Cyclising Peptides

Information

  • Patent Application
  • 20170204134
  • Publication Number
    20170204134
  • Date Filed
    May 28, 2015
    9 years ago
  • Date Published
    July 20, 2017
    7 years ago
Abstract
A method for preparing a cyclic peptide, derivative or analogue thereof is described. The method comprises contacting a peptide, derivative or analogue thereof with a fluoro-heteroaromatic compound to cyclise the peptide, derivative or analogue thereof.
Description

The present invention relates to cyclising peptides, derivatives or analogues thereof. More specifically, the invention relates to the formation of mono-cyclic and multi-cyclic peptides, derivatives or analogues thereof.


Protein-protein interactions are attractive drug targets due to their importance in cellular signalling, and their frequent alteration in a variety of disease states, including cancer (e.g. p53-MDM2 interaction) and cardiovascular disease (e.g. cAMP signalling pathways), as well as infectious diseases and those affecting the nervous system. Disruption of the interaction between two proteins in a signalling pathway can facilitate a beneficial effect in a range of disorders, many of which were previously considered to be extremely challenging targets. Compared with small molecules, peptides and peptide mimetics have great potential for very selectively and potently inhibiting intracellular protein-protein interactions (PPIs) due to their ability to mimic native protein structures and cover a large area of the often flat and featureless PPI interface. As such, peptide drugs have shown considerable promise as medicines, and investment in this area by the pharmaceutical industry continues to increase. Areas of significant interest lie in the use of stabilised or stapled α-helices, (multi)cyclic peptides and peptidomimetics.


However, many peptide drugs are readily broken down in the human body, presenting drug formulation and delivery challenges. Moreover, physical properties such as water-solubility and membrane-permeability remain highly problematic. Many drugs fail in development at the pre-clinical stage due to poor physical properties and many limitations remain in developing peptide-based drugs with suitable pharmaceutical properties e.g. membrane permeability, bioavailability and water solubility. Stapled peptides are an emerging class of therapeutic agent, which have superior proteolytic stability in vivo when compared with standard (non-constrained) peptide-based drugs. The foremost method of peptide stapling employs the use of the all-hydrocarbon (alkene) linker pioneered by Grubbs and Verdine.i,ii This strategy is used to stabilise a peptide α-helix and can often improve biological activity.iii,iv Moreover, Aileron Therapeutics (USA) have completed a ‘first in human’ clinical study on a stapled peptide and have also announced that they will soon be evaluating a stapled peptide inhibitor of the p53-MDM2 interaction as an anti-cancer agent in clinical trials. Roche have recently invested $1.1 billion in Aileron underlining the growing importance of this drug modality.


A number of methods are currently available to facilitate the constraint of peptides by cyclisation and involve either: head-to-tail cyclisation; side chain-to-tail cyclisation; head-to-side chain cyclisation or side chain-to-side chain cyclisation.v These typically involve cyclisation through cysteine residues, which react with an electrophilic aromatic molecule as a template.


As previously mentioned, there is a large demand for synthesis of cyclic peptide products. Accordingly, research is being carried out in industry. An example of this is the research carried out by Pepscan Therapeutics NV. Pepscan have developed technology called the CLIPS™ (Chemical LInkage of Peptides onto Scaffold) technology platform that can be used to make cyclic and multi-cyclic peptides. However, this technology is limited because it can only be used to facilitate reactions with cysteine residues. It would be advantageous to be able to carry out reactions using other amino acids residues, such as lysine or tyrosine. Additionally, Pepscan use reagents containing bromine for cyclisation. A problem is that these reagents do not allow for easy in-situ monitoring of the cyclisation reactions. Finally, Pepscan's technology has only been used with peptides and proteins, and it would be highly advantageous to have technology which is compatible with peptoids, i.e. poly-N-substituted glycine.


As well as research being conducted in industry, a large amount of research has also been carried out in academia. One such group focused on this area is the Pentelute group at MIT. The Pentelute group have reported using hexafluorobezene derivatives to make cyclic peptides. They have published two papers in the area, namely: Zou et al. Pentelute Org. & Biomol. Chem. 2014, 12, 566-573 and Spokoyny et al. Pentelute J. Am. Chem. Soc. 2013, 135, 5946-5949. However, as with the technology developed by Pepscan, the MIT team carry out reactions using peptides that cyclise only via a cysteine residue. As mentioned previously, it would be advantageous to be able to carry out cyclisation reactions using other amino acid residues. Additionally, the Pentelute group have not carried out any reactions using peptoid substrates and they also have not prepared multi-cyclic peptide scaffolds.


Finally, the Lim group has also published a paper in a related area: Lee, J. H. et al. “Design and facile solid-phase synthesis of conformationally constrained bicyclic peptoids.” Org. Lett. 2011, 13, 5012-5015. The Lim group have been able to form cyclic and multi-cyclic peptide-peptoid hybrids using cyanuric chloride. However, the tagging and cyclisation reactions are carried out with the peptides attached to a resin support, because cyanuric chloride reacts with the side chains of amino acids and gives rise to by-products if the reactions are carried out on un-protected (i.e. unsupported) peptoids. It would therefore be beneficial to use more selective reactions that are less prone to unwanted side reactions, which would enable cyclisation reactions to be conduced in solution rather than on a resin support. Additionally, the Lim group only used peptoid-peptide hybrids, and the use of cyanuric chloride does not allow for easy in-situ real-time monitoring of the reactions.


This invention arises from the inventors' work in trying to overcome the disadvantages of the prior art. The inventors have investigated the direct SNAr reaction between perfluoroheteroaromatic based reagents and peptides with nucleophilic side chains, and have found that such reagents can be effectively used to prepare cyclic peptides, derivative or analogue thereof. The inventors have also highlighted the various exploitable outcomes from the reaction between perfluoroheteroaromatic reagents with cysteine, serine, tyrosine and lysine, as well as mixed functionality-containing peptides and peptoids.


Thus, according to a first aspect of the invention, there is provided a method for preparing a cyclic peptide, derivative or analogue thereof, the method comprising contacting a peptide, derivative or analogue thereof with a fluoro-heteroaromatic compound to cyclise the peptide, derivative or analogue thereof.


In a second aspect, there is provided use of a fluoro-heteroaromatic compound to cyclise a peptide, derivative or analogue thereof.


