Claims
- 1. A fuel injection system for an internal combustion engine having multiple combustion chambers and a camshaft for cyclically imparting pressurization energy to, and recovering pressurization energy from, fuel supplied to the engine, comprising
a. a source of fuel at low pressure; b. a plurality of unit injectors mounted for injecting fuel at high pressure into the combustion chambers, respectively, of the internal combustion engine, each said unit injector including
i. an injector body containing a bore for receiving fuel at low pressure from said source of fuel and an injection orifice in fluid communication periodically with said bore, and ii. a pressurizing plunger mounted for reciprocation within said bore to form a fuel pressurizing chamber from which fuel may be withdrawn at relatively high pressure for injection into a corresponding combustion chamber of the engine through said injection orifice; c. a camshaft linkage for simultaneously reciprocating the pressurizing plungers of a set of at least two unit injectors as the engine camshaft rotates to selectively impart pressurization energy to fuel trapped within said fuel pressurizing chambers when said pressurizing plungers advance and to recover pressurization energy from fuel trapped within said fuel pressurizing chambers when said pressurizing plungers retract; and d. a first interconnecting line for allowing selective fluidic interconnection of the fuel pressurizing chambers formed within said first set of unit injectors to allow fluidic linkage of the volume of fuel being simultaneously pressurized and depressurized within said interconnected fuel pressurizing chambers of said first set of unit injectors, wherein the total volume of fuel that is fluidically linked together within said first set of synchronized unit injectors substantially exceeds the volume of fuel injected during each injection event to avoid substantial loss of injection pressure during each injection event, and wherein each said unit injector of said first set includes a nozzle control valve having a closed condition for preventing the flow of fuel into the corresponding combustion chamber and an open condition in which fuel from said fluidically connected fuel pressurizing chambers of said first set of unit injectors is allowed to flow into the corresponding combustion chamber through the corresponding injection orifice.
- 2. A fuel injection system for an internal combustion engine having multiple combustion chambers and a camshaft for cyclically imparting pressurization energy to, and recovering pressurization energy from, fuel supplied to the engine, comprising
a. a source of fuel at low pressure; b. a plurality of unit injectors mounted for injecting fuel at high pressure into the combustion chambers, respectively, of the internal combustion engine, each said unit injector including
i. an injector body containing a bore for receiving fuel at low pressure from said source of fuel and an injection orifice in fluid communication periodically with said bore, and ii. a pressurizing plunger mounted for reciprocation within said bore to form a fuel pressurizing chamber from which fuel may be withdrawn at relatively high pressure for injection into a corresponding combustion chamber of the engine through said injection orifice; c. a camshaft linkage for simultaneously reciprocating the pressurizing plungers of a set of at least two unit injectors as the engine camshaft rotates to selectively impart pressurization energy to fuel trapped within said fuel pressurizing chambers when said pressurizing plungers advance and to recover pressurization energy from fuel trapped within said fuel pressurizing chambers when said pressurizing plungers retract; and d. a first interconnecting line for allowing selective fluidic interconnection of the fuel pressurizing chambers formed within said first set of unit injectors to allow fluidic linkage of the volume of fuel being simultaneously pressurized and depressurized within said interconnected fuel pressurizing chambers of said first set of unit injectors,
(i) wherein the total volume of fuel that is fluidically linked together within said first set of synchronized unit injectors substantially exceeds the volume of fuel injected during each injection event to avoid substantial loss of injection pressure during each injection event, (ii) wherein said camshaft linkage is arranged for reciprocating synchronously the pressurizing plungers of a second set of at least two unit injectors as the engine camshaft rotates to impart selectively pressurization energy to fuel trapped within the corresponding fuel pressurizing chambers of said second set of unit injectors when the pressurizing plungers of said second set of unit injectors advance and to recover pressurization energy from fuel trapped within said fuel pressurizing chambers when said pressurizing plungers retract, and further including a second interconnecting line for allowing fluidic interconnection of the fuel pressurizing chambers of said second set of synchronized unit injectors to allow fluidic linkage of the volume of fuel being simultaneously pressurized and depressurized within said interconnected fuel pressurizing chambers of said second set of unit injectors, said second set of synchronized unit injectors being out of phase by a predetermined amount with respect to said first set, wherein the total volume of fuel that is fluidically linked together within said second set of synchronized unit injectors substantially exceeds the volume of fuel injected during each injection event to avoid substantial loss of injection pressure during each injection event, and (iii) wherein each said unit injector of said second set of unit injectors includes a nozzle control valve having a closed position for preventing the flow of fuel into the corresponding combustion chamber and an open position in which fuel from said fluidically connected fuel pressurizing chambers of said first set of unit injectors is allowed to flow into the corresponding combustion chamber through the corresponding injection orifice.
- 3. A fuel injection system as defined in claim 2, wherein each said nozzle control valve includes an nozzle control valve actuator responsive to an electrical nozzle control valve signal to cause the corresponding nozzle control valve to change between its closed condition and its open condition, and wherein each said pressure control valve includes a pressure control valve actuator responsive to an electrical pressure control valve signal to cause the corresponding pressure control valve to change between its open condition and its closed condition and further including a electronic control unit electrically connected to said nozzle control valve actuators and said pressure control valve actuators for generating said electrical nozzle control valve signals and for generating said pressure control valve signals at selected times and for selected durations to control the pressure, timing, rate and quantity of fuel injection during each fuel injection event.
