Claims
- 1. A compound of formula, ##SPC11##
- in which
- R.sub.1 is tertiary alkyl of up to 12 carbon atoms and is in a position adjacent to the hydroxy group,
- R.sub.2 is methyl, t-butyl or phenyl,
- n is 1 or 2,
- K is a 2n-valent hydrocarbon radical of 2 to 12 carbon atoms, selected from the group consisting of divalent saturated aliphatic radicals of 2 to 12 carbon atoms in which one C-C bond may be replaced by a C--O--C bond; 1,2-cyclohexylene; divalent aromatic radicals of 6 to 12 carbon atoms; divalent saturated araliphatic radicals of 7 to 12 carbon atoms; tetravalent saturated aliphatic radicals of 4 to 8 carbon atoms; 3-methoxy-1,2-phenylene and the radical of the formula ##EQU4## and X.sub.1 and X.sub.2, which may be the same or different, each signifies an oxygen or sulphur atom, X.sub.1 and X.sub.2 being bonded to adjacent or next adjacent atoms in the radical K, provided that when n is 2, the two divalent radicals attached to the radical K may be the same or different.
- 2. A compound of claim 1, in which X.sub.1 and X.sub.2 each is an oxygen atom.
- 3. A compound of claim 1, in which R.sub.1 is radical tertiary alkyl radical of 4 to 8 carbon atoms.
- 4. A compound of claim 1, in which R.sub.1 is tertiary butyl, tertiary amyl or tertiary octyl.
- 5. A compound of claim 1, in which R.sub.1 is tertiary butyl.
- 6. A compound of claim 1, in which n is 2 and K is a tetravalent radical of 4 to 8 carbon atoms.
- 7. A compound of claim 1, in which n is 2 and K is meso-1,2,3,4-butantetrayl or neopentantetrayl.
- 8. A compound of claim 1, having a molecular weight of at least 300.
- 9. A compound of claim 1, having a molecular weight of at least 500.
- 10. The compound of claim 13 of formula ##SPC12##
- 11. The compound of claim 1 of formula ##SPC13##
- in which each R signifies tertiary butyl.
- 12. The compound according to claim 1, of the formula ##SPC14##
- 13. A compound of the formula ##SPC15##
- in which
- R.sub.1 is tertiary alkyl of up to 12 carbon atoms and is in a position adjacent to the hydroxy group,
- R.sub.2 is hydrogen, alkyl or cycloalkyl of up to 20 carbon atoms, or phenyl which may be mono- or di-substituted by alkyl of 1 to 4 carbon atoms,
- K is a divalent hydrocarbon radical of 2 to 12 carbon atoms selected from the group consisting of divalent saturated aliphatic radicals of 2 to 12 carbon atoms in which one C-C bond may be replaced by a C--O--C bond; 1,2-cyclohexylene; divalent aromatic radicals of 6 to 12 carbon atoms; divalent saturated araliphatic radicals of 7 to 12 carbon atoms; 3-methoxy-1,2-phenylene and the radical of the formula ##EQU5## X.sub.1 and X.sub.2, which may be the same or different, each is oxygen or sulphur, X.sub.1 and X.sub.2 being bonded to adjacent or next adjacent atoms in the radical K.
- 14. A compound according to claim 13, wherein R.sub.2 is alkyl of 1 to 8 carbon atoms, cycloalkyl of 5 to 7 carbon atoms or phenyl which may be substituted by one or two alkyl radicals of 1 to 4 carbon atoms.
- 15. A compound according to claim 14, wherein R.sub.2 is methyl, t. butyl or phenyl.
- 16. A compound of claim 13, in which K is 2,2-dimethyl-propylene, ethylene, 5-methyl-1, 2-phenylene, or a radical of formula ##EQU6##
- 17. The compound of claim 13 ##SPC16##
- 18. The compound of claim 13 of formula ##SPC17##
- 19. The compound of claim 13 of formula ##SPC18##
- 20. The compound of formula ##SPC19##
- in which each Q signifies the tertiary amyl radical.
- 21. The compound of claim 13 of formula ##SPC20##
- 22. The compound of claim 13 of formula ##SPC21##
- in which the benzene A is substituted by one or two tertiary octyl radicals.
- 23. The compound of the formula ##SPC22##
Priority Claims (1)
| Number |
Date |
Country |
Kind |
| 15641/71 |
Oct 1971 |
CH |
|
Parent Case Info
This invention relates to novel cyclic acetals and mercaptals.