Advantageously, and preferably, the method of the invention enables the cyclisation of peptides, derivatives or analogues thereof using the direct SNAr reaction between fluoro-heteroaromatic-based reagents and peptides with nucleophilic side chains. This also allows the reaction to be monitored in-situ in real-time using 19F NMR. Prior art approaches for forming cyclic peptides only utilise cysteine residues as nucleophiles, whereas the method of the first aspect surprisingly enables cyclisation with other nucleophilic amino acids in a peptide system, including cysteine, serine, lysine and tyrosine.


The term “derivative or analogue thereof” can mean that the amino acids residues of the peptide, which is cyclised, are replaced by residues (whether natural amino acids, non-natural amino acids or amino acid mimics) with similar side chains or peptide backbone properties. Additionally, the terminals of such peptides may be protected by N- and C-terminal protecting groups with similar properties to acetyl or amide groups.


Derivatives and analogues of peptides according to the invention may also include those that increase the peptide's half-life in vivo. For example, a derivative or analogue of the peptide of the invention may include peptoid and retropeptoid derivatives of the peptides, peptide-peptoid hybrids and D-amino acid derivatives of the peptides.


Peptoids, or poly-N-substituted glycines, are a class of peptidomimetics whose side chains are appended to the nitrogen atom of the peptide backbone, rather than to the alpha-carbons, as they are in amino acids. Peptoid derivatives of the peptides of the invention may be readily designed from knowledge of the structure of the peptide. A retropeptoid is expected to bind in the opposite direction in the ligand-binding groove, as compared to a peptide or peptoid-peptide hybrid containing one peptoid residue. As a result, the side chains of the peptoid residues are able point in the same direction as the side chains in the original peptide.


Preferably, the peptide comprises at least two, three, four or five amino acid residues. Preferably, the peptide comprises a polypeptide. Preferably, the polypeptide comprises at least five, ten or fifteen amino acid residues.


Preferably, the fluoro-heteroaromatic compound contains at least one nitrogen atom in its aromatic ring. The fluoro-heteroaromatic compound may contain one, two or three nitrogen atoms in the aromatic ring. Accordingly, the fluoro-heteroaromatic compound may comprise a fluoropyridine, a fluoropyrazine, a fluoropyrimidine, a fluoropyridazine or a fluorotriazine. In one preferred embodiment, the fluoro-heteroaromatic compound comprises a fluoropyridine. In an alternative preferred embodiment, the fluoro-heteroaromatic compound comprises a fluoropyrimidine or a fluoropyridazine.


The fluoro-heteroaromatic compound may comprise a fused six-membered ring. Accordingly, the fluoro-heteroaromatic may comprise a fluoroquinoline, a fluoroisoquinoline, a fluoroquinoxaline, a fluoroquinazoline, a fluorocinnoline, a fluorophthalazine or a fluoroacridine. Preferably, the fluoro-heteroaromatic compound comprises a fluoroquinoline.


Preferably, the fluoro-heteroaromatic compound contains at least two halogen atoms, wherein at least one of the halogen atoms is a fluorine atom, and each halogen atom is covalently bonded to a carbon atom in the aromatic ring.


Accordingly, in embodiments where the heteroaromatic compound comprises one six-membered ring which contains one nitrogen atom in the aromatic ring then it may contain two, three, four or five halogen atoms, wherein each halogen atom is bonded to a carbon atom in its aromatic ring. In embodiments where the heteroaromatic compound one six-membered ring which contains two nitrogen atoms in the aromatic ring then it may contain two, three or four halogen atoms, wherein each halogen atom is bonded to a carbon atom in its aromatic ring. In embodiments where the heteroaromatic compound one six-membered ring which contains three nitrogen atoms in the aromatic ring then it may contain two or three halogen atoms, wherein each halogen atom is bonded to a carbon atom in its aromatic ring.


In one preferred embodiment, the at least two halogen atoms only comprise fluorine atoms.


In embodiments where the heteroaromatic compound comprises one six-membered ring which contains one nitrogen atom in the aromatic ring then it may contain one, two, three, four or five fluorine atoms, wherein each fluorine atom is bonded to a carbon atom in its aromatic ring. In embodiments where the heteroaromatic compound comprises one six-membered ring which contains two nitrogen atoms in the aromatic ring then it may contain one, two, three or four fluorine atoms, wherein each fluorine atom is bonded to a carbon atom in its aromatic ring. In embodiments where the heteroaromatic compound comprises one six-membered ring which contains three nitrogen atoms in the aromatic ring then it may contain one, two or three fluorine atoms, wherein each fluorine atom is bonded to a carbon atom in its aromatic ring.


In one embodiment, the fluoro-heteroaromatic compound comprises at least one hydrogen atom, wherein each hydrogen atom is covalently bonded to a carbon atom in the aromatic ring. Preferably, the fluoro-heteroaromatic compound comprises 2,3,4,6-tetrafluoropyridine.


In a preferred embodiment, therefore, the fluoro-heteroaromatic compound comprises a perfluoroaromatic compound. Preferably, the fluoro-heteroaromatic compound comprises perfluoropyridine, perfluoropyridazine or perfluoroquinoline.


In another preferred embodiment, the fluoro-heteroaromatic compound comprises a pentafluoroaromatic compound, most preferably pentafluoropyridine.


Alternatively, the at least two halogen atoms may comprise at least one chlorine atom, at least one bromine atom and/or at least one iodine atom.


In an alternative preferred embodiment, the at least two halogen atoms comprise at least one fluorine atom and at least one chlorine atom.


The heteroaromatic compound may comprise 1, 2, 3 or 4 chlorine atoms, wherein each chlorine atom is bonded to a carbon atom in its aromatic ring.


In another preferred embodiment, the fluoro-heteroaromatic compound comprises a chloro-fluoro-heteroaromatic compound, most preferably 3,5-dichloro-2,4,6-trifluoropyridine, 2,3,4,5-tetrachloro-6-fluoropyridine or 5-chloro-2,4,6-trifluoropyrimidine.


Preferably, the peptide, derivative or analogue thereof contains at least two nucleophilic side chains. Preferably, a first nucleophilic side chain reacts in an SNAr type reaction with the fluoro-heteroaromatic compound to displace a fluorine atom and create a covalent bond between the first nucleophilic side chain and the fluoro-heteroaromatic compound, and subsequently a second nucleophilic side chain reacts in an SNAr type reaction with the fluoro-heteroaromatic compound, which is covalently bonded to the first nucleophilic side chain, to displace a further fluorine ion and create a covalent bond between the second nucleophilic side chain and the fluoro-heteroaromatic compound, thereby creating a linker between the first and second nucleophilic side chains, and thereby forming the cyclic peptide, derivative or analogue thereof.


