1
8584239 Aziz et al. Nov 2013 B2
8595834 Xie et al. Nov 2013 B2
8627476 Satish et al. Jan 2014 B1
8635696 Aziz Jan 2014 B1
8682054 Xue et al. Mar 2014 B2
8682812 Ranjan Mar 2014 B1
8689333 Aziz Apr 2014 B2
8695096 Zhang Apr 2014 B1
8713631 Pavlyushchik Apr 2014 B1
8713681 Silberman et al. Apr 2014 B2
8726392 McCorkendale et al. May 2014 B1
8739280 Chess et al. May 2014 B2
8776229 Aziz Jul 2014 B1
8782792 Bodke Jul 2014 B1
8789172 Stolfo et al. Jul 2014 B2
8789178 Kejriwal et al. Jul 2014 B2
8793278 Frazier et al. Jul 2014 B2
8793787 Ismael et al. Jul 2014 B2
8805947 Kuzkin et al. Aug 2014 B1
8806647 Daswani et al. Aug 2014 B1
8832829 Manni et al. Sep 2014 B2
8850570 Ramzan Sep 2014 B1
8850571 Staniford et al. Sep 2014 B2
8881234 Narasimhan et al. Nov 2014 B2
8881271 Butler, II Nov 2014 B2
8881282 Aziz et al. Nov 2014 B1
8898788 Aziz et al. Nov 2014 B1
8935779 Manni et al. Jan 2015 B2
8949257 Shiffer et al. Feb 2015 B2
8984638 Aziz et al. Mar 2015 B1
8990939 Staniford et al. Mar 2015 B2
8990944 Singh et al. Mar 2015 B1
8997219 Staniford et al. Mar 2015 B2
9009822 Ismael et al. Apr 2015 B1
9009823 Ismael et al. Apr 2015 B1
9027135 Aziz May 2015 B1
9071638 Aziz et al. Jun 2015 B1
9104867 Thioux et al. Aug 2015 B1
9106630 Frazier et al. Aug 2015 B2
9106694 Aziz et al. Aug 2015 B2
9118715 Staniford et al. Aug 2015 B2
9159035 Ismael et al. Oct 2015 B1
9171160 Vincent et al. Oct 2015 B2
9176843 Ismael et al. Nov 2015 B1
9189627 Islam Nov 2015 B1
9195829 Goradia et al. Nov 2015 B1
9197664 Aziz et al. Nov 2015 B1
9223972 Vincent et al. Dec 2015 B1
9225740 Ismael et al. Dec 2015 B1
9241010 Bennett et al. Jan 2016 B1
9251343 Vincent et al. Feb 2016 B1
9262635 Paithane et al. Feb 2016 B2
9268936 Butler Feb 2016 B2
9275229 LeMasters Mar 2016 B2
9282109 Aziz et al. Mar 2016 B1
9292686 Ismael et al. Mar 2016 B2
9294501 Mesdaq et al. Mar 2016 B2
9300686 Pidathala et al. Mar 2016 B2
9306960 Aziz Apr 2016 B1
9306974 Aziz et al. Apr 2016 B1
9311479 Manni et al. Apr 2016 B1
9355247 Thioux et al. May 2016 B1
9356944 Aziz May 2016 B1
9363280 Rivlin et al. Jun 2016 B1
9367681 Ismael et al. Jun 2016 B1
9398028 Karandikar et al. Jul 2016 B1
9413781 Cunningham et al. Aug 2016 B2
9426071 Caldejon et al. Aug 2016 B1
9430646 Mushtaq et al. Aug 2016 B1
9432389 Khalid et al. Aug 2016 B1
9438613 Paithane et al. Sep 2016 B1
9438622 Staniford et al. Sep 2016 B1
9438623 Thioux et al. Sep 2016 B1
9459901 Jung et al. Oct 2016 B2
9467460 Otvagin et al. Oct 2016 B1
9483644 Paithane et al. Nov 2016 B1
9495180 Ismael Nov 2016 B2
9497213 Thompson et al. Nov 2016 B2
9507935 Ismael et al. Nov 2016 B2
9516057 Aziz Dec 2016 B2
9519782 Aziz et al. Dec 2016 B2
9536091 Paithane et al. Jan 2017 B2
9537972 Edwards et al. Jan 2017 B1
9560059 Islam Jan 2017 B1
9565202 Kindlund et al. Feb 2017 B1
9591015 Amin et al. Mar 2017 B1
9591020 Aziz Mar 2017 B1
9594904 Jain et al. Mar 2017 B1
9594905 Ismael et al. Mar 2017 B1
9594912 Thioux et al. Mar 2017 B1
9609007 Rivlin et al. Mar 2017 B1
9626509 Khalid et al. Apr 2017 B1
9628498 Aziz et al. Apr 2017 B1
9628506 Han Apr 2017 B1
9628507 Haq et al. Apr 2017 B2
9633134 Ross Apr 2017 B2
9635039 Islam et al. Apr 2017 B1
9641546 Manni et al. May 2017 B1
9654485 Neumann May 2017 B1
9661009 Karandikar et al. May 2017 B1
9661018 Aziz May 2017 B1
9674298 Edwards et al. Jun 2017 B1
9680862 Ismael et al. Jun 2017 B2
9690606 Ha et al. Jun 2017 B1
9690933 Singh et al. Jun 2017 B1
9690935 Shiffer et al. Jun 2017 B2
9690936 Malik et al. Jun 2017 B1
9736179 Ismael Aug 2017 B2
9740857 Ismael et al. Aug 2017 B2
9747446 Pidathala et al. Aug 2017 B1
9756074 Aziz et al. Sep 2017 B2
9773112 Rathor et al. Sep 2017 B1
9781144 Otvagin et al. Oct 2017 B1