- 4. A fuel injection system as defined in claim 3, wherein said electronic control unit includes input ports for receiving signals representative of engine operation.
- 5. A fuel injection system as defined in claim 4, wherein said engine operation signals include at least one or more signals representative of engine position, pressure of fuel in said first and second interconnecting lines, desired fueling, desired timing, desired pressure and desired rate.
- 6. A fuel injection system as defined in claim 5, wherein said pressure control signals and said nozzle control signals are generated to cause one of said pressure control valve to close to cause the pressure of fuel within said first interconnecting line to reach a pilot injection pressure appropriate for pilot injection through one of said unit injectors at which time the corresponding nozzle control valve of said unit injector is opened for an interval to allow a pilot injection from said unit injector after which the said control nozzle valve is closed to allow the pressure of fuel to increase to a main injection pressure higher than said pilot injection pressure at which time said nozzle control valve is again opened for an interval to allow a main injection from said unit injector.
- 7. A fuel injection system as defined in claim 6, wherein said pressure control signals and said nozzle control signals are generated by said electronic control unit in a manner to control the timing, rate, quantity and pressure of a separate pilot and main injection from each unit injector within said first and second sets to cause the engine to achieve the desired fueling, timing, pressure and shape indicated by the operating signals received by said electronic control unit.
- 8. A fuel injection system as defined in claim 7, wherein said pressure control signals and said nozzle control signals generated for the unit injectors of either of said first or second sets cause the following sequential periods of operation for all unit injectors within that set of unit injectors:
a. a spilling period when said nozzle control valves are in a closed condition, and said pressure control valve is in an open condition and said pressurizing plungers of the set are advancing, b. a pressurizing period when said nozzle control valves and said pressure control valve are in closed conditions and said pressurizing plungers of the set are advancing, c. an injecting period when one nozzle control valve is selectively placed in an open condition while all other nozzle control and pressure control valves remain in closed conditions and while the pressurizing plungers of the set are continuing to advance d. an over pressurizing period when said nozzle control valves and said pressure control valve are in a closed condition and said pressurizing plungers of the set are continuing to advance, e. a recovering period when said nozzle control valves and said pressure control valve are in a closed condition and said pressurizing plunger of the set are retracting, and f. a filling period when said nozzle control valve is closed and said pressure control valve is open and said pressurizing plunger is retracting, wherein said pressure control signals and said nozzle control signals generated for the unit injectors of either of said first or second sets cause the following sequential periods of operation for each unit injector independent of the periods of operation of the other unit injectors within that set of unit injectors:
a. a pilot injecting period when said nozzle control valve of a unit injector in one set is in an open condition and said pressure control valve for that set is in a closed condition, and said pressurizing plunger for that unit injector is advancing, b. a dwelling period when both said nozzle control valve of an injector in one set and said pressure control valve for that set are in a closed condition and said pressurizing plunger for that unit injector is continuing to advance, c. a low-flow main injecting period when said nozzle control valve of a unit injector in one set is in an open condition and said pressure control valve for that set is in a closed condition and said pressurizing plunger for that unit injector is continuing to advance, and d. a high-flow main injecting period when said nozzle control valve of a unit injector in one set is in an open condition and said pressure control valve for that set is in a closed condition and said pressurizing plunger for that unit injector is continuing to advance.
- 9. A fuel injection system for an internal combustion engine having multiple combustion chambers and a camshaft for cyclically imparting pressurization energy to, and recovering pressurization energy from, fuel supplied to the engine, comprising
a. a source of fuel at low pressure; b. a plurality of unit injectors mounted for injecting fuel at high pressure into the combustion chambers, respectively, of the internal combustion engine, each said unit injector including
i. an injector body containing a bore for receiving fuel at low pressure from said source of fuel and an injection orifice in fluid communication periodically with said bore, and ii. a pressurizing plunger mounted for reciprocation within said bore to form a fuel pressurizing chamber from which fuel may be withdrawn at relatively high pressure for injection into a corresponding combustion chamber of the engine through said injection orifice; c. a camshaft linkage for simultaneously reciprocating the pressurizing plungers of a set of at least two unit injectors as the engine camshaft rotates to selectively impart pressurization energy to fuel trapped within said fuel pressurizing chambers when said pressurizing plungers advance and to recover pressurization energy from fuel trapped within said fuel pressurizing chambers when said pressurizing plungers retract; and d. a first interconnecting line for allowing selective fluidic interconnection of the fuel pressurizing chambers formed within said first set of unit injectors to allow fluidic linkage of the volume of fuel being simultaneously pressurized and depressurized within said interconnected fuel pressurizing chambers of said first set of unit injectors, wherein the total volume of fuel that is fluidically linked together within said first set of synchronized unit injectors substantially exceeds the volume of fuel injected during each injection event to avoid substantial loss of injection pressure during each injection event, wherein each said unit injector includes a pressure control valve connected to said source of fuel, each said pressure control valve having an open condition in which fuel is allowed to flow in either direction between said source of fuel and the corresponding fuel pressurizing chamber of said unit injector and a closed condition in which no fuel is allowed to flow between the corresponding fuel pressurizing chamber and said source of fuel.