The term “linker” can mean a heteroaromatic molecule which has reacted in an SNAr type reaction with at least two nucleophilic side chains and is covalently bonded to each of the at least two nucleophilic side chains.


Preferably, the peptide, derivative or analogue thereof contains at least three nucleophilic side chains. Preferably, the peptide, derivative or analogue thereof contains at least four nucleophilic side chains.


In one embodiment, at least one of the nucleophilic side chains comprises a thiol group. The or each thiol may be provided on a cysteine residue or modified cysteine residue in the peptide, derivative or analogue thereof.


In another embodiment, at least one of the nucleophilic side chains comprises an amine group, wherein the amine group preferably comprises a primary amine or secondary amine. The or each amine group may be provided on any amino acid residue within the peptide, derivative or analogue thereof. For example, the or each amine group may be provided on a lysine residue in the peptide, derivative or analogue thereof.


In yet another embodiment, at least one of the nucleophilic side chains comprises an alcohol group, wherein the alcohol group preferably comprises a phenol group. The or each alcohol group may be provided on a tyrosine, serine or threonine residue within the peptide, derivative or analogue thereof. Preferably, the or each alcohol group may be provided on a tyrosine residue in the peptide, derivative or analogue thereof.


The cyclic peptide, derivative or analogue thereof that is prepared with the method of the first aspect may be monocyclic. Monocyclic can mean that one linker is created, which links a first nucleophilic side chain to a second nucleophilic side chain in the cyclic peptide, derivative or analogue thereof.


Alternatively, the cyclic peptide, derivative or analogue thereof that is prepared may be multi-cyclic. Multi-cyclic can mean that at least two linkers are created, whereby a first linker links a first nucleophilic side chain to a second nucleophilic side chain and a second linker links a third nucleophilic side chain to a fourth nucleophilic side chain in the peptide, derivative or analogue thereof. Alternatively, multi-cyclic can also mean that one linker is created whereby the linker links a first nucleophilic side chain to a second nucleophilic side chain, and additionally links both the first and second nucleophilic side chains to a third nucleophilic side chain.


It will be appreciated that the distance between the at least two, three or four nucleophilic side chains, and their type (i.e. thiol, amine or phenol group) will dictate the number and characteristics of the cyclisation of the peptide, derivative or analogue thereof. Therefore, the nucleophilic side chains which become linked by a linker as a result of the method of the first aspect may be at least one, two, three, four or five amino acid residues apart. However, in some embodiments, the nucleophilic side chains which become linked by a linker as a result of the method of the invention may be at least six, seven, eight, nine or ten amino acid residues apart.


Preferably, the peptide, derivative or analogue thereof being cyclised in the method of the invention is not attached to a support (e.g. a resin support). In contrast, the method is preferably carried out with the peptide, derivative or analogue thereof in solution using a solvent. The solvent used may be dimethylformamide (DMF). Preferably, however, the solvent used may be 2,2,2-trifluoroethanol (TFE). The inventors have also demonstrated that trifluoroethanol can be used as a solvent to tune the reactivity of the reaction and allows a more selective reaction with the nucleophilic residues on the peptides.


Hence, in an embodiment where the peptide, derivative or analogue thereof contains at least two nucleophilic side chains, the method may be used to selectively control which of the nucleophilic side chains react with the fluoro-heteroaromatic compound. The method may be selectively controlled due to selection of the solvent. Alternatively, the method may be controlled due to the temperature at which the reaction is carried out.


In one preferred embodiment, the at least two nucleophilic side chains comprise at least one thiol group and at least one phenol group. Advantageously, in this embodiment, it is possible to selectively react the fluoro-heteroaromatic compound with the at least one thiol group. Preferably, 2,2,2-trifluoroethanol (TFE) solvent is used.


In another preferred embodiment, the at least two nucleophilic side chains comprise at least one amine group and at least one phenol group. Advantageously, in this embodiment, it is possible to selectively react the fluoro-heteroaromatic compound with the at least one amine group. Preferably, 2,2,2-trifluoroethanol (TFE) solvent is used.


In yet another preferred embodiment, the at least two nucleophilic side chains comprise at least one thiol group and at least one amine group. In this embodiment, it is possible to selectively react the fluoro-heteroaromatic compound with the at least one thiol group. Preferably, 2,2,2-trifluoroethanol (TFE) solvent is used.


Preferably, the method comprises dissolving a peptide, derivative or analogue thereof in a solvent, and adding a base thereto before the fluoro-heteroaromatic compound is added to the dissolved peptide to create a reaction solution. Preferably, the reaction solution is mixed (e.g. by shaking) for at least one hour. Preferably, the base is N,N-diisopropylethylamine (DIPEA).


Optionally, once the above steps have been completed the solution may be subjected to a vacuum to remove any volatile liquids.


Preferably, the step of mixing the solution lasts for at least two hours. Further preferably, the step of mixing the solution lasts for at least three hours. Further preferably, the step of mixing the solution lasts for at least four hours. Further preferably, the step of mixing the solution lasts for at least five hours.


Preferably, the step of mixing the solution is undertaken at room temperature. Alternatively, the step of mixing the solution is undertaken at at least 30° C. and preferably at least 40° C., and further preferably at least 50° C.


Preferably, the molar ratio of the peptide, derivative or analogue thereof to the fluoro-heteroaromatic compound is between 1:1 and 1:100. More preferably, the molar ratio is between 1:5 and 1:50, or even more preferably between 1:10 and 1:40, and most preferably between 1:20 and 1:30.


Preferably, the concentration of the peptide, derivative or analogue thereof in the reaction solution is less than 5 mM. More preferably, the concentration of the peptide, derivative or analogue thereof in the reaction solution is less than 4 mM, 3 mM, 2 mM, 1 mM, or 0.75 mM.


Preferably, the concentration of the peptide, derivative or analogue thereof in the reaction solution is at least 0.01 mM. More preferably, the concentration of the peptide, derivative or analogue thereof in the reaction solution is at least 0.05 mM, 0.10 mM, 0.15 mM, 0.20 mM or 0.25 mM.


Accordingly, in one preferred embodiment, the concentration of the peptide, derivative or analogue thereof in the reaction solution is between 5 mM and 0.01 mM. Preferably, the concentration of the peptide, derivative or analogue thereof in the reaction solution is between 4 mM and 0.05 mM, between 3 mM and 0.10 mM, between 2 mM and 0.15 mM, or between 1 mM and 0.2 mM. More preferably, the concentration of the peptide, derivative or analogue thereof in the reaction solution is between 0.75 mM and 0.25 mM.