9787700 Amin et al. Oct 2017 B1
9787706 Otvagin et al. Oct 2017 B1
9792196 Ismael et al. Oct 2017 B1
9824209 Ismael et al. Nov 2017 B1
9824211 Wilson Nov 2017 B2
9824216 Khalid et al. Nov 2017 B1
9825976 Gomez et al. Nov 2017 B1
9825989 Mehra et al. Nov 2017 B1
9838408 Karandikar et al. Dec 2017 B1
9838411 Aziz Dec 2017 B1
9838416 Aziz Dec 2017 B1
9838417 Khalid et al. Dec 2017 B1
9846776 Paithane et al. Dec 2017 B1
9876701 Caldejon et al. Jan 2018 B1
9888016 Amin et al. Feb 2018 B1
9888019 Pidathala et al. Feb 2018 B1
9910988 Vincent et al. Mar 2018 B1
9912644 Cunningham Mar 2018 B2
9912681 Ismael et al. Mar 2018 B1
9912684 Aziz et al. Mar 2018 B1
9912691 Mesdaq et al. Mar 2018 B2
9912698 Thioux et al. Mar 2018 B1
9916440 Paithane et al. Mar 2018 B1
9921978 Chan et al. Mar 2018 B1
9934376 Ismael Apr 2018 B1
9934381 Kindlund et al. Apr 2018 B1
9946568 Ismael et al. Apr 2018 B1
9954890 Staniford et al. Apr 2018 B1
9973531 Thioux May 2018 B1
10002252 Ismael et al. Jun 2018 B2
10019338 Goradia et al. Jul 2018 B1
10019573 Silberman et al. Jul 2018 B2
10025691 Ismael et al. Jul 2018 B1
10025927 Khalid et al. Jul 2018 B1
10027689 Rathor et al. Jul 2018 B1
10027690 Aziz et al. Jul 2018 B2
10027696 Rivlin et al. Jul 2018 B1
10033747 Paithane et al. Jul 2018 B1
10033748 Cunningham et al. Jul 2018 B1
10033753 Islam et al. Jul 2018 B1
10033759 Kabra et al. Jul 2018 B1
10050998 Singh Aug 2018 B1
10068091 Aziz et al. Sep 2018 B1
10075455 Zafar et al. Sep 2018 B2
10083302 Paithane et al. Sep 2018 B1
10084813 Eyada Sep 2018 B2
10089461 Ha et al. Oct 2018 B1
10097573 Aziz Oct 2018 B1
10104102 Neumann Oct 2018 B1
10108446 Steinberg et al. Oct 2018 B1
10121000 Rivlin et al. Nov 2018 B1
10122746 Manni et al. Nov 2018 B1
10133863 Bu et al. Nov 2018 B2
10133866 Kumar et al. Nov 2018 B1
10146810 Shiffer et al. Dec 2018 B2
10148693 Singh et al. Dec 2018 B2
10165000 Aziz et al. Dec 2018 B1
10169585 Pilipenko et al. Jan 2019 B1
10176321 Abbasi et al. Jan 2019 B2
10181029 Ismael et al. Jan 2019 B1
10191861 Steinberg et al. Jan 2019 B1
10192052 Singh et al. Jan 2019 B1
10198574 Thioux et al. Feb 2019 B1
10200384 Mushtaq et al. Feb 2019 B1
10210329 Malik et al. Feb 2019 B1
10216927 Steinberg Feb 2019 B1
10218740 Mesdaq et al. Feb 2019 B1
10242185 Goradia Mar 2019 B1
20010005889 Albrecht Jun 2001 A1
20010047326 Broadbent et al. Nov 2001 A1
20020018903 Kokubo et al. Feb 2002 A1
20020038430 Edwards et al. Mar 2002 A1
20020091819 Melchione et al. Jul 2002 A1
20020095607 Lin-Hendel Jul 2002 A1
20020116627 Tarbotton et al. Aug 2002 A1
20020144156 Copeland Oct 2002 A1
20020162015 Tang Oct 2002 A1
20020166063 Lachman et al. Nov 2002 A1
20020169952 DiSanto et al. Nov 2002 A1
20020184528 Shevenell et al. Dec 2002 A1
20020188887 Largman et al. Dec 2002 A1
20020194490 Halperin et al. Dec 2002 A1
20030021728 Sharpe et al. Jan 2003 A1
20030074578 Ford et al. Apr 2003 A1
20030084318 Schertz May 2003 A1
20030101381 Mateev et al. May 2003 A1
20030115483 Liang Jun 2003 A1
20030188190 Aaron et al. Oct 2003 A1
20030191957 Hypponen et al. Oct 2003 A1
20030200460 Morota et al. Oct 2003 A1
20030212902 van der Made Nov 2003 A1
20030229801 Kouznetsov et al. Dec 2003 A1
20030237000 Denton et al. Dec 2003 A1
20040003323 Bennett et al. Jan 2004 A1
20040006473 Mills et al. Jan 2004 A1
20040015712 Szor Jan 2004 A1
20040019832 Arnold et al. Jan 2004 A1
20040047356 Bauer Mar 2004 A1
20040083408 Spiegel et al. Apr 2004 A1
20040088581 Brawn et al. May 2004 A1
20040093513 Cantrell et al. May 2004 A1
20040111531 Staniford et al. Jun 2004 A1
20040117478 Triulzi et al. Jun 2004 A1
20040117624 Brandt et al. Jun 2004 A1
20040128355 Chao et al. Jul 2004 A1
20040165588 Pandya Aug 2004 A1