- 10. A fuel injection system as defined in claim 9, wherein each said unit injector in said first set of unit injectors includes a nozzle control valve having a closed condition for preventing the flow of fuel into the corresponding combustion chamber and an open condition in which fuel from said first interconnecting line is allowed to flow into the corresponding combustion chamber through the corresponding injection orifice.
- 11. A fuel injection system as defined in claim 10, wherein each said unit
injector within said first set of unit injectors further includes a shuttle valve having a closed condition in which fuel is prevented from flowing from the corresponding fuel pressurizing chamber into said first interconnecting line whenever the pressure within the corresponding fuel pressurizing chamber is less than the pressure within said first interconnecting line and an open condition in which fuel is allowed to flow from said fuel pressurizing chamber into said first interconnecting line wherever the pressure within said fuel pressurizing chamber is greater than the pressure within said first interconnecting line.
- 12. A fuel injection system as defined in claim 9, wherein said camshaft linkage is arranged for causing the pressurizing plungers of a second set of at least two unit injectors to reciprocate synchronously as the engine camshaft rotates to impart selectively pressurization energy to fuel trapped within the corresponding fuel pressurizing chambers of said second set of unit injectors when the pressurizing plungers of said second set of unit injectors advance and to recover pressurization energy from fuel trapped within said fuel pressurizing chambers when said pressurizing plungers retract, and further including a second interconnecting line for allowing fluidic interconnection of the fuel pressurizing chambers of said second set of synchronized unit injectors to allow fluidic linkage of the volume of fuel being simultaneously pressurized and depressurized within said interconnected fuel pressurizing chambers of said second set of unit injectors, said second set of synchronized unit injectors being out of phase by a predetermined amount with respect to said first set, wherein the total volume of fuel that is fluidically linked together within said second set of synchronized unit injectors substantially exceeds the volume of fuel injected during each injection event to avoid substantial loss of injection pressure through out each injection event.
- 13. A fuel injection system as defined in claim 12, wherein each said unit injector in said second set of unit injectors includes a nozzle control valve having a closed condition for preventing the flow of fuel into the corresponding combustion chamber and an open condition in which fuel from said second interconnecting line is allowed to flow into the corresponding combustion chamber through the corresponding injection orifice.
- 14. A fuel injection system as defined in claim 13, wherein each said unit injector within said second set of unit injectors further includes a shuttle valve having a closed condition to prevent fuel from flowing from said fuel pressurizing chamber into said second interconnecting line whenever the pressure within said fuel pressurizing chamber is less than the pressure within said second interconnecting line and an open condition to allow fuel to flow from said fuel pressurizing chamber into said second interconnecting line wherever the pressure with said fuel pressurizing chamber is greater than the pressure within said second interconnecting line.
- 15. A fuel injection system as defined in claim 14, wherein each said nozzle control valve includes a nozzle control valve actuator responsive to an electrical nozzle control valve signal to cause the corresponding nozzle control valve to change between its closed condition and its open condition, and wherein each said pressure control valve includes a pressure control valve actuator responsive to an electrical pressure control valve signal to cause the corresponding pressure control valve to change between its open condition and its closed condition and further including a electronic control unit electrically connected to said nozzle control valve actuators and said pressure control valve actuators for generating said electrical nozzle control valve signals and for generating said pressure control valve signals at selected times and for selected durations to control the pressure, timing, rate and quantity of fuel injection during each fuel injection event.
- 16. A fuel injection system as defined in claim 15, wherein said electronic control unit includes input ports for receiving signals representative of engine operation.
- 17. A fuel injection system as defined in claim 16, wherein said engine operation signals include at least one or more signals representative of engine position, pressure of fuel in said first and second interconnecting lines, desired fueling, desired timing, desired pressure and desired rate.
- 18. A fuel injection system as defined in claim 17, wherein said pressure control signals and said nozzle control signals are generated to cause the pressure control valves of said first set of unit injectors to close at selected times to cause the pressure of fuel within said first interconnecting line to reach a pilot injection pressure appropriate for pilot injection through one of said unit injectors at which time the corresponding nozzle control valve of said unit injector is opened for an interval to allow a pilot injection from said unit injector after which said control nozzle valve is closed to allow the pressure of fuel to increase to a main injection pressure higher than said pilot injection pressure at which time said nozzle control valve is again opened for an interval to allow a main injection from said unit injector.
- 19. A fuel injection system as defined in claim 18, wherein said pressure control signals and said nozzle control signals are generated by said electronic control unit in a manner to control the timing, rate, quantity and pressure of a separate pilot and main injection from each unit injector within said first and second sets to cause the engine to achieve the desired fueling, timing, pressure and shape indicated by the operating signals received by said electronic control unit.