However, in an alternative embodiment, the concentration of the peptide, derivative or analogue thereof in the reaction solution is preferably at least 0.5 mM, 1 mM, 1.5 mM or 2 mM.


Accordingly, in an alternative preferred embodiment, the concentration of the peptide, derivative or analogue thereof in the reaction solution is between 5 mM and 1 mM. Preferably, the concentration of the peptide, derivative or analogue thereof in the reaction solution is between 4 mM and 1.5 mM. More preferably, the concentration of the peptide, derivative or analogue thereof in the reaction solution is between 3 mM and 2 mM.


Preferably, the concentration of the fluoro-heteroaromatic compound in the reaction solution is less than 250 mM. More preferably, the concentration of the fluoro-heteroaromatic compound in the reaction solution is less than 200 mM, 150 mM, or 100 mM. Most preferably, the concentration of the fluoro-heteroaromatic compound in the reaction solution is less than 75 mM, 50 mM, 25 mM, 20 mM or 15 mM.


Preferably, the concentration of the fluoro-heteroaromatic compound in the reaction solution is less in the reaction solution is at least 1 mM. More preferably, the concentration of the peptide, derivative or analogue thereof in the reaction solution is at least 2 mM, 3 mM, 4 mM, or 5 mM. Most preferably, the concentration of the peptide, derivative or analogue thereof in the reaction solution is at least 6 mM, 7 mM, 8 mM, 9 mM or 10 mM.


Accordingly, in one preferred embodiment, the concentration of the fluoro-heteroaromatic compound in the reaction solution is between 250 mM and 1 mM. Preferably, the concentration of the heteroaromatic compound in the reaction solution is between 200 mM and 2 mM, between 150 mM and 3 mM, or between 100 mM and 4 mM. More preferably, the concentration of the heteroaromatic compound in the reaction solution is between 75 mM and 5 mM, between 50 mM and 6 mM, between 25 mM and 7 mM or between 20 mM and 8 mM. Most preferably, the concentration of the heteroaromatic compound in the reaction solution is between 15 mM and 10 mM.


However, in an alternative embodiment, the concentration of the heteroaromatic compound in the reaction solution is preferably at least 15 mM, 20 mM, 25 mM or 30 mM. More preferably, the concentration of the heteroaromatic compound in the reaction solution is preferably at least 35 mM, 40 mM, 45 mM, or 50 mM.


Accordingly, in an alternative preferred embodiment, the concentration of the heteroaromatic compound in the reaction solution is between 250 mM and 15 mM. Preferably, the concentration of the heteroaromatic compound in the reaction solution is between 200 mM and 20 mM, between 150 and 30 mM. More preferably, the concentration of the heteroaromatic compound in the reaction solution is between 100 mM and 40 mM. Most preferably, the concentration of the heteroaromatic compound in the reaction solution is between 75 mM and 50 mM.


According to a third aspect of the invention, there is provided a method for producing a cyclic peptide, derivative or analogue thereof in a single step or “one-pot” reaction, the method comprising carrying out a method according to the first aspect of the invention once.


The phrase “one-pot” reaction can mean that the method step is carried out once to produce the cyclic peptide, derivative or analogue thereof.


According to a fourth aspect of the invention, there is provided a method for producing a cyclic peptide, derivative or analogue thereof in a “step-wise” fashion, the method comprising at least two steps sequentially, wherein the first step comprises carrying out a method according to the first aspect of the invention and the second step comprises carrying out a method according to the first aspect of the invention.


According to a fifth aspect of the invention, there is provided a method for producing a cyclic peptide, derivative or analogue thereof in a “step-wise” fashion, the method comprising at least two steps sequentially, wherein the first step comprises contacting a peptide, derivative or analogue thereof with a fluoro-heteroaromatic compound to create a chemically modified peptide, derivative or analogue thereof, and the second step comprises contacting the chemically modified peptide, derivative or analogue thereof with a fluoro-heteroaromatic compound to cyclise the chemically modified peptide, derivative or analogue thereof.


The solvent for the first step may be different to the solvent for the second step. For example, preferably TFE is the solvent for the first step and DMF is the solvent for the second step. This is because only selected nucleophilic side chains will react when TFE is the solvent leaving selected nucleophilic side chains unreacted after the first step has been carried out, but these unreacted nucleophilic side chains may then react when DMF is used as the solvent for the second step.


Alternatively, or additionally, the peptide, derivative or analogue thereof may comprise at least one protecting group. The at least one protecting group may be configured to protect one or more nucleophilic side chains on the peptide, derivative or analogue thereof. The method may comprise removing the at least one protecting group after the first step is completed and before the second step.


The second step may comprise contacting the peptide, derivative or analogue thereof with a fluoro-heteroaromatic compound which is added to the reaction during the second step. Alternatively, the second step may comprise further contacting the peptide, derivative or analogue thereof with a fluoro-heteroaromatic compound which is already attached to the peptide, derivative or analogue thereof by at least one chemical bond.


According to a sixth aspect of the invention, there is provided a cyclic peptide, derivative or analogue thereof obtained or obtainable by the method according to the first third, fourth or fifth aspect of the invention.


The inventors have found that incorporation into the peptide, derivative or analogue thereof of a fluoro-heteroaromatic group provides a very useful functional group that enables both 19F NMR analysis and further chemical modification such as the formation of cyclic peptides.


Hence, in a seventh aspect, there is provided use of 19F NMR to monitor the method according to the first aspect of the invention.


This allows in-situ real-time monitoring of the reaction pathway and, given the properties of 19F NMR, precise structural information can also be obtained.


Monitoring may involve analysis by 19F NMR to see if the desired products have formed, checking to see if any additional products have formed, and/or checking to see if any unreacted reagents are present.


All features described herein (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined with any of the above aspects in any combination, except combinations where at least some of such features and/or steps are mutually exclusive.