20040236963 Danford et al. Nov 2004 A1
20040243349 Greifeneder et al. Dec 2004 A1
20040249911 Alkhatib et al. Dec 2004 A1
20040255161 Cavanaugh Dec 2004 A1
20040268147 Wiederin et al. Dec 2004 A1
20050005159 Oliphant Jan 2005 A1
20050021740 Bar et al. Jan 2005 A1
20050033960 Vialen et al. Feb 2005 A1
20050033989 Poletto et al. Feb 2005 A1
20050050148 Mohammadioun et al. Mar 2005 A1
20050086523 Zimmer et al. Apr 2005 A1
20050091513 Mitomo et al. Apr 2005 A1
20050091533 Omote et al. Apr 2005 A1
20050091652 Ross Apr 2005 A1
20050108562 Khazan et al. May 2005 A1
20050114663 Cornell et al. May 2005 A1
20050125195 Brendel Jun 2005 A1
20050149726 Joshi et al. Jul 2005 A1
20050157662 Bingham et al. Jul 2005 A1
20050183143 Anderholm et al. Aug 2005 A1
20050201297 Peikari Sep 2005 A1
20050210533 Copeland et al. Sep 2005 A1
20050238005 Chen et al. Oct 2005 A1
20050240781 Gassoway Oct 2005 A1
20050262562 Gassoway Nov 2005 A1
20050265331 Stolfo Dec 2005 A1
20050283839 Cowburn Dec 2005 A1
20060010495 Cohen et al. Jan 2006 A1
20060015416 Hoffman et al. Jan 2006 A1
20060015715 Anderson Jan 2006 A1
20060015747 Van de Ven Jan 2006 A1
20060021029 Brickell et al. Jan 2006 A1
20060021054 Costa et al. Jan 2006 A1
20060031476 Mathes et al. Feb 2006 A1
20060047665 Neil Mar 2006 A1
20060070130 Costea et al. Mar 2006 A1
20060075496 Carpenter et al. Apr 2006 A1
20060095968 Portolani et al. May 2006 A1
20060101516 Sudaharan et al. May 2006 A1
20060101517 Banzhof et al. May 2006 A1
20060117385 Mester et al. Jun 2006 A1
20060123477 Raghavan et al. Jun 2006 A1
20060143709 Brooks et al. Jun 2006 A1
20060150249 Gassen et al. Jul 2006 A1
20060161983 Cothrell et al. Jul 2006 A1
20060161987 Levy-Yurista Jul 2006 A1
20060161989 Reshef et al. Jul 2006 A1
20060164199 Gilde et al. Jul 2006 A1
20060173992 Weber et al. Aug 2006 A1
20060179147 Tran et al. Aug 2006 A1
20060184632 Marino et al. Aug 2006 A1
20060191010 Benjamin Aug 2006 A1
20060221956 Narayan et al. Oct 2006 A1
20060236393 Kramer et al. Oct 2006 A1
20060242709 Seinfeld et al. Oct 2006 A1
20060248519 Jaeger et al. Nov 2006 A1
20060248582 Panjwani et al. Nov 2006 A1
20060251104 Koga Nov 2006 A1
20060288417 Bookbinder et al. Dec 2006 A1
20070006288 Mayfield et al. Jan 2007 A1
20070006313 Porras et al. Jan 2007 A1
20070011174 Takaragi et al. Jan 2007 A1
20070016951 Piccard et al. Jan 2007 A1
20070019286 Kikuchi Jan 2007 A1
20070033645 Jones Feb 2007 A1
20070038943 FitzGerald et al. Feb 2007 A1
20070064689 Shin et al. Mar 2007 A1
20070074169 Chess et al. Mar 2007 A1
20070094730 Bhikkaji et al. Apr 2007 A1
20070101435 Konanka et al. May 2007 A1
20070128855 Cho et al. Jun 2007 A1
20070142030 Sinha et al. Jun 2007 A1
20070143827 Nicodemus et al. Jun 2007 A1
20070156895 Vuong Jul 2007 A1
20070157180 Tillmann et al. Jul 2007 A1
20070157306 Elrod et al. Jul 2007 A1
20070168988 Eisner et al. Jul 2007 A1
20070171824 Ruello et al. Jul 2007 A1
20070174915 Gribble et al. Jul 2007 A1
20070192500 Lum Aug 2007 A1
20070192858 Lum Aug 2007 A1
20070198275 Malden et al. Aug 2007 A1
20070208822 Wang et al. Sep 2007 A1
20070220607 Sprosts et al. Sep 2007 A1
20070240218 Tuvell et al. Oct 2007 A1
20070240219 Tuvell et al. Oct 2007 A1
20070240220 Tuvell et al. Oct 2007 A1
20070240222 Tuvell et al. Oct 2007 A1
20070250930 Aziz et al. Oct 2007 A1
20070256132 Oliphant Nov 2007 A2
20070271446 Nakamura Nov 2007 A1
20080005782 Aziz Jan 2008 A1
20080018122 Zierler et al. Jan 2008 A1
20080028463 Dagon et al. Jan 2008 A1
20080040710 Chiriac Feb 2008 A1
20080046781 Childs et al. Feb 2008 A1
20080066179 Liu Mar 2008 A1
20080072326 Danford et al. Mar 2008 A1
20080077793 Tan et al. Mar 2008 A1
20080080518 Hoeflin et al. Apr 2008 A1
20080086720 Lekel Apr 2008 A1