More particularly, this invention provides compounds of formula I, ##SPC1##
Examples of suitable tertiary alkyl radicals for R.sub.1 include the following:- tertiary butyl, 2-methyl-2-butyl, 2,3-dimethyl-2-butyl, 2-methyl-2-pentyl, 3-ethyl-3-pentyl, 2,4-dimethyl-2-2-methyl-2-hexyl, 3-methyl-3-hexyl, 3,4-dimethyl-3-hexyl, 3,5-dimethyl-3-hexyl, 2-methyl-2-heptyl, 3-methyl-3-heptyl, 4-methyl-4-heptyl, 2,3,4-trimethyl-3-pentyl, 2,4,4-trimethyl-2-pentyl, 3-ethyl-3-heptyl, 2-methyl-2-octyl, 4-methyl-4-octyl, 3,6-dimethyl-3-octyl, 3,7-dimethyl-3-octyl, and 2,4,4,6,6-pentamethyl-2-heptyl. R.sub.1 preferably, however, contains 4 to 8 carbon atoms and is most preferably, tertiary butyl.
Suitable alkyl radicals for R.sub.2 may be normal, secondary, tertiary or otherwise branched. Examples of such radicals include the following: all n-alkyl radicals of 1 to 20, in particular 1 to 12, preferably 1 to 8 carbon atoms, most preferably methyl; secondary alkyl radicals of 3 to 20, in particular 3 to 12, preferably, 3 to 8 carbon atoms, such as isopropyl, 2-butyl, 3-methyl-2-butyl, 2-pentyl, 2,2-dimethyl-3-butyl, 2-hexyl, 3-hexyl, 2-methyl-3-pentyl, 3-methyl-2-pentyl, 4-methyl-2-pentyl, 2,2-dimethyl-3-pentyl, 2,4-dimethyl-3-pentyl, 2-heptyl, 3-heptyl, 4-heptyl, 2-methyl-3-hexyl, 4-methyl-3-hexyl, 5-methyl-3-hexyl, 3-ethyl-4-hexyl, 2,2-dimethyl-3-hexyl, 2,4-dimethyl-3-hexyl, 2,5-dimethyl-3-hexyl, 3,4-dimethyl-2-hexyl, 2-methyl-3-heptyl, 3-methyl-2-heptyl, 3-methyl-4-heptyl, 4-methyl-3-heptyl, 5-methyl-3-heptyl, 6-methyl-2-heptyl, 2-octyl, 3-octyl, 4-octyl, 2,2,4-trimethyl-3-pentyl, 5-ethyl-2-heptyl, 2,2-dimethyl-3-heptyl, 2,6-dimethyl-4-heptyl, 2-methyl-3-octyl, 3-methyl-4-octyl, 6-ethyl-3-octyl, 2-or 5- decyl, 2,2-dimethyl-3-octyl, 2-methyl-4-nonyl, 3-methyl-4-nonyl, 6-ethyl-3-decyl, 7-ethyl-2-methyl-4-nonyl, 2-dodecyl, 2,2,8-trimethyl-4-nonyl, 2-tridecyl, 2-tetradecyl, 2-pentadecyl, 2-hexadecyl, 2-nonadecyl; alkyl radicals bound to the benzene ring via a primary carbon atom and otherwise branched and having 3 to 20, in particular 3 to 12, preferably 3 to 8 carbon atoms, such as 2-methyl-1-propyl, 2,2-dimethyl-1-propyl, 2-methyl-1-butyl, 2-ethyl-1-butyl, 2,2-dimethyl-1-butyl, 2-methyl-1-pentyl, 3-methyl-1-pentyl, 4-methyl-1-pentyl, 2,4-dimethyl-1-pentyl, 2-ethyl-1-hexyl, 2,2-dimethyl-1-hexyl, 2,2,4-trimethyl-1-pentyl, 4-methyl-2-propyl-1-pentyl, 3,7-dimethyl-1-octyl and 2,2-dimethyl-1-decyl; tertiary alkyl radicals of 4 to 20, in particular 4 to 12, preferably 4 to 8 carbon atoms such as those given above for R.sub.1.
Preferred cycloalkyl radicals for R.sub.2 include cycloalkyl radicals of 3 to 8, preferably 5 to 7 carbon atoms, such as cyclohexyl.