For a better understanding of the invention, and to show how embodiments of the same may be carried into effect, reference will now be made, by way of example, to the accompanying Figures, in which:—



FIG. 1 shows two chemical reactions, the first resulting in the formation of a mono-cyclic peptide, and the second resulting in the formation of a multi-cyclic peptide;



FIG. 2 is a schematic diagram showing the different types of cyclisation reactions for peptides;



FIG. 3 shows the reagents used in the prior art by Pepscan Therapeutics NV;



FIG. 4 shows the reagents used in the prior art by the Pentelute group at MIT;



FIG. 5 shows a chemical reaction from the prior art resulting in the formation of a cyclic peptide-peptoid hybrid;



FIG. 6 shows a chemical reaction between a peptide and a perfluoro-heteroaromatic reagent;



FIG. 7 shows a chemical reaction for peptide cyclisation using perfluoro-heteroaromatic reagents according to an embodiment of the invention;



FIG. 8 is an LCMS spectrum and chromatogram at 280 nm for peptide 1, which has the structure AcNH—Y—C-G-G-G-C-A-L-CONH2;



FIG. 9 is an LCMS spectrum and chromatogram at 280 nm for peptide 2, which has the structure AcNH—Y—S-G-G-G-S-A-L-CONH2;



FIG. 10 is an LCMS spectrum and chromatogram at 280 nm for peptide 3, which has the structure AcNH—Y—K-G-G-G-K-A-L-CONH2;



FIG. 11 shows the possible positions of nitrogen atoms in the fluoro-hereroaromatics which may be used in accordance with the present invention;



FIG. 12 shows the structure, chemical formula and molecular weight of a product formed by reacting peptide 1 with pentafluoropyridine according to procedure A or B;



FIG. 13 is an LCMS spectrum and chromatogram at 280 nm for the products formed by reacting peptide 1 with pentafluoropyridine according to procedure A;



FIG. 14 is a 19F NMR spectrum for the products formed by reacting peptide 1 according to procedure A, with the solvent used for the NMR being H2O/MeCN/D2O in a ratio of 1:1:0.2;



FIG. 15 shows the expansions of the peaks of the spectrum of FIG. 14;



FIG. 16 is an LCMS chromatogram at 280 nm of the products formed by reacting peptide 1 according to procedure B;



FIG. 17 shows the structure for the product formed by reacting peptide 1 with fluoro-heteroaromatic (I) according to procedure A;



FIG. 18 shows the structure for the product formed by reacting peptide 1 with fluoro-hereroaromatic (III) according to procedure A;



FIG. 19 shows the structure for the product formed by reacting peptide 1 with fluoro-heteroaromatic (IV) according to procedure A;



FIG. 20 shows the structure for the products formed by reacting peptide 1 with fluoro-heteroaromatic (V) according to procedure A;



FIG. 21 shows the structure for the products formed by reacting peptide 1 with fluoro-heteroaromatic (VI) according to procedure A;



FIG. 22 shows the structure for the products formed by reacting peptide 1 with fluoro-heteroaromatic (VII) according to procedure A;



FIG. 23 shows the structure for the products formed by reacting peptide 1 with fluoro-aromatic (VIII) according to procedure A;



FIG. 24 is a crude 19F NMR spectrum for the products formed by reacting peptide 5 according to procedure F;



FIG. 25 shows the structure, chemical formula and molecular weight of a product formed by reacting peptide 2 according to procedure A or C;



FIG. 26 is a 19F NMR spectrum for the products formed by reacting peptide 2 according to procedure A, with the solvent used for the NMR being H2O/MeCN/D2O in a ratio of 1:1:0.2;



FIG. 27 shows the expansions of the peaks of the spectrum of FIG. 26;



FIG. 28 shows the structure for the products formed by reacting peptide 2 with fluoro-heteroaromatic (I) according to procedure A;



FIG. 29 shows the structure for the products formed by reacting peptide 2 with fluoro-heteroaromatic (III) according to procedure A;



FIG. 30 shows the structure for the products formed by reacting peptide 2 with fluoro-heteroaromatic (VI) according to procedure A;



FIG. 31 shows the structure for the products formed by reacting peptide 2 with fluoro-hereroaromatic (VII) according to procedure A;



FIG. 32 shows the structure, chemical formula and molecular weight of a product formed by reacting peptide 3 according to procedure A;



FIG. 33 shows the structure of a product formed by reacting peptide 3 according to procedure C;



FIG. 34 shows the structure for the products formed by reacting peptide 3 with fluoro-heteroaromatic (I) according to procedure A;



FIG. 35 shows the structure for the products formed by reacting peptide 3 with fluoro-heteroaromatic (III) according to procedure A;



FIG. 36 shows the structure for the products formed by reacting peptide 3 with fluoro-heteroaromatic (IV) according to procedure A;



FIG. 37 shows the structure for the products formed by reacting peptide 3 with fluoro-heteroaromatic (V) according to procedure A;



FIG. 38 shows the structure for the products formed by reacting peptide 3 with fluoro-heteroaromatic (VI) according to procedure A;



FIG. 39 shows the structure for the products formed by reacting peptide 3 with fluoro-heteroaromatic (VII) according to procedure A;



FIG. 40 shows the structure of a product formed by reacting peptide 1 according to procedure D;



FIG. 41 shows the chemical structure for product P7a;



FIG. 42 shows the chemical structure for product P14;



FIG. 43 is an LCMS chromatogram for the crude products formed by reacting peptide 4 according to procedure E, where the solvent for the reaction was DMF;



FIG. 44 is an LCMS chromatogram for the crude products formed by reacting peptide 4 according to procedure F, where the solvent for the reaction was DMF;



FIG. 45 is an LCMS chromatogram for the crude products formed by reacting peptide 4 according to procedure E, where the solvent for the reaction was TFE;



FIG. 46 is an LCMS chromatogram for the crude products formed by reacting peptide 4 according to procedure F, where the solvent for the reaction was TFE;



FIG. 47 shows the structure for peptoid 1;



FIG. 48 shows the structure for peptoid 2;



FIG. 49 is the LCMS spectrum and chromatogram at 220 nm and 280 nm for the products formed by reacting peptoid 1 with pentafluoropyridine according to procedure I;



FIG. 50 shows the structure, of a product formed by reacting peptoid 1 with pentafluoropyridine ccording to procedure I;



FIG. 51 is the MALDI-Tof spectra for the products formed by reacting peptoid 1 with fluoro-heteroaromatic (I) according to procedure I;



FIG. 52 shows the structure of a product formed by reacting peptoid 1 with fluoro-heteroaromatic (I) according to procedure I;



FIG. 53 shows the structure of a product formed by reacting peptoid 1 with fluoro-heteroaromatic (I) according to procedure I;



FIG. 54 shows the structure of a product formed by reacting peptoid 1 with fluoro-heteroaromatic (I) according to procedure I;



FIG. 55 is the LCMS spectrum and chromatogram at 220 nm and 280 nm for the products formed by reacting peptoid 2 with pentafluoropyridine according to procedure I;



FIG. 56 shows the structure of a product formed by reacting peptoid 2 with pentafluoropyridine ccording to procedure I;