20080098476 Syversen Apr 2008 A1
20080120722 Sima et al. May 2008 A1
20080134178 Fitzgerald et al. Jun 2008 A1
20080134334 Kim et al. Jun 2008 A1
20080141376 Clausen et al. Jun 2008 A1
20080184367 McMillan et al. Jul 2008 A1
20080184373 Traut et al. Jul 2008 A1
20080189787 Arnold et al. Aug 2008 A1
20080201778 Guo et al. Aug 2008 A1
20080209557 Herley et al. Aug 2008 A1
20080215742 Goldszmidt et al. Sep 2008 A1
20080222729 Chen et al. Sep 2008 A1
20080263665 Ma et al. Oct 2008 A1
20080295172 Bohacek Nov 2008 A1
20080301810 Lehane et al. Dec 2008 A1
20080307524 Singh et al. Dec 2008 A1
20080313738 Enderby Dec 2008 A1
20080320594 Jiang Dec 2008 A1
20090003317 Kasralikar et al. Jan 2009 A1
20090007100 Field et al. Jan 2009 A1
20090013408 Schipka Jan 2009 A1
20090031423 Liu et al. Jan 2009 A1
20090036111 Danford et al. Feb 2009 A1
20090037835 Goldman Feb 2009 A1
20090044024 Oberheide et al. Feb 2009 A1
20090044274 Budko et al. Feb 2009 A1
20090064332 Porras et al. Mar 2009 A1
20090077666 Chen et al. Mar 2009 A1
20090083369 Marmor Mar 2009 A1
20090083855 Apap et al. Mar 2009 A1
20090089879 Wang et al. Apr 2009 A1
20090094697 Provos et al. Apr 2009 A1
20090113425 Ports et al. Apr 2009 A1
20090125976 Wassermann et al. May 2009 A1
20090126015 Monastyrsky et al. May 2009 A1
20090126016 Sobko et al. May 2009 A1
20090133125 Choi et al. May 2009 A1
20090144823 Lamastra et al. Jun 2009 A1
20090158430 Borders Jun 2009 A1
20090172815 Gu et al. Jul 2009 A1
20090187992 Poston Jul 2009 A1
20090193293 Stolfo et al. Jul 2009 A1
20090198651 Shiffer et al. Aug 2009 A1
20090198670 Shiffer et al. Aug 2009 A1
20090198689 Frazier et al. Aug 2009 A1
20090199274 Frazier et al. Aug 2009 A1
20090199296 Xie et al. Aug 2009 A1
20090228233 Anderson et al. Sep 2009 A1
20090241187 Troyansky Sep 2009 A1
20090241190 Todd et al. Sep 2009 A1
20090265692 Godefroid et al. Oct 2009 A1
20090271867 Zhang Oct 2009 A1
20090300415 Zhang et al. Dec 2009 A1
20090300761 Park et al. Dec 2009 A1
20090328185 Berg et al. Dec 2009 A1
20090328221 Blumfield et al. Dec 2009 A1
20100005146 Drako et al. Jan 2010 A1
20100011205 McKenna Jan 2010 A1
20100017546 Poo et al. Jan 2010 A1
20100030996 Butler, II Feb 2010 A1
20100031353 Thomas et al. Feb 2010 A1
20100037314 Perdisci et al. Feb 2010 A1
20100043073 Kuwamura Feb 2010 A1
20100054278 Stolfo et al. Mar 2010 A1
20100058474 Hicks Mar 2010 A1
20100064044 Nonoyama Mar 2010 A1
20100077481 Polyakov et al. Mar 2010 A1
20100083376 Pereira et al. Apr 2010 A1
20100115621 Staniford et al. May 2010 A1
20100132038 Zaitsev May 2010 A1
20100154056 Smith et al. Jun 2010 A1
20100180344 Malyshev et al. Jul 2010 A1
20100192223 Ismael et al. Jul 2010 A1
20100220863 Dupaquis et al. Sep 2010 A1
20100235831 Dittmer Sep 2010 A1
20100251104 Massand Sep 2010 A1
20100281102 Chinta et al. Nov 2010 A1
20100281541 Stolfo et al. Nov 2010 A1
20100281542 Stolfo et al. Nov 2010 A1
20100287260 Peterson et al. Nov 2010 A1
20100299754 Amit et al. Nov 2010 A1
20100306173 Frank Dec 2010 A1
20110004737 Greenebaum Jan 2011 A1
20110025504 Lyon et al. Feb 2011 A1
20110041179 St Hlberg Feb 2011 A1
20110047594 Mahaffey et al. Feb 2011 A1
20110047620 Mahaffey et al. Feb 2011 A1
20110055907 Narasimhan et al. Mar 2011 A1
20110078794 Manni et al. Mar 2011 A1
20110093951 Aziz Apr 2011 A1
20110099620 Stavrou et al. Apr 2011 A1
20110099633 Aziz Apr 2011 A1
20110099635 Silberman et al. Apr 2011 A1
20110113231 Kaminsky May 2011 A1
20110145918 Jung et al. Jun 2011 A1
20110145920 Mahaffey et al. Jun 2011 A1
20110145934 Abramovici et al. Jun 2011 A1
20110167493 Song et al. Jul 2011 A1
20110167494 Bowen et al. Jul 2011 A1
20110173213 Frazier et al. Jul 2011 A1
20110173460 Ito et al. Jul 2011 A1