- 20. A fuel injection system as defined in claim 19, wherein said pressure control signals and said nozzle control signals generated for the unit injectors of said first and second sets cause the following independent sequential periods of operation for each unit injector of said first and second set of unit injectors:
a. a spilling period when said nozzle control valve is in a closed condition, said pressure control valve is in an open condition and said pressurizing plunger is advancing, b. a pressurizing period when said nozzle control valve and said pressure control valve are both in closed conditions and said pressurizing plunger is advancing, c. a pilot injecting period when said nozzle control valve is in an open condition and said pressure control valve is in a closed condition, and said pressurizing plunger is continuing to advance, d. a dwelling period when both said nozzle control valve and said pressure control valve are in a closed condition and said pressurizing plunger is continuing to advance, e. a low-flow main injecting period when said nozzle control valve is in an open condition and said pressure control valve is in a closed condition and said pressurizing plunger is continuing to advance, f. a high-flow main injecting period when said nozzle control valve is in an open condition and said pressure control valve is in a closed condition and said pressurizing plunger is continuing to advance, g. an over pressurizing period when both said nozzle control valve and said pressure control valve are in a closed condition and said pressurizing plunger is continuing to advance, h. a recovering period when said nozzle control valve is closed and said pressure control valve is closed and said pressurizing plunger is retracting, and i. a filling period when said nozzle control valve is closed and said pressure control valve is open and said pressurizing plunger is retracting.
- 21. A fuel injection system as defined in claim 20, wherein the pressure control signals and said nozzle control signals generated by said electronic control unit may cause one or more unit injectors within either set to be in the pressurization, pilot injecting, dwelling, low-flow main, high flow main or over pressure periods while one or more other unit injectors of the same set are in the spill period as the pressurization plungers of that set are being advanced.
- 22. A fuel injection system as defined in claim 21, wherein the pressure control signals and said nozzle control signals generated by said electronic control unit may cause one or more unit injectors within either set to be in the fill period while one or more other unit injectors of the same set are in the recovery period as the pressurization plungers of that set are being retracted.
- 23. A fuel injection system for an internal combustion engine having multiple combustion chambers, comprising
a. a source of fuel at low pressure; b. a plurality of injectors mounted for injecting fuel at high pressure into the combustion chambers, respectively, of the internal combustion engine, each said injector including
i. an injector body containing a bore for receiving fuel at low pressure from said source of fuel and an injection orifice in fluid communication periodically with said bore, and ii. a pressurizing plunger mounted for reciprocation within said bore to form a fuel pressurizing chamber from which fuel may be withdrawn at relatively high pressure for injection into a corresponding combustion chamber of the engine through said injection orifice; c. actuating means for simultaneously reciprocating the pressurizing plungers of a set of at least two injectors to selectively impart pressurization energy to fuel trapped within said fuel pressurizing chambers when said pressurizing plungers advance and to recover pressurization energy from fuel trapped within said fuel pressurizing chambers when said pressurizing plungers retract; and d. a first interconnecting means for allowing selective fluidic interconnection of the fuel pressurizing chambers formed within said first set of injectors to allow fluidic linkage of the volume of fuel being simultaneously pressurized and depressurized within said interconnected fuel pressurizing chambers of said first set of injectors, wherein the total volume of fuel that is fluidically linked together within said first set of synchronized injectors substantially exceeds the volume of fuel injected during each injection event to avoid substantial loss of injection pressure during each injection event, wherein each said injector of said first set includes a nozzle control valve having a closed condition for preventing the flow of fuel into the corresponding combustion chamber and an open condition in which fuel from said fluidically connected fuel pressurizing chambers of said first set of injectors is allowed to flow into the corresponding combustion chamber through the corresponding injection orifice.
- 24. A fuel injection system for an internal combustion engine having multiple combustion chambers, comprising
a. a source of fuel at low pressure; b. a plurality of injectors mounted for injecting fuel at high pressure into the combustion chambers, respectively, of the internal combustion engine, each said injector including
i. an injector body containing a bore for receiving fuel at low pressure from said source of fuel and an injection orifice in fluid communication periodically with said bore, and ii. a pressurizing plunger mounted for reciprocation within said bore to form a fuel pressurizing chamber from which fuel may be withdrawn at relatively high pressure for injection into a corresponding combustion chamber of the engine through said injection orifice; c. actuating means for simultaneously reciprocating the pressurizing plungers of a set of at least two injectors to selectively impart pressurization energy to fuel trapped within said fuel pressurizing chambers when said pressurizing plungers advance and to recover pressurization energy from fuel trapped within said fuel pressurizing chambers when said pressurizing plungers retract; and d. a first interconnecting means for allowing selective fluidic interconnection of the fuel pressurizing chambers formed within said first set of injectors to allow fluidic linkage of the volume of fuel being simultaneously pressurized and depressurized within said interconnected fuel pressurizing chambers of said first set of injectors, wherein the total volume of fuel that is fluidically linked together within said first set of synchronized injectors substantially exceeds the volume of fuel injected during each injection event to avoid substantial loss of injection pressure during each injection event, wherein said camshaft linkage is arranged for reciprocating synchronously the pressurizing plungers of a second set of at least two injectors as the engine camshaft rotates to impart selectively pressurization energy to fuel trapped within the corresponding fuel pressurizing chambers of said second set of injectors when the pressurizing plungers of said second set of injectors advance and to recover pressurization energy from fuel trapped within said fuel pressurizing chambers when said pressurizing plungers retract, and further including a second interconnecting means for allowing fluidic interconnection of the fuel pressurizing chambers of said second set of synchronized injectors to allow fluidic linkage of the volume of fuel being simultaneously pressurized and depressurized within said interconnected fuel pressurizing chambers of said second set of injectors, said second set of synchronized injectors being out of phase by a predetermined amount with respect to said first set, wherein the total volume of fuel that is fluidically linked together within said second set of synchronized injectors substantially exceeds the volume of fuel injected during each injection event to avoid substantial loss of injection pressure during each injection event, and wherein each said injector of said second set of injectors includes a nozzle control valve having a closed position for preventing the flow of fuel into the corresponding combustion chamber and an open position in which fuel from said fluidically connected fuel pressurizing chambers of said first set of injectors is allowed to flow into the corresponding combustion chamber through the corresponding injection orifice.