FIG. 57 is the MALDI-Tof spectra for the products formed by reacting peptoid 1 with fluoro-heteroaromatic (I) according to procedure I;



FIG. 58 shows the structure of a product formed by reacting peptoid 2 with fluoro-heteroaromatic (I) according to procedure I;



FIG. 59 shows the structure of a product formed by reacting peptoid 2 with fluoro-heteroaromatic (I) according to procedure I;



FIG. 60 shows the structure of a product formed by reacting peptoid 2 with fluoro-heteroaromatic (I) according to procedure I;



FIG. 61 shows the structure of a product formed by reacting peptoid 2 with fluoro-heteroaromatic (I) according to procedure I and



FIG. 62 shows the chemical structure for product P5;



FIG. 63 shows the chemical structure for products P6a and P6b;



FIG. 64 shows the chemical structure for products P7a and P7b;



FIG. 65 shows the chemical structure for products P8a and P8b;



FIG. 66 shows the chemical structure for products P9a and P9b;



FIG. 67 shows the chemical structure for product P10;



FIG. 68 shows the chemical structure for product P11; and



FIG. 69 shows the chemical structure for product P12.





EXAMPLES

As mentioned previously, it is desirable to be able to react peptides, derivatives or analogues thereof to form mono-cyclic or multi-cyclic products. These reactions can be at least one of: head-to-tail cyclisation; side chain-to-tail cyclisation; head-to-side chain cyclisation and/or side chain-to-side chain cyclisation, as shown in FIG. 2.


The reagents and methods used in the prior art have a number of drawbacks as discussed above. FIG. 3 shows reagents used by Pepscan. These reagents all contain bromine which does not allow for easy monitoring of the reactions. The reagents used by the Pentelute group are shown in FIG. 4. These reagents are fairly unreactive so, as with the Pepscan, they can only be used with peptides which contain cysteine. Finally, the reaction scheme developed by the Lim group is shown in FIG. 5. However, to avoid unwanted by-products this reaction must be carried out on resin. Additionally, as with the Pepscan reagents, the cyanuric chloride used by the Lim group does not allow for easy monitoring of the reactions.


The inventors' work has lead to the discovery of using fluoro-heteroaromatic compounds as a reagent in the cyclisation reactions of peptides, peptoids and peptide-peptoid hybrids. This can either be done as a one step reaction, as illustrated in FIGS. 1 and 7, or as a two step process, where the peptide, peptoid or peptide-peptoid hybrid is first tagged, as illustrated in FIG. 6, and then further reacted to cyclise.


Materials and Methods


The following examples were carried out on ten different peptides, referred to as peptides 1 to 10, and two different peptoids, referred to as peptoids 1 and 2, where:


Peptide 1 has the structure AcNH—Y—C-G-G-G-C-A-L-CONH2;


Peptide 2 has the structure AcNH—Y—S-G-G-G-S-A-L-CONH2;


Peptide 3 has the structure AcNH—Y—K-G-G-G-K-A-L-CONH2;


Peptide 4 has the structure AcNH—F—K-A-C-G-K-G-C-A-CONH2;


Peptide 5 is glutathione;


Peptide 6 has the structure AcNH—F—C(Acm)-G-G-C-G-G-C(Acm)-A-L-CONH2;


Peptide 7 has the structure AcNH-A-C—W-G-S—I-L-A-R-T-CONH2;


Peptide 8 has the structure AcNH-A-C—Y-G-S—I-L-A-R-T-CONH2;


Peptide 9 has the structure AcNH—F—C-G-G-G-C-A-L-CONH2; and


Peptide 10 has the structure AcNH—F—S-G-G-G-S-A-L-CONH2;


Peptoid 1 is [(Nae-Nspe-Nspe)(NCys-Nspe-Nspe)]2; and


Peptoid 2 is [Nae-NCys-Nspe)]4.


Peptides 1 to 4 and 6 to 10 were prepared using automated Fmoc-SPPS methods on a Liberty 1 peptide synthesiser (CEM) with microwave-assisted couplings (single coupling per amino acid; 10 min, 75° C. (50° C. for Fmoc-cys(trt)-OH coupling). Solid phase synthesis was conducted using Rink amide resin (0.7 mol/g loading) on a 0.1 mol scale, employing PyBOP and DIPEA as activator and base, respectively. Following on-resin synthesis of the appropriate sequence, N-terminal capping was achieved using Ac2O/DMF (20%, 2×15 min) with shaking at room temperature. Finally, peptides were cleaved from the resin as the C-terminal amide by treatment of beads with a cleavage cocktail containing 90% TFA, 5% TIPS and 5% water with shaking at room temperature for 4 h. After removal of volatiles in vacuo, the product was triturated and washed using Et2O.


Peptide 5, glutathione, can be bought commercially.


Peptoids 1 and 2 were prepared via automated peptoid synthesis using an Aapptec Apex 396 synthesiser. Solid phase synthesis was conducted using Rink Amide resin (0.1 mmol, loading 0.54 mmol g-1) by cycles of haloacetylation (either bromo- or chloroacetic acid, 1 ml, 0.6M in DMF) using DIC as activator (0.18 ml, 50% v/v in DMF, 20 min at RT) followed by halide displacement by the desired amine (1 ml, 1.5M in DMF, 60 min at RT) until the desired sequence was achieved. Finally peptoids were cleaved off the resin using 95:5:5 TFA:TIPS:H2O (4 ml, 30 min, RT). The cleavage cocktail containing the target peptoids was then filtered from the resin and evaporated in vacuuo and the resulting residue precipitated in Et2O (˜20 ml). The crude peptoid was obtained via centrifugation to yield the crude product as a white/yellow powder.


Mass spectroscopy data was collected for peptides 1 to 3 and is shown in FIGS. 8 to 10. FIG. 8, for peptide 1, shows an [M+H]+ peak at 783.747 m/z, FIG. 9, for peptide 2, shows an [M+H]+ peak at 751.946 m/z and FIG. 10, for peptide 3, shows an [M+H]+ peak at 834.290 m/z and an [M+H]2+ peak at 418.366 m/z.


The peptides or peptoids were reacted according to procedures A, B, D, E, F, G, H or I as described below:


Procedure A


Solid peptide (approx. 2 mg, 2.5 μmol) was dissolved in DMF (0.5 mL) in a 1.5 mL plastic Eppendorf tube, to which DIPEA (50 mM in DMF, 0.5 mL) was added. The required fluoroheteroaromatic or fluoro-aromatic was added in 25 equivalents and the tube was shaken at room temperature for 4.5 h. After removal of volatiles under vacuum, each reaction mixture was redissolved in a 1:1 mixture of H2O and MeCN (1 mL) and analysed by LCMS (ESI+) and 19F NMR (100 μL D2O added).