20110219449 St. Neitzel et al. Sep 2011 A1
20110219450 McDougal et al. Sep 2011 A1
20110225624 Sawhney et al. Sep 2011 A1
20110225655 Niemela et al. Sep 2011 A1
20110247072 Staniford et al. Oct 2011 A1
20110265182 Peinado et al. Oct 2011 A1
20110289582 Kejriwal et al. Nov 2011 A1
20110302587 Nishikawa et al. Dec 2011 A1
20110307954 Melnik et al. Dec 2011 A1
20110307955 Kaplan et al. Dec 2011 A1
20110307956 Yermakov et al. Dec 2011 A1
20110314546 Aziz et al. Dec 2011 A1
20120023593 Puder et al. Jan 2012 A1
20120054869 Yen et al. Mar 2012 A1
20120066698 Yanoo Mar 2012 A1
20120079596 Thomas et al. Mar 2012 A1
20120084859 Radinsky et al. Apr 2012 A1
20120096553 Srivastava et al. Apr 2012 A1
20120110667 Zubrilin et al. May 2012 A1
20120117652 Manni et al. May 2012 A1
20120121154 Xue et al. May 2012 A1
20120124426 Maybee et al. May 2012 A1
20120174186 Aziz et al. Jul 2012 A1
20120174196 Bhogavilli et al. Jul 2012 A1
20120174218 McCoy et al. Jul 2012 A1
20120198279 Schroeder Aug 2012 A1
20120210423 Friedrichs et al. Aug 2012 A1
20120222121 Staniford et al. Aug 2012 A1
20120255015 Sahita et al. Oct 2012 A1
20120255017 Sallam Oct 2012 A1
20120260342 Dube et al. Oct 2012 A1
20120266244 Green et al. Oct 2012 A1
20120278886 Luna Nov 2012 A1
20120297489 Dequevy Nov 2012 A1
20120330801 McDougal et al. Dec 2012 A1
20120331553 Aziz et al. Dec 2012 A1
20130014259 Gribble et al. Jan 2013 A1
20130036472 Aziz Feb 2013 A1
20130047257 Aziz Feb 2013 A1
20130074185 McDougal et al. Mar 2013 A1
20130086684 Mohler Apr 2013 A1
20130097699 Balupari et al. Apr 2013 A1
20130097706 Titonis et al. Apr 2013 A1
20130111587 Goel et al. May 2013 A1
20130117852 Stute May 2013 A1
20130117855 Kim et al. May 2013 A1
20130139264 Brinkley et al. May 2013 A1
20130160125 Likhachev et al. Jun 2013 A1
20130160127 Jeong et al. Jun 2013 A1
20130160130 Mendelev et al. Jun 2013 A1
20130160131 Madou et al. Jun 2013 A1
20130167236 Sick Jun 2013 A1
20130174214 Duncan Jul 2013 A1
20130185789 Hagiwara et al. Jul 2013 A1
20130185795 Winn et al. Jul 2013 A1
20130185798 Saunders et al. Jul 2013 A1
20130191915 Antonakakis et al. Jul 2013 A1
20130196649 Paddon et al. Aug 2013 A1
20130227691 Aziz et al. Aug 2013 A1
20130246370 Bartram et al. Sep 2013 A1
20130247186 LeMasters Sep 2013 A1
20130263260 Mahaffey et al. Oct 2013 A1
20130291109 Staniford et al. Oct 2013 A1
20130298243 Kumar et al. Nov 2013 A1
20130318038 Shiffer et al. Nov 2013 A1
20130318073 Shiffer et al. Nov 2013 A1
20130325791 Shiffer et al. Dec 2013 A1
20130325792 Shiffer et al. Dec 2013 A1
20130325871 Shiffer et al. Dec 2013 A1
20130325872 Shiffer et al. Dec 2013 A1
20140032875 Butler Jan 2014 A1
20140053260 Gupta et al. Feb 2014 A1
20140053261 Gupta et al. Feb 2014 A1
20140130158 Wang et al. May 2014 A1
20140137180 Lukacs et al. May 2014 A1
20140169762 Ryu Jun 2014 A1
20140179360 Jackson et al. Jun 2014 A1
20140181131 Ross Jun 2014 A1
20140189687 Jung et al. Jul 2014 A1
20140189866 Shiffer et al. Jul 2014 A1
20140189882 Jung et al. Jul 2014 A1
20140237600 Silberman et al. Aug 2014 A1
20140280245 Wilson Sep 2014 A1
20140283037 Sikorski et al. Sep 2014 A1
20140283063 Thompson et al. Sep 2014 A1
20140321290 Jin Oct 2014 A1
20140328204 Klotsche et al. Nov 2014 A1
20140337836 Ismael Nov 2014 A1
20140344926 Cunningham et al. Nov 2014 A1
20140351935 Shao et al. Nov 2014 A1
20140380473 Bu et al. Dec 2014 A1
20140380474 Paithane et al. Dec 2014 A1
20150007312 Pidathala et al. Jan 2015 A1
20150096022 Vincent et al. Apr 2015 A1
20150096023 Mesdaq Apr 2015 A1
20150096024 Haq et al. Apr 2015 A1
20150096025 Ismael Apr 2015 A1
20150180886 Staniford et al. Jun 2015 A1
20150186645 Aziz et al. Jul 2015 A1
20150199513 Ismael et al. Jul 2015 A1
