The present invention generally relates to coronary assist pumps. More specifically, the present invention relates to coronary assist pumps implantable within the heart.
Millions of Americans are afflicted with heart failure, which is an inability of the heart to pump enough blood to sustain normal bodily functions. Every year, 15,000 to 20,000 of these patients require heart transplants but only a small fraction of these patients receive a transplant. Those patients who eventually receive a heart transplant wait about 200 days in the hospital. During this time in the hospital, the patient will need enhanced heart pumping function to keep them alive. Left ventricle assist devices (LVADs) have been helpful in this application, which is called “bridge to transplant”. Moreover, some are developing LVADs that may be permanently installed and eliminate the need for a heart transplant.
One current LVAD is a pump that bypasses the left ventricle. The pump is installed in the upper abdomen and pumps blood from the left ventricle through a first tube and into the aorta through a second tube. This device requires major surgery to install and requires 24 hour monitoring once it is installed.
Another type of LVAD is a tiny turbine that is installed into the left ventricle chamber.
Some side effects of current LVADs include aortic valve stenosis, thrombosis formation, and right heart failure. The constant pumping pressure that some of the LVADs generate, rather than the systolic/ diastolic cycle associated with a healthy heart, may cause some of this valve and right heart damage. Also, the right heart may not have the strength to push the blood through the mitral valve into the left ventricle because of the high pressures some of the LVADs generate.
One example embodiment pertains to an intravascular pump that may be installed into the left ventricle of the heart as a left ventricle assist device. The pump may include a flexible wall defining a pumping chamber and a pumping mechanism. The pumping mechanism may include a frame attached to the wall and an actuation mechanism attached to the frame. One possible actuation mechanism is an umbrella-like mechanism including a central shaft and struts slideably attached between the shaft and the frame. The struts may be actuated by use of a shape memory alloy, balloon, electroactive polymer, or wire, as described in more detail below. The pump may include a power source, a controller, and sensors.
Another example embodiment is a method of installation. The pump is loaded into a percutaneous catheter such as a guide catheter. The catheter is then introduced into the vasculature of a patient and advanced to the left ventricle of the heart. The pump may then be advanced from the guide catheter or the catheter may be withdrawn from around the pump.
The above summary of some example embodiments is not intended to describe each disclosed embodiment or every implementation of the present invention. The figures and detailed description which follow more particularly exemplify these embodiments.
The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings in which:
While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” may include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention.
Shape memory materials include NiTi alloys such as Nitinol™ and other alloys such as CuAlNi. Shape memory materials may be plastically deformed in their martensitic phase to a first shape and then when heated to their austenitic phase may assume another shape. When cooled down back to the martensitic phase, they may return to the first shape. Many shape memory alloys, including Nitinol™, may be heated to their austenitic phase by passing a current through them.
In this embodiment, actuating struts 128 are made from a suitable shape memory alloy. Each strut may have two electrically separated branches connected at the end to form an electrical path out and back. Each strut may also electrically connected to a voltage source through elongate member 122 or through another suitable source. Each strut may be formed so that the pump is in its contracted position when the shape memory material is in the austenitic phase and in its expanded position when the shape memory alloy is in its martensitic phase. Alternatively, the struts could be formed so that each strut is in the austenitic phase when the pump is in its expanded position and in the martensitic phase when the pump is in its contracted position. In another alternative, the actuating struts could be divided into two equal or roughly equal groups, each group electrically connected to a separate voltage source, or to a voltage source that could apply voltage to each group selectively. The first group is formed as the struts in the first embodiment described above, and the second group is formed as the struts in the second embodiment describe above. In this manner, some of the actuating struts could be working during both the expansion and contraction of the pump. Each of the struts would have a suitable polymeric coating to both thermally and electrically isolate the struts from the body fluid and to prevent electical shorts, and the electrical conduits in elongate member 122 would be suitably insulated.
In an alternative configuration, each strut may include only a single electrical path. The voltage may flow through elongate member 122, through each actuating strut 128, through each connecting support strut 126, and back to a separate electrical conduit in elongate member 122. Of course, in this configuration, struts 126 would be suitably insulated as well.
Electoactive polymers (EAPs) are polymers that respond to electrical stimulation by displaying size or shape displacement. For example, some electroactive polymers contract when electrically stimulated. Suitable EAPs may include ferroelectric polymers such as poly(vinylidene fluoride) and its copolymers, acrylic elastomer tape such as VHB™ sold by 3m™, electrostrictive graft elastomers such as an elastomer grafted to a piezoelectric poly(vinylidene fluoride-trifluoro-ethylene) copolymer, and liquid crystal elastomer materials such as monodomain nematic liquid crystal elastomers with conductive polymers distributed within their network structure. Other EAPs that may be suitable in this application include ionic EAPs such as ionic polymer gels such as polyacrylonitrile materials, ionomeric polymer-metal composites, conductive polymers such as those frabricated from polypyrrole, polyaniline, PAN doped with HCl, polyethylenedioxythiophene, poly(p-phenylene vinylene)s, or polythiophenes, and carbon nanotubes.