- 25. A fuel injection system as defined in claim 24, wherein each said nozzle control valve includes a nozzle control valve actuator responsive to an electrical nozzle control valve signal to cause the corresponding nozzle control valve to change between its closed condition and its open condition, and wherein each said pressure control valve includes a pressure control valve actuator responsive to an electrical pressure control valve signal to cause the corresponding pressure control valve to change between its open condition and its closed condition and further including a electronic control electrically connected to said nozzle control valve actuators and said pressure control valve actuators for generating said electrical nozzle control valve signals and for generating said pressure control valve signals at selected times and for selected durations to control the pressure, timing, rate and quantity of fuel injection during each fuel injection event.
- 26. A fuel injection system as defined in claim 25, wherein said electronic control includes input ports for receiving signals representative of engine operation.
- 27. A fuel injection system as defined in claim 26, wherein said engine operation signals include at least one or more signals representative of engine position, pressure of fuel in said first and second interconnecting means, desired fueling, desired timing, desired pressure and desired rate.
- 28. A fuel injection system as defined in claim 27, wherein said pressure control signals and said nozzle control signals are generated to cause one of said pressure control valves to close to cause the pressure of fuel within said first interconnecting means to reach a pilot injection pressure appropriate for pilot injection through one of said injectors at which time the corresponding nozzle control valve of said injector is opened for an interval to allow a pilot injection from said injector after which the said control nozzle valve is closed to allow the pressure of fuel to increase to a main injection pressure higher than said pilot injection pressure at which time said nozzle control valve is again opened for an interval to allow a main injection from said injector.
- 29. A fuel injection system as defined in claim 28, wherein said pressure control signals and said nozzle control signals are generated by said electronic control in a manner to control the timing, rate, quantity and pressure of a separate pilot and main injection from each injector within said first and second sets to cause the engine to achieve the desired fueling, timing, pressure and shape indicated by the operating signals received by said electronic control.
- 30. A fuel injection system as defined in claim 29, wherein said pressure control signals and said nozzle control signals generated for the injectors of either of said first or second sets cause the following sequential periods of operation for all injectors within that set of injectors:
a. a spilling period when said nozzle control valves are in a closed condition, and said pressure control valve is in an open condition and said pressurizing plungers of the set are advancing, b. a pressurizing period when said nozzle control valves and said pressure control valve are in closed conditions and said pressurizing plungers of the set are advancing, c. an injecting period when one nozzle control valve is selectively placed in an open condition while all other nozzle control and pressure control valves remain in closed conditions and while the pressurizing plungers of the set are continuing to advance d. an over pressurizing period when said nozzle control valves and said pressure control valve are in a closed condition and said pressurizing plungers of the set are continuing to advance, e. a recovering period when said nozzle control valves and said pressure control valve are in a closed condition and said pressurizing plunger of the set are retracting, and f. a filling period when said nozzle control valve is closed and said pressure control valve is open and said pressurizing plunger is retracting.
- 31. A fuel injection system as defined in claim 30, wherein said pressure control signals and said nozzle control signals generated for the injectors of either of said first or second sets cause the following sequential periods of operation for each injector independent of the periods of operation of the other injectors within that set of injectors:
a. a pilot injecting period when said nozzle control valve of a injector in one set is in an open condition and said pressure control valve for that set is in a closed condition, and said pressurizing plunger for that injector is advancing, b. a dwelling period when both said nozzle control valve of an injector in one set and said pressure control valve for that set are in a closed condition and said pressurizing plunger for that injector is continuing to advance, c. a low-flow main injecting period when said nozzle control valve of a injector in one set is in an open condition and said pressure control valve for that set is in a closed condition and said pressurizing plunger for that injector is continuing to advance, and d. a high-flow main injecting period when said nozzle control valve of a injector in one set is in an open condition and said pressure control valve for that set is in a closed condition and said pressurizing plunger for that injector is continuing to advance.
- 32. A fuel injection system as defined in claim 23, wherein each said injector includes a pressure control valve connected to said source of fuel, each said pressure control valve having an open condition in which fuel is allowed to flow in either direction between said source of fuel and the corresponding fuel pressurizing chamber of said injector and a closed condition in which no fuel is allowed to flow between the corresponding fuel pressurizing chamber and said source of fuel.
- 33. A fuel injection system as defined in claim 32, wherein each said injector in said first set of injectors includes a nozzle control valve having a closed condition for preventing the flow of fuel into the corresponding combustion chamber and an open condition in which fuel from said first interconnecting means is allowed to flow into the corresponding combustion chamber through the corresponding injection orifice.
- 34. A fuel injection system as defined in claim 33, wherein each said injector within said first set of injectors further includes a shuttle valve having a closed condition in which fuel is prevented from flowing from the corresponding fuel pressurizing chamber into said first interconnecting means whenever the pressure within the corresponding fuel pressurizing chamber is less than the pressure within said first interconnecting means and an open condition in which fuel is allowed to flow from said fuel pressurizing chamber into said first interconnecting means wherever the pressure with said fuel pressurizing chamber is greater than the pressure within said first interconnecting means.