20150199531 Ismael et al. Jul 2015 A1
20150199532 Ismael et al. Jul 2015 A1
20150220735 Paithane et al. Aug 2015 A1
20150372980 Eyada Dec 2015 A1
20160004869 Ismael et al. Jan 2016 A1
20160006756 Ismael et al. Jan 2016 A1
20160044000 Cunningham Feb 2016 A1
20160127393 Aziz et al. May 2016 A1
20160191547 Zafar et al. Jun 2016 A1
20160191550 Ismael et al. Jun 2016 A1
20160261612 Mesdaq et al. Sep 2016 A1
20160285914 Singh et al. Sep 2016 A1
20160301703 Aziz Oct 2016 A1
20160314411 Kumar Oct 2016 A1
20160335110 Paithane et al. Nov 2016 A1
20170063893 Franc Mar 2017 A1
20170083703 Abbasi et al. Mar 2017 A1
20170134404 Machlica May 2017 A1
20180013770 Ismael Jan 2018 A1
20180048660 Paithane et al. Feb 2018 A1
20180091530 Rook Mar 2018 A1
20180121316 Ismael et al. May 2018 A1
20180241761 Bania Aug 2018 A1
20180288077 Siddiqui et al. Oct 2018 A1
Foreign Referenced Citations (14)
Number Date Country
3107026 Dec 2016 EP
2439806 Jan 2008 GB
2490431 Oct 2012 GB
206928 Jan 2002 WO
0223805 Mar 2002 WO
2007-117636 Oct 2007 WO
2008041950 Apr 2008 WO
2011084431 Jul 2011 WO
2011112348 Sep 2011 WO
2012075336 Jun 2012 WO
2012145066 Oct 2012 WO
2013067505 May 2013 WO
2015047802 Apr 2015 WO
2015200360 Dec 2015 WO
Non-Patent Literature Citations (79)
Entry
PCT/US2018/040470 filed Jun. 29, 2018 International Search Report and Written Opinion dated Sep. 14, 2018.
“Mining Specification of Malicious Behavior”—Jha et al, UCSB, Sep. 2007 https://www.cs.ucsb.edu/.about_chris/research/doc/esec07.sub.--mining.pdf- .
“Network Security: NetDetector—Network Intrusion Forensic System (NIFS) Whitepaper”, (“NetDetector Whitepaper”), (2003).
“When Virtual is Better Than Real”, IEEEXplore Digital Library, available at, http://ieeexplore.ieee.org/xpl/articleDetails.isp?reload=true&arnumbe- r=990073, (Dec. 7, 2013).
Abdullah, et al., Visualizing Network Data for Intrusion Detection, 2005 IEEE Workshop on Information Assurance and Security, pp. 100-108.
Adetoye, Adedayo , et al., “Network Intrusion Detection & Response System”, (“Adetoye”), (Sep. 2003).
Apostolopoulos, George; hassapis, Constantinos; “V-eM: A cluster of Virtual Machines for Robust, Detailed, and High-Performance Network Emulation”, 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Sep. 11-14, 2006, pp. 117-126.
Aura, Tuomas, “Scanning electronic documents for personally identifiable information”, Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM, 2006.
Baecher, “The Nepenthes Platform: An Efficient Approach to collect Malware”, Springer-verlag Berlin Heidelberg, (2006), pp. 165-184.
Baldi, Mario; Risso, Fulvio; “A Framework for Rapid Development and Portable Execution of Packet-Handling Applications”, 5th IEEE International Symposium Processing and Information Technology, Dec. 21, 2005, pp. 233-238.
Bayer, et al., “Dynamic Analysis of Malicious Code”, J Comput Virol, Springer-Verlag, France., (2006), pp. 67-77.
Boubalos, Chris , “extracting syslog data out of raw pcap dumps, seclists.org, Honeypots mailing list archives”, available at http://seclists.org/honeypots/2003/q2/319 (“Boubalos”), (Jun. 5, 2003).
Chaudet, C. , et al., “Optimal Positioning of Active and Passive Monitoring Devices”, International Conference on Emerging Networking Experiments and Technologies, Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, CoNEXT '05, Toulousse, France, (Oct. 2005), pp. 71-82.
Chen, P. M. and Noble, B. D., “When Virtual is Better Than Real, Department of Electrical Engineering and Computer Science”, University of Michigan (“Chen”) (2001).
Cisco “Intrusion Prevention for the Cisco ASA 5500-x Series” Data Sheet (2012).
Cisco, Configuring the Catalyst Switched Port Analyzer (SPAN) (“Cisco”), (1992).