Each of these pumps would be attached to a power source, which would provide electrical power or pressurized fluid. The power source may include a control mechanism to control the rate of operation of the pump. The control mechanism may be configured to receive data from a heart monitoring device or a pacemaker to synchronize the operation of the pump with the operation of the left ventricle. Each pump may also be coated with an anti-clotting agent or other suitable therapeutic agent.
It should be understood that this disclosure is, in many respects, only illustrative. Numerous advantages of the invention covered by this document have been set forth in the foregoing description. Changes may be made in details, particularly in matters of shape, size and arrangement of parts without exceeding the scope of the invention. Those of skill in the art will readily appreciate that other embodiments may be made and used which fall within the scope of the claims attached hereto. The invention's scope is, of course, defined in the language in which the appended claims are expressed.
Number | Name | Date | Kind |
---|---|---|---|
3860968 | Shapiro | Jan 1975 | A |
4175264 | Schiff | Nov 1979 | A |
4522195 | Schiff | Jun 1985 | A |
4771765 | Choy et al. | Sep 1988 | A |
4957504 | Chardack | Sep 1990 | A |
5176619 | Segalowitz | Jan 1993 | A |
5250167 | Adolf et al. | Oct 1993 | A |
5337754 | Heaven et al. | Aug 1994 | A |
5352180 | Candelon et al. | Oct 1994 | A |
5360445 | Goldowsky | Nov 1994 | A |
5389222 | Shahinpoor | Feb 1995 | A |
5397349 | Kolff et al. | Mar 1995 | A |
5578012 | Kamen et al. | Nov 1996 | A |
5613935 | Jarvik | Mar 1997 | A |
5725004 | Moulder | Mar 1998 | A |
5827171 | Dobak et al. | Oct 1998 | A |
5865721 | Andrews et al. | Feb 1999 | A |
5910124 | Rubin | Jun 1999 | A |
5928132 | Leschinsky | Jul 1999 | A |
5941813 | Sievers et al. | Aug 1999 | A |
6053932 | Daniel et al. | Apr 2000 | A |
6074365 | Hähndel et al. | Jun 2000 | A |
6079430 | Yamamoto | Jun 2000 | A |
6084321 | Hunter et al. | Jul 2000 | A |
6136025 | Barbut et al. | Oct 2000 | A |
6149578 | Downey et al. | Nov 2000 | A |
6165119 | Schweich et al. | Dec 2000 | A |
6210318 | Lederman | Apr 2001 | B1 |
6228018 | Downey et al. | May 2001 | B1 |
6245007 | Bedingham et al. | Jun 2001 | B1 |
6249076 | Madden et al. | Jun 2001 | B1 |
6264601 | Jassawalla et al. | Jul 2001 | B1 |
6299575 | Bolling | Oct 2001 | B1 |
6376971 | Pelrine et al. | Apr 2002 | B1 |
6387037 | Bolling et al. | May 2002 | B1 |
6390969 | Bolling et al. | May 2002 | B1 |
6406422 | Landesberg | Jun 2002 | B1 |
6428464 | Bolling | Aug 2002 | B1 |
6464655 | Shahinpoor | Oct 2002 | B1 |
6468200 | Fischi | Oct 2002 | B1 |
6530876 | Spence | Mar 2003 | B1 |
6533716 | Schmitz-Rode et al. | Mar 2003 | B1 |
6545384 | Pelrine et al. | Apr 2003 | B1 |
6579223 | Palmer | Jun 2003 | B2 |
6610004 | Viole et al. | Aug 2003 | B2 |
6638253 | Breznock | Oct 2003 | B2 |
6638294 | Palmer | Oct 2003 | B1 |
6676692 | Rabkin et al. | Jan 2004 | B2 |
6685621 | Bolling et al. | Feb 2004 | B2 |
6793618 | Schweich et al. | Sep 2004 | B2 |
6893431 | Naimark et al. | May 2005 | B2 |
20040249408 | Murphy et al. | Dec 2004 | A1 |
Number | Date | Country |
---|---|---|
0 567 788 | Nov 1998 | EP |
WO 9818508 | May 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20050228211 A1 | Oct 2005 | US |