- 35. A fuel injection system as defined in claim 32, wherein said actuating means is arranged for causing the pressurizing plungers of a second set of at least two injectors to reciprocate synchronously as the engine camshaft rotates to impart selectively pressurization energy to fuel trapped within the corresponding fuel pressurizing chambers of said second set of injectors when the pressurizing plungers of said second set of injectors advance and to recover pressurization energy from fuel trapped within said fuel pressurizing chambers when said pressurizing plungers retract, and further including a second interconnecting means for allowing fluidic interconnection of the fuel pressurizing chambers of said second set of synchronized injectors to allow fluidic linkage of the volume of fuel being simultaneously pressurized and depressurized within said interconnected fuel pressurizing chambers of said second set of injectors, said second set of synchronized injectors being out of phase by a predetermined amount with respect to said first set, wherein the total volume of fuel that is fluidically linked together within said second set of synchronized injectors substantially exceeds the volume of fuel injected during each injection event to avoid substantial loss of injection pressure through out each injection event.
- 36. A fuel injection system as defined in claim 35, wherein each said injector in said second set of injectors includes a nozzle control valve having a closed condition for preventing the flow of fuel into the corresponding combustion chamber and an open condition in which fuel from said second interconnecting means is allowed to flow into the corresponding combustion chamber through the corresponding injection orifice.
- 37. A fuel injection system as defined in claim 36, wherein each said injector within said second set of injectors further includes a shuttle valve having a closed condition to prevent fuel from flowing from said fuel pressurizing chamber into said second interconnecting means whenever the pressure within said fuel pressurizing chamber is less than the pressure within said second interconnecting means and an open condition to allow fuel to flow from said fuel pressurizing chamber into said second interconnecting means wherever the pressure with said fuel pressurizing chamber is greater than the pressure within said second interconnecting means.
- 38. A fuel injection system as defined in claim 37, wherein each said nozzle control valve includes a nozzle control valve actuator responsive to an electrical nozzle control valve signal to cause the corresponding nozzle control valve to change between its closed condition and its open condition, and wherein each said pressure control valve includes a pressure control valve actuator responsive to an electrical pressure control valve signal to cause the corresponding pressure control valve to change between its open condition and its closed condition and further including a electronic control electrically connected to said nozzle control valve actuators and said pressure control valve actuators for generating said electrical nozzle control valve signals and for generating said pressure control valve signals at selected times and for selected durations to control the pressure, timing, rate and quantity of fuel injection during each fuel injection event.
- 39. A fuel injection system as defined in claim 38, wherein said electronic control includes input ports for receiving signals representative of engine operation.
- 40. A fuel injection system as defined in claim 39, wherein said engine operation signals include at least one or more signals representative of engine position, pressure of fuel in said first and second interconnecting means, desired fueling, desired timing, desired pressure and desired rate.
- 41. A fuel injection system as defined in claim 40, wherein said pressure control signals and said nozzle control signals are generated to cause the pressure control valves of said first set of injectors to close at selected times to cause the pressure of fuel within said first interconnecting means to reach a pilot injection pressure appropriate for pilot injection through one of said injectors at which time the corresponding nozzle control valve of said injector is opened for an interval to allow a pilot injection from said injector after which said control nozzle valve is closed to allow the pressure of fuel to increase to a main injection pressure higher than said pilot injection pressure at which time said nozzle control valve is again opened for an interval to allow a main injection from said injector.
- 42. A fuel injection system as defined in claim 41, wherein said pressure control signals and said nozzle control signals are generated by said electronic control in a manner to control the timing, rate, quantity and pressure of a separate pilot and main injection from each injector within said first and second sets to cause the engine to achieve the desired fueling, timing, pressure and shape indicated by the operating signals received by said electronic control.
- 43. A fuel injection system as defined in claim 42, wherein said pressure control signals and said nozzle control signals generated for the injectors of said first and second sets cause the following independent sequential periods of operation for each injector of said first and second set of injectors:
a. a spilling period when said nozzle control valve is in a closed condition, said pressure control valve is in an open condition and said pressurizing plunger is advancing, b. a pressurizing period when said nozzle control valve and said pressure control valve are both in closed conditions and said pressurizing plunger is advancing, c. a pilot injecting period when said nozzle control valve is in an open condition and said pressure control valve is in a closed condition, and said pressurizing plunger is continuing to advance, d. a dwelling period when both said nozzle control valve and said pressure control valve are in a closed condition and said pressurizing plunger is continuing to advance, e. a low-flow main injecting period when said nozzle control valve is in an open condition and said pressure control valve is in a closed condition and said pressurizing plunger is continuing to advance, f. a high-flow main injecting period when said nozzle control valve is in an open condition and said pressure control valve is in a closed condition and said pressurizing plunger is continuing to advance, g. an over pressurizing period when both said nozzle control valve and said pressure control valve are in a closed condition and said pressurizing plunger is continuing to advance, h. a recovering period when said nozzle control valve is closed and said pressure control valve is closed and said pressurizing plunger is retracting, and i. a filling period when said nozzle control valve is closed and said pressure control valve is open and said pressurizing plunger is retracting.