Clark, John, Sylvian Leblanc,and Scott Knight. “Risks associated with usb hardware trojan devices used by insiders.” Systems Conference (SysCon), 2011 IEEE International. IEEE, 2011.
Cohen, M.I. , “PyFlag—An advanced network forensic framework”, Digital investigation 5, Elsevier, (2008), pp. S112-S120.
Costa, M. , et al., “Vigilante: End-to-End Containment of Internet Worms”, SOSP '05, Association for Computing Machinery, Inc., Brighton U.K., (Oct. 23-26, 2005).
Crandall, J.R. , et al., “Minos:Control Data Attack Prevention Orthogonal to Memory Model”, 37th International Symposium on Microarchitecture, Portland, Oregon, (Dec. 2004).
Cyrus, R. “Detecting Malicious SMB Activity Using Bro” The SANS Institute, Dec. 13, 2016.
Deutsch, P. , “Zlib compressed data format specification version 13” RFC 1950, (1996).
Distler, “Malware Analysis: An Introduction”, SANS Institute InfoSec Reading Room, SANS Institute, (2007).
Dunlap, George W. , et al., “ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay”, Proceeding of the 5th Symposium on Operating Systems Design and Implementation, USENIX Association, (“Dunlap”), (Dec. 9, 2002).
Excerpt regarding First Printing Date for Merike Kaeo, Designing Network Security (“Kaeo”), (2005).
Filiol, Eric , et al., “Combinatorial Optimisation of Worm Propagation on an Unknown Network”, International Journal of Computer Science 2.2 (2007).
FireEye Malware Analysis & Exchange Network, Malware Protection System, FireEye Inc., 2010.
FireEye Malware Analysis, Modern Malware Forensics, FireEye Inc., 2010.
FireEye v.6.0 Security Target, pp. 1-35, Version 1.1, FireEye Inc., May 2011.
Gibler, Clint, et al. AndroidLeaks: automatically detecting potential privacy leaks in android applications on a large scale. Springer Berlin Heidelberg, 2012.
Goel, et al., Reconstructing System State for Intrusion Analysis, Apr. 2008 SIGOPS Operating Systems Review, vol. 42 Issue 3, pp. 21-28.
Gregg Keizer: “Microsoft's HoneyMonkeys Show Patching Windows Works”, Aug. 8, 2005, XP055143386, Retrieved from the Internet: URL:http://www.informationweek.com/microsofts-honeymonkeys-show-patching-windows-works/d/d-id/1035069? [retrieved on Jun. 1, 2016].
Heng Yin et al, Panorama: Capturing System-Wide Information Flow for Malware Detection and Analysis, Research Showcase @ CMU, Carnegie Mellon University, 2007.
Hjelmvik, Erik , “Passive Network Security Analysis with NetworkMiner”, (IN)Secure, Issue 18, (Oct. 2008), pp. 1-100.
Idika et al., A-Survey-of-Malware-Detection-Techniques, Feb. 2, 2007, Department of Computer Science, Purdue University.
IEEE Xplore Digital Library Sear Results for “detection of unknown computer worms”. Http//ieeexplore.ieee.org/searchresult.jsp?SortField=Score&SortOrder=desc- &ResultC . . . , (Accessed on Aug. 28, 2009).
Isohara, Takamasa, Keisuke Takemori, and Ayumu Kubota. “Kernel-based behavior analysis for android malware detection.” Computational intelligence and Security (CIS), 2011 Seventh International Conference on. IEEE, 2011.
Kaeo, Merike , “Designing Network Security”, (“Kaeo”), (Nov. 2003).
Kevin A Roundy et al: “Hybrid Analysis and Control of Malware”, Sep. 15, 2010, Recent Advances in Intrusion Detection, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 317-338, XP019150454 ISBN:978-3-642-15511-6.
Kim, H. , et al., “Autograph: Toward Automated, Distributed Worm Signature Detection”, Proceedings of the 13th Usenix Security Symposium (Security 2004), San Diego, (Aug. 2004), pp. 271-286.
King, Samuel T., et al., “Operating System Support for Virtual Machines”, (“King”), (2003).
Krasnyansky, Max , et al., Universal TUN/TAP driver, available at https://www.kernel.org/doc/Documentation/networking/tuntap.txt (2002) (“Krasnyansky”).
Kreibich, C. , et al., “Honeycomb-Creating Intrusion Detection Signatures Using Honeypots”, 2nd Workshop on Hot Topics in Networks (HotNets-11), Boston, USA, (2003).
Kristoff, J. , “Botnets, Detection and Mitigation: DNS-Based Techniques”, NU Security Day, (2005), 23 pages.
Leading Colleges Select FireEye to Stop Malware-Related Data Breaches, FireEye Inc., 2009.
Li et al., A VMM-Based System Call Interposition Framework for Program Monitoring, Dec. 2010, IEEE 16th International Conference on Parallel and Distributed Systems, pp. 706-711.
Liljenstam, Michael , et al., “Simulating Realistic Network Traffic for Worm Warning System Design and Testing”, Institute for Security Technology studies, Dartmouth College (“Liljenstam”), (Oct. 27, 2003).
Lindorfer, Martina, Clemens Kolbitsch, and Paolo Milani Comparetti. “Detecting environment-sensitive malware.” Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, 2011.
Lok Kwong et al: “DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic Views for Dynamic Android Malware Analysis”, Aug. 10, 2012, XP055158513, Retrieved from the Internet: URL:https://www.usenix.org/system/files/conference/usenixsecurity12/sec12- -final107.pdf [retrieved on Dec. 15, 2014].