Suitable susbstituted phenyl radicals for R.sub.2 include phenyl substituted by one or two of the C.sub.1.sub.-4 alkyl radicals mentioned above, in particular methyl or tertiary butyl.
R.sub.2 preferably signifies hydrogen, methyl, t-butyl, phenyl or t-butylphenyl, more preferably methyl, t-butyl or phenyl.
Suitable divalent, aliphatic radicals for K include those of 2 to 12, in particular 2 to 9 carbon atoms, such as ethylene, trimethylene, propylene, 1,3- and 2,3-butylene, 2,2-dimethyl-1,3-propylene, 2,4-pentylene, 3-methyl-2,4-pentylene, 2,2-diethyl-1,3-propylene, 2-methyl-2-propyl-1,3-pentylene, 2-ethyl-1,3-hexylene, 3-methyl-2,4-heptalene, 2,2,4-trimethyl-1,3-pentylene, 2-ethyl-2-butyl-1,3-propylene and 1,2-cyclohexylene. Suitable aromatic divalent radicals include those of 6 to 12, in particular 6 to 8 carbon atoms, such as 1,2-phenylene, 2,3-naphthalene-diyl, and 5-methyl-1,2-phenylene. Suitable divalent araliphatic radicals are those of from 7 to 12, in particular 7 to 9 carbon atoms, such as .alpha.,2-toluenediyl, 5-methyl-.alpha.,2-toluenediyl. Suitable radicals containing an oxygen atom include 3-methoxy-1,2-phenylene, methoxy-methylethylene and benzyloxymethylethylene. Preferred divalent radicals for K include 2,2-dimethyl-1,3-propylene, ethylene, 5-methyl-1,2-phenylene, and the radical ##EQU1## Suitable tetravalent radicals for K include aliphatic hydrocarbon radicals of 4 to 8 carbon atoms, such as meso-1,2,3,4-butantetrayl and neopentantetrayl.
X.sub.1 and X.sub.2 preferably each signifies oxygen.
The preferred compounds of formula I are those having a molecular weight of at least 300, preferably at least 500.
The invention also provides a process for the production of compounds of formula I characterised by reacting a compound, or a mixture of compounds, of formula II, ##SPC2##
The process may be carried in manner conventional for producing acetals and mercaptals from aldehydes and alcohols or mercaptans, see, for example, Houben-Weyl, Methodes der Organisches Chemie, 4th edition, 1965, Vol.VI/3, p.199ff., Vol.IX,p.195ff and Bachler and Pearson, Survey of Organic Syntheses, 1970, p.513ff. The process is suitably catalytically accelerated by proton donors and Lewis acids, such as hydrogen halides, boron trifluoride etherate, trifluoracetic acid, sulphuric acid and strongly acid exchange resins from cations such as Dowex SO. When using alcohols of formula III, at least, the process is suitably carried out at a temperature of at least 50.degree. C, preferably from 80.degree. to 170.degree. C. Suitably, the process is effected in the presence of a solvent which removes the water of condensation as it evaporates. Suitable solvents include benzene, toluene, xylene, cymene and chlorobenzene, optionally in admixture with polar solvents such as dimethyl sulphoxide or t-butyl-phenol.
With mercaptans, the process may proceed more smoothly than with alcohols and satisfactory results may in this event be obtained at room temperature and in the presence of glacial acetic acid and hydrogen chloride.
Suitable functional derivatives of the compounds of formula II are well known, e.g from the publications mentioned above, and include acetals and mercaptals with lower, monovalent alcohols, anils, 2,4-dinitrophenyl hydrazones, and oximes.
Suitable compounds of formula III are the alcohols and thiols corresponding to the radicals given above for K. Suitable functional derivatives thereof are well known and depend to an extent on the particular compound III. Thus, for example, where the compound is a 1,2-bishydroxy compound, a 1,2-epoxide may be used in place thereof. In this event, the process may suitably be effected at a temperature of from 20.degree. to 50.degree. C and in the presence of tin tetrachloride. Other suitable derivatives of alcohols of formula III are their orthoesters with formic or silicic acid and corresponding imido esters and sulphurous acid esters. Alternatively, a ketal or acetal derived from a lower ketone or aldehyde may suitably be employed. In this event, such are suitably condensed (reacetalysation) with an aldehyde of formula II in the presence of strong acids.