Procedure B


Solid peptide (approx. 2 mg, 2.5 μmol) was dissolved in DMF (0.5 mL) in a 1.5 mL plastic Eppendorf tube, to which DIPEA (50 mM in DMF, 0.5 mL) was added. The required fluoro-heteroaromatic or fluoro-aromatic was added in 5 equivalents and the tube was shaken at room temperature for 4.5 h. After removal of volatiles under vacuum, each reaction mixture was redissolved in a 1:1 mixture of H2O and MeCN (1 mL) and analysed by LCMS (ESI+) and 19F NMR (100 μL D2O added).


Procedure C


Solid peptide (approx. 2 mg, 2.5 μmol) was dissolved in DMF (0.5 mL) in a 1.5 mL plastic Eppendorf tube, to which DIPEA (50 mM in DMF, 0.5 mL) was added. The required fluoro-heteroaromatic or fluoro-aromatic was added in 25 equivalents and the tube was shaken at 50° C. for 4.5 h. After removal of volatiles under vacuum, the solid was washed with DCM (2×1 mL) and the residual solid was redissolved in a 1:1 mixture of H2O and MeCN (1 mL) and analysed by LCMS (ESI+) and 19F NMR (100 μL D2O added).


Procedure D


Solid peptide (approx. 2 mg, 2.5 μmol) was dissolved in TFE (0.5 mL) in a 1.5 mL plastic Eppendorf tube, to which DIPEA (so mM in TFE, 0.5 mL) was added. The required fluoro-heteroaromatic (or fluoro-aromatic) was added in 25 equivalents and the tube was shaken at room temperature for 4.5 h. After removal of volatiles under vacuum, each reaction mixture was redissolved in a 1:1 mixture of H2O and MeCN (1 mL) and analysed by LCMS (ESI+) and 19F NMR (100 μL D2O added).


Procedure E


A stock solution of peptide was prepared by dissolving in the appropriate solvent (approx. 2 mg/mL). In a 2.0 mL glass vial peptide stock solution was added (1.0 mL), to which DIPEA (20 μL) was added. An aliquot of stock pentafluoropyridine solution (200 μL, 9.0 mM in the respective solvent) was added and the volume adjusted to a final volume of 2.0 mL by addition of appropriate solvent. The resulting mixture was shaken at room temperature for 4.5 h. After removal of volatiles under vacuum, each reaction mixture was redissolved in DMF/D2O (9:1, 1 mL) and analysed by LCMS (ESI+) and 19F NMR.


Procedure F


A stock solution of peptide was prepared by dissolving in the appropriate solvent (approx. 2 mg/mL). In a 2.0 mL glass vial peptide stock solution was added (1.0 mL), to which DIPEA (20 μL) was added. An aliquot of stock pentafluoropyridine solution (70 μL, 9.0 mM in the respective solvent) was added and the volume adjusted to a final volume of 2.0 mL by addition of appropriate solvent. The resulting mixture was shaken at room temperature for 4.5 h. After removal of volatiles under vacuum, each reaction mixture was redissolved in DMF/D2O (9:1, 1 mL) and analysed by LCMS (ESI+) and 19F NMR.


Procedure G


Solid peptide (approx. 2 mg, 2.5 μmol) was dissolved in DMF (4.5 mL) in a sealed glass vial, to which DIPEA (50 mM in DMF, 0.5 mL) was added. The required perfluoroheteroaromatic was added in 25 equivalents and the tube was shaken at room temperature for 4.5 h. After removal of volatiles under vacuum, each reaction mixture was redissolved in a 1:1 mixture of H2O and MeCN (1 mL) and analysed by LCMS (ESI+) and 19F NMR (100 μL D2O added).


Procedure H


Solid peptide (approx. 2 mg, 2.5 μmol) was dissolved in the appropriate solvent (0.5 mL) in a 1.5 mL plastic Eppendorf tube, to which Cs2CO3 or DIPEA stock solutions (50 mM DMF, 0.5 mL) was added. The fluoro-aromatic or fluoro-heteroaromatic was then added (25 equivalents with respect to the peptide) and the tube was shaken at room temperature for 4.5 h. After removal of volatiles under vacuum, each reaction mixture was redissolved in a 8:1:1 mixture of DMF/H2O/ACN-d3 (1 mL) and analysed by LCMS (ESI+) and 19F NMR. Large scale reactions for product isolation and purification were run under the same parameters in Ar flushed syringes, in order to avoid air bubbles where volatile aromatic compounds may concentrate.


Procedure I


Solid peptoid (approx. 2 mg, 2.5 μmol) was dissolved in DMF (0.5 mL) in a 1.5 mL plastic Eppendorf tube, to which DIPEA (50 mM in DMF, 0.5 mL) was added. The required fluoro-aromatic or fluoro-heteroaromatic was then added (25 equivalents with respect to the peptoid) and the tube was shaken at room temperature for 4.5 h. After removal of volatiles under vacuum, each reaction mixture was redissolved in a 1:1 mixture of H2O and MeCN (1 mL) and analysed by LC-MS (ESI+) and 19F NMR. Due to the observation of N-terminal (Nae) mass loose in ESI+ mode, samples were also analysed by Maldi-ToF in order to confirm that fragmentation was induced by ionization and not by peptoid degradation. When LC-MS (ESI+) analysis was not possible due to poor solubility of the reaction products in H2O/MeCN mixtures and/or molar mass of the expected products was beyond LC-MS (ESI+) range, analitycal HPLC with detection at 220 nm was used in order to obtain the reaction profile of products in DMF (95% H2O to 95% MeCN in 40 min, 1 mL/min) and Maldi-ToF analysis was employed to verify the mass of the final products present in the sample.


LC-MS Conditions:


Peptides and peptoids were characterised by LC-MS, ESI-LC MeCN (TQD mass spectrometer and an Acquity UPLC from Waters) using an Acquity UPLC BEH C8 1.7 μM (2.1 mm×50 mm) column and (C18 as of Jun. 2, 2015 3 pm) with a flow rate of 0.6 ml min−1, a linear gradient of 5-95% of solvent B over 3.8 min (A=0.1% formic acid in H2O, B=0.1% formic acid in MeCN) and injection volume of 1 μl.