- 44. A fuel injection system as defined in claim 43, wherein the pressure control signals and said nozzle control signals generated by said electronic control may cause one or more injectors within either set to be in the pressurization, pilot injecting, dwelling, low-flow main, high flow main or over pressure periods while one or more other injectors of the same set are in the spill period as the pressurization plungers of that set are being advanced.
- 45. A fluid pressurizing system cyclically imparting pressurization energy to, and recovering pressurization energy from a fluid, comprising
a. a source of fluid at low pressure; b. a plurality of pressurizing units mounted for discharging fluid at high pressure, each said pressurizing unit including;
i. a unit body containing a bore for receiving fluid at low pressure from said source of fluid and a discharge passage in fluid communication periodically with said bore, and ii. a pressurizing plunger mounted for reciprocation within said bore to form a fluid pressurizing chamber from which fluid may be discharged at relatively high pressure; c. a mechanical linkage for simultaneously reciprocating the pressurizing plungers of a set of at least two pressurizing units as the mechanical linkage selectively imparts pressurization energy to fluid trapped within said pressurizing chambers when said pressurizing plungers advance and to recover pressurization energy from fluid trapped within said fluid pressurizing chambers when said pressurizing plungers retract; and d. a first interconnecting line for allowing selective fluidic interconnection of the pressurizing chambers formed within said first set of pressurizing units to allow fluidic linkage of the volume of fluid being simultaneously pressurized and depressurized within said interconnected fluid pressurizing chambers of said first set of pressurizing units, wherein the total volume of fluid that is fluidically linked together within said first set of synchronized pressurizing units substantially exceeds the volume of fluid discharged during each discharge event; wherein said first interconnecting line is fluidically connected to said source of fluid and further including a first pressure control valve moveable between an open condition in which fluid is allowed to flow in either direction between said source of fluid and said interconnected fluid pressurizing chambers of said first set of pressurizing units and a closed condition in which energy may be imparted to the fluid within said fluid pressurizing chambers of said first set of pressurizing units as the corresponding pressurizing plungers are advanced and in which energy may be recovered from the fluid within said pressurizing chambers of said first set of pressurizing units as said corresponding pressurizing plungers are retracted, and wherein each said pressurizing unit of said first set includes a nozzle control valve having a closed condition for preventing the discharge of fluid and an open condition in which fluid from said fluidically connected pressurizing chambers of said first set of pressurizing units is allowed to be discharged through a corresponding discharge passage.
- 46. A fuel injection system as defined in claim 11, wherein each said shuttle valve operates in response to the relative magnitude of three separate fluid pressures including Pp which in the pressure of fuel within the corresponding fuel pressurizing chamber Pl which is the pressure of fuel in the interconnecting line to which the corresponding unit injector is connected and Pm which is a reference pressure supplied from a source of reference pressure and further wherein said valve may operate in one of four states, including:
a. a line pressurization state in which Pm<Pp<Pl when said shuttle valve is closed, b. a reset state in which Pr=Pp=Pl and said shuttle valve is closed, c. a energy storage state in which Pm<Pl<Pp and said shuttle valve is open, and d. a energy recovery state in which Pm<Pp<Pl.
- 47. A fuel injection system as defined in claim 46, wherein said shuttle valve includes:
a. a valve body containing a valve cavity fluidically connected with said fuel pressurizing chamber, said interconnecting line and said source of reference pressure, b. an outer plunger reciprocally mounted within said valve cavity moveable between a closed condition in which fuel is not allowed to flow between said pressurization chamber and said interconnecting line and an open condition in which fluid is allowed to flow between said pressurization chamber and said interconnecting line, c. an inner plunger mounted within said outer plunger, d. a ball mounted to normally close fuel communication between said valve cavity and said source reference pressure, and e. a spring for biasing said inner plunger into contact with said ball and for biasing said outer plunger toward its closed position, wherein said outer plunger contains a plunger cavity which is offset with respect to said ball to cause said ball to be moved laterally as said outer plunger moves toward its open position.
- 48. A fuel injection system as defined in claim 46, wherein said shuttle valve includes:
a. a valve body containing a valve cavity fluidically connected with said fuel pressurizing chamber, said interconnecting line and said source of reference pressure, b. a plunger reciprocally mounted within said valve cavity movable between a closed condition in which fuel is not allowed to flow between said pressurizing chamber and said interconnecting line and an open condition in which fluid is allowed to flow between said pressurization chamber and said interconnecting line, and c. a semi-spherical valve element containing an angled passage for normally residing in a closed position blocking communication between said valve cavity and said source of reference pressure, but moveable to an open position in which said angled passage is realigned to cause fluid communication between said valve cavity and said source of reference pressure, wherein said plunger and said spherical valve element have contact surfaces shaped to cause said semi-spherical valve to move to its open position when said plunger moves toward its open position.
- 49. A fuel injection system as defined in claim 34, wherein each said shuttle valve operates in response to the relative magnitude of three separate fluid pressures including Pp which in the pressure of fuel within the corresponding fuel pressurizing chamber, Pl which is the pressure of fuel in the interconnecting means to which the corresponding injector is connected and Pm which is a reference pressure supplied from a source of reference pressure and further wherein said valve may operate in one of four states, including:
a. a line pressurization state in which Pm<Pp<Pl when said shuttle valve is closed, b. a reset state in which Pr=Pp=Pl and said shuttle valve is closed, c. a energy storage state in which Pm<Pl<Pp and said shuttle valve is open, and d. a energy recovery state in which Pm<Pp<Pl and said shuttle valve is open.