Particular functional derivatives of diols of formula III which may, if desired, be employed in place of the free alcohols include cyclohexene oxide, cyclohexane epimethylene oxide, phenyl ethylene oxide, 1,3-butadiene diepoxide and 1-epoxyethyl-3,4-epoxycyclohexane.
The resulting compounds of formula I may be isolated and purified using conventional techniques.
The compounds of formula II and their functional derivatives are either known or may be produced in conventional manner from available materials. Suitable routes are, for example, described in Coppinger and Campbell, Am.Soc. 75,736 (1953); Vilsmeier and Haak, Ber. 60B,119 (1927); Ferguson, Chem.Rev.38,227 (1946); Raisen, J. Chem. Soc. 1949,3319; and U.S. Patent 2,903,483 (1959).
The compounds of formula III and their functional derivatives are either known or may be produced in conventional manner from available materials.
The compunds of formula I are useful as stabilisers for organic materials, particularly plastics materials, against degration by the action of heat or oxygen.
For this purpose, they may be incorporated into the substances which are sensitive to oxygen or heat, or applied to these substances to form a protective surface film. The compounds have a wide area of application in plastics technology, being suitable, for example, as stabilizers for the following synthetic polymers and resins: cellulose acetate, cellulose acetobutyrate, polyethylene, polypropylene, polyvinyl chloride, polyvinyl chloride acetate, polyamides, polystyrene, ethyl cellulose, cellulose nitrate, polyvinyl alcohol, silicon rubber, cellulose propionate, melamine-formaldehyde resins, ureaformaldehyde resins, allyl casting resins, polymethyl methacrylate, polyesters and polyacrylonitrile. The disclosed compounds are also suitable for the stabilization of natural materials such as rubber, cellulose, wool and silk. The material for stabilization may be in the form of, for example, film or sheet, tapes, rod, panels, coatings, fibres, granules, powders or other solid forms, or as solutions, emulsions or dispersions. The compounds may be incorporated in or coated on the materials by conventional methods. An important method of application consists in intimately mixing the stabilizing compound with a plastics material, for instance polypropylene in granule form, in a kneader or other suitable machine, followed by extrusion moulding. With this method homogeneous distribution of the stabilizer is obtained, which is important for good protection. The material may be extruded, for example in the form of film, tubing or as filament. The latter may be converted into textiles; in this particular application the stabilizer is therefore incorporated in the polypropylene prior to textile production. It is, however, possible to apply the new stabilizers to textile yarns and fabrics, for example from an aqueous medium containing a finely dispersed compound of formula (I). Textiles of polyester and cellulose acetate fibres are suitable for this method of application.
Synthetic polymers need not necessarily be in the final form when the new compounds are incorporated for stabilization. The compounds of formula I can be mixed with the monomers or prepolymers prior to the condensation or other polymerization reaction giving the final polymer.
Besides being suitable for the stabilization of clear films, plastics and the like, the new compounds are applicable to opaque, semi-opaque and translucent materials with a surface suceptible to degradation by ultra-violet radiation, air and heat. Examples of such materials are foam plastics, opaque films and coatings, opaque papers, opaque and transparent pigmented plastics, fluorescent pigments, automobile and furniture polishes, creams, lotions and related products, which may be either opaque, clear or translucent.
As an example of the relationship between the constitution of compounds of formula (I) and their action, it may be mentioned that satisfactory stabilizing action is evident in polyalkylenes, notably polypropylene, when the substituents in the molecule are predominantly saturated aliphatic groups.
As already indicated, the new compounds may be incorporated into the materials to be stabilised at any stage during their manufacture, using standard methods. The amount of stabilizer employed may vary within wide limits, for example from 0.01 to 5% or preferably from 0.05 to 1% in relation to the weight of the material. The stabilized organic materials may contain compounds of formula (I) above, in admixture with further additives, for example ultra-violet absorbers and other stabilizers against degradation by heat and oxygen. Examples of the latter include organic sulphur, phosphorus and tin compounds and the nickel salts of organic carboxylic acids. In many cases such mixtures of stabilizers provide particularly satisfactory stabilization as they may have a synergistic action.
In the following Examples the parts and percentages are by weight and the temperatures in degrees centigrade.
US Referenced Citations (1)
| Number |
Name |
Date |
Kind |
|
3347871 |
Hofer et al. |
Oct 1967 |
|
Continuations (1)
|
Number |
Date |
Country |
| Parent |
300199 |
Oct 1972 |
|