Marchette, David J., “Computer Intrusion Detection and Network Monitoring: A Statistical Viewpoint”, (“Marchette”), (2001).
Margolis, P.E. , “Random House Webster's ‘Computer & Internet Dictionary 3rd Edition’”, ISBN 0375703519, (Dec. 1998).
Moore, D. , et al., “Internet Quarantine: Requirements for Containing Self-Propagating Code”, INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003), pp. 1901-1910.
Morales, Jose A., et al., ““Analyzing and exploiting network behaviors of malware.””, Security and Privacy in Communication Networks. Springer Berlin Heidelberg, 2010. 20-34.
Mori, Detecting Unknown Computer Viruses, 2004, Springer-Verlag Berlin Heidelberg.
Natvig, Kurt , “SANDBOXII: Internet”, Virus Bulletin Conference, (“Natvig”), (Sep. 2002).
NetBIOS Working Group. Protocol Standard for a NetBIOS Service on a TCP/UDP transport: Concepts and Methods. STD 19, RFC 1001, Mar. 1987.
Newsome, J. , et al., “Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software”, In Proceedings of the 12th Annual Network and Distributed System Security, Symposium (NDSS '05), (Feb. 2005).
Newsome, J. , et al., “Polygraph: Automatically Generating Signatures for Polymorphic Worms”, In Proceedings of the IEEE Symposium on Security and Privacy, (May 2005).
Nojiri, D. , et al., “Cooperation Response Strategies for Large Scale Attack Mitigation”, DARPA Information Survivability Conference and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302.
Oberheide et al., CloudAV.sub.—N-Version Antivirus in the Network Cloud, 17th USENIX Security Symposium USENIX Security '08 Jul. 28-Aug. 1, 2008 San Jose, CA.
Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Roonald Perez, Leendert van Doorn, John Linwood Griffin, Stefan Berger., sHype: Secure Hypervisor Appraoch to Trusted Virtualized Systems (Feb. 2, 2005) (“Sailer”).
Silicon Defense, “Worm Containment in the Internal Network”, (Mar. 2003), pp. 1-25.
Singh, S. , et al., “Automated Worm Fingerprinting”, Proceedings of the ACM/USENIX Symposium on Operating System Design and Implementation, San Francisco, California, (Dec. 2004).
Spitzner, Lance , “Honeypots: Tracking Hackers”, (“Spizner”), (Sep. 17, 2002).
The Sniffers's Guide to Raw Traffic available at: yuba.stanford.edu/.about.casado/pcap/section1.html, (Jan. 6, 2014).
Thomas H. Ptacek, and Timothy N. Newsham , “Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection”, Secure Networks, (“Ptacek”), (Jan. 1998).
U.S. Pat. No. 8,171,553 filed Apr. 20, 2006, Inter Parties Review Decision dated Jul. 10, 2015.
U.S. Pat. No. 8,291,499 filed Mar. 16, 2012, Inter Parties Review Decision dated Jul. 10, 2015.
Venezia, Paul , “NetDetector Captures Intrusions”, InfoWorld Issue 27, (“Venezia”), (Jul. 14, 2003).
Wahid et al., Characterising the Evolution in Scanning Activity of Suspicious Hosts, Oct. 2009, Third International Conference on Network and System Security, pp. 344-350.
Whyte, et al., “DNS-Based Detection of Scanning Works in an Enterprise Network”, Proceedings of the 12th Annual Network and Distributed System Security Symposium, (Feb. 2005), 15 pages.
Williamson, Matthew M., “Throttling Viruses: Restricting Propagation to Defeat Malicious Mobile Code”, ACSAC Conference, Las Vegas, NV, USA, (Dec. 2002), pp. 1-9.
Yuhei Kawakoya et al: “Memory behavior-based automatic malware unpacking in stealth debugging environment”, Malicious and Unwanted Software (Malware), 2010 5th International Conference on, IEEE, Piscataway, NJ, USA, Oct. 19, 2010, pp. 39-46, XP031833827, ISBN:978-1-4244-8-9353-1.
Zhang et al., The Effects of Threading, Infection Time, and Multiple-Attacker Collaboration on Malware Propagation, Sep. 2009, IEEE 28th International Symposium on Reliable Distributed Systems, pp. 73-82.
Didier Stevens, “Malicious PDF Documents Explained”, Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 9, No. 1, Jan. 1, 2011, pp. 80-82, XP011329453, ISSN: 1540-7993, DOI: 10.1109/MSP.2011.14.
Hiroshi Shinotsuka, Malware Authors Using New Techniques to Evade Automated Threat Analysis Systems, Oct. 26, 2012, http://www.symantec.com/connect/blogs/, pp. 1-4.
Khaled Salah et al: “Using Cloud Computing to Implement a Security Overlay Network”, Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 11, No. 1, Jan. 1, 2013 (Jan. 1, 2013).
Lastline Labs, The Threat of Evasive Malware, Feb. 25, 2013, Lastline Labs, pp. 1-8.
Vladimir Getov: “Security as a Service in Smart Clouds—Opportunities and Concerns”, Computer Software and Applications Conference (COMPSAC), 2012 IEEE 36th Annual, IEEE, Jul. 16, 2012 (Jul. 16, 2012).