- 50. A fuel injection system as defined in claim 49, wherein said shuttle valve includes:
a. a valve body containing a valve cavity fluidically connected with said fuel pressurizing chamber, said interconnecting means and said source of reference pressure, b. an outer plunger reciprocally mounted within said valve cavity moveable between a closed condition in which fuel is not allowed to flow between said pressurization chamber and said interconnecting means and an open condition in which fluid is allowed to flow between said pressurization chamber and said interconnecting means, c. an inner plunger mounted within said outer plunger, d. a ball mounted to normally close fuel communication between said valve cavity and said source reference pressure, and e. a spring for biasing said inner plunger into contact with said ball and for biasing said outer plunger toward its closed position, wherein said outer plunger contains a plunger cavity which is offset with respect to said ball to cause said ball to be moved laterally as said outer plunger moves toward its open position.
- 51. A fuel injection system as defined in claim 49, wherein said shuttle valve includes:
a. a valve body containing a valve cavity fluidically connected with said fuel pressurizing chamber, said interconnecting means and said source of reference pressure, b. a plunger reciprocally mounted within said valve cavity movable between a closed condition in which fuel is not allowed to flow between said pressurizing chamber and said interconnecting means and an open condition in which fluid is allowed to flow between said pressurization chamber and said interconnecting means, and c. a semi-spherical valve element containing an angled passage for normally residing in a closed position blocking communication between said valve cavity and said source of reference pressure, but moveable to an open position in which said angled passage is realigned to cause fluid communication between said valve cavity and said source of reference pressure, wherein said plunger and said spherical valve element have contact surfaces shaped to cause said semi-spherical valve to move to its open position when said plunger moves toward its open position.
- 52. A shuttle valve adapted to operate in response to the relative magnitude of three separate fluid pressures including Pp which in the pressure of fluid within a corresponding fuel pressurizing chamber, Pl which is the pressure of fluid in an interconnecting line to which the shuttle valve is connected and Pm which is a reference pressure supplied from a source of reference pressure and further wherein said valve may operate in one of four states, including:
a. a line pressurization state in which Pm<Pp<Pl when said shuttle valve is closed, b. a reset state in which Pr=Pp=Pl and said shuttle valve is closed, c. a energy storage state in which Pm<Pl<Pp and said shuttle valve is open, and d. a energy recovery state in which Pm<Pp<Pl and wherein said shuttle valve includes:
a. a valve body containing a valve cavity fluidically connected with said fluid pressurizing chamber, said interconnecting line and said source of reference pressure, b. an outer plunger reciprocally mounted within said valve cavity moveable between a closed condition in which fluid is not allowed to flow between said pressurization chamber and said interconnecting line and an open condition in which fluid is allowed to flow between said pressurization chamber and said interconnecting line, c. an inner plunger mounted within said outer plunger, d. a ball mounted to normally close fuel communication between said valve cavity and said source reference pressure, and e. a spring for biasing said inner plunger into contact with said ball and for biasing said outer plunger toward its closed position, wherein said outer plunger contains a plunger cavity which is offset with respect to said ball to cause said ball to be moved laterally as said outer plunger moves toward its open position.
- 53. A shuttle valve adapted to operate in response to the relative magnitude of three separate fluid pressures including Pp which in the pressure of fluid within a corresponding fuel pressurizing chamber, Pl which is the pressure of fluid in an interconnecting line to which the shuttle valve is connected and Pm which is a reference pressure supplied from a source of reference pressure and further wherein said valve may operate in one of four states, including:
a. a line pressurization state in which Pm<Pp<Pl when said shuttle valve is closed, b. a reset state in which Pr=Pp=Pl and said shuttle valve is closed, c. a energy storage state in which Pm<Pl<Pp and said shuttle valve is open, and d. a energy recovery state in which Pm<Pp<Pl and wherein said shuttle valve includes:
a. a valve body containing a valve cavity fluidically connected with said fuel pressurizing chamber, said interconnecting line and said source of reference pressure, b. a plunger reciprocally mounted within said valve cavity movable between a closed condition in which fluid is not allowed to flow between said pressurizing chamber and said interconnecting line and an open condition in which fluid is allowed to flow between said pressurization chamber and said interconnecting line, and c. a semi-spherical valve element containing an angled passage for normally residing in a closed position blocking communication between said valve cavity and said source of reference pressure, but moveable to an open position in which said angled passage is realigned to cause fluid communication between said valve cavity and said source of reference pressure, wherein said plunger and said spherical valve element have contact surfaces shaped to cause said semi-spherical valve to move to its open position when said plunger moves toward its open position.
RELATED APPLICATION DATA
[0001] This application is a division of U.S. application Ser. No. 09/547,713 filed Apr. 11, 2000, entitled “Cyclic Pressurization Including Plural Pressurization Units Interconnected For Energy Storage And Recovery”, which is incorporated herein by reference in its entirety.
Divisions (1)
|
Number |
Date |
Country |
Parent |
09547713 |
Apr 2000 |
US |
Child |
10121864 |
Apr 2002 |
US |