QToF (mass spectrometer and an Acquity UPLC from Waters) using an Acquity UPLC BEH C8 1.7 μm (2.1 mm×50 mm) column with a flow rate of 0.6 ml min−1, a linear gradient of 0-99% of solvent B over 5 min (A=0.1% formic acid in H2O, B=0.1% formic acid in MeCN) and injection volume of 3 μl.


Peptides and peptoids identities were also confirmed by MALDI-TOF mass spectra analysis (Autoflex II ToF/ToF mass spectrometer Bruker Daltonik GmBH) operating in positive ion mode using an α-cyano-4-hydroxycinnamic acid (CHCA or CHHA) matrix. Data processing was done with MestReNova Version 10.0.


TQD

ESI-LC MeCN (TQD): Acquity UPLC BEH C8 1.7 μm (2.1 mm×50 mm) (C18 as of Jun. 2, 2915 3 pm)


Mobile phase: water containing formic acid (0.1% v/v): Acetonitrile


Flow rate: 0.6 ml


Injection volume: 1 μl


Gradient:














Time




(min)
% A
% B

















0
95
5


0.2
95
5


4
5
95


4.5
5
95


5
95
5









Data processing: MestReNova 10.0


QToF


Accurate mass: Acquity UPLC BEH C18 1.7 μm (2.1 mm×100 mm)


Mobile phase: water containing formic acid (0.1% v/v): Acetonitrile


Flow rate: 0.6 ml min−1


Injection volume: 3 μl


Gradient:














Time




(min)
% A
% B

















0
100
0


5
1
99


6
1
99


6.1
100
0


7
100
0









Data processing: MestReNova 10.0


MALDI


Autoflex II ToF/ToF mass spectrometer Bruker Daltonik GmBH 337 nm nitrogen laser


Sample preparation 1 mg/ml, 1 μl spotted on matrix


Operating in positive ion mode using an α-cyano-4-hydroxycinnamic acid (CHCA or HCCA) matrix


Data acquisition: reflecton mode of analysis


Data processing: MestReNova 10.0


The fluoro-heteroaromatic used in the reactions had to contain at least one nitrogen atom in the aromatic ring. However, it could contain two or three nitrogens in the aromatic ring. FIG. 11 shows five different heterocyclic ring systems which illustrate the possible positions of nitrogen atoms in the fluoro-heteroaromatic reagents. The fluorine atoms are not shown. However, it will be readily understood that for use in cyclisation reactions each ring must contain at least two halogen atoms, and at least one of the halogen atoms must be a fluorine atom.


Ring system A could therefore contain 2, 3, 4 or 5 halogen atoms, and 1, 2, 3, 4 or 5 fluorine atoms. Accordingly, it could be bifluoropyridine, trifluoropyridine, tetrafluoropyridine or pentafluoropyridine.


Similarly, ring systems B, C and D could contain 2, 3 or 4 halogen atoms, and 1, 2, 3, or 4 fluorine atoms, and ring system E could contain 2 or 3 halogen atoms, and 1, 2 or 3 flouorine atoms.


Example 1
Tagging of Cysteine-Containing Peptides with Fluoro-Heteroaromatics

Peptide 1, was reacted according to procedures A and B. The reaction is shown below and the products for each reaction are shown in table 1.




embedded image









TABLE 1







Reaction of peptide 1 with pentafluoropyridine using procedures A and B









Procedure
ArF
Products formed





A


embedded image




embedded image







B


embedded image




embedded image











In the prior art hexafluorobenzene has been shown to react with peptide 1 to generate a cyclic peptide.vi,vii The introduction of nitrogen atom into the aromatic ring increases the reactivity of the perfluoroaromatic systems considerably as pentafluorpyridine and its derivatives are significantly more reactive than hexafluorobenzene. Therefore, pentafluorpyridine reacted with peptide 1 to give a multiply tagged peptide rather than a cyclic product, as explained below. Interestingly reports of sulphur nucleophiles reacting with pentafluoropyridine are not well documented in the literature.


The crude reaction products were analysed used LCMS. The LCMS spectrum and chromatogram of the reaction of peptide 1 according to procedure A is shown in FIG. 13. This shows one major peak in the LCMS chromatogram with a retention time of 3.234 minutes. The spectrum for this peak shows an [M+H]+ peak at 1231.929 m/z, which indicates a tri-substituted product was formed. The structure of this product is shown in FIG. 12.


The LCMS chromatogram of the reaction of peptide 1 according to procedure B is shown in FIG. 16. This shows three major peaks in the LCMS chromatogram with retention times of 1.946, 2.706, 3.074 and 3.175 minutes. Analysis of these peaks was carried out and the results are summarised in table 2.









TABLE 2







Products of the reaction of peptide 1 according to procedure B


identified using LCMS spectroscopy










Peak
Retention time
m/z
Identity













1
1.946
820
Starting peptide MeCN





adduct


2
2.706
1082
Double ArF addition


3
3.074
1138
?


4
3.175
1231
Triple ArF addition









This shows that both bi-substituted and tri-substituted products were formed.


Owing to the presence of fluorine atoms in the reagents, it was possible to monitor in situ the outcome of these reactions rapidly using 19F NMR spectra. Moreover, fluorine is very sensitive to changes in local environment, which made it possible to gain structural details which include the substitution pattern around the ring and number of fluoro-heteroaryl groups that have been added.



FIG. 14 shows the 19F NMR spectrum of the products of reaction of peptide 1 according to procedure A and FIG. 15 shows expansions of the peaks. The spectrum shows six different peaks which is consistent with the six different fluorine environments you would expect for a tri-substituted product.


Peptide 1, was reacted according to procedure A with either a fluoro-heteroaromatic (I-VII) or a fluoro-aromatic (VIII). The chemical structures for each of the various fluoro-heteroaromatics (I-VII) or fluoro-aromatic (VIII) are shown in table 3. The crude reaction products for the reactions were analysed using LCMS, and the results are also shown in table 3.









TABLE 3







Reaction of peptide 1 with various fluoro-heteroaromatics (I-VII) or fluoro-


aromatic (VIII) reagents using procedure A












LCMS spectrum and



Entry
ArF
chromatogram
Products





1


embedded image


One major peak in the LCMS chromatogram with a retention time of 2.472 minutes, the spectrum for this peak shows an [M + H]+ peak at 1027.676 m/z.
Cyclic product, see Figure 17.





2


embedded image


One major peak in the LCMS chromatogram with a retention time of 1.942 minutes, the spectrum for this peak shows an [M + H]+ peak which corresponds to starting peptide 1.
No detectable new products.





3


embedded image


One major peak in the LCMS chromatogram with a retention time of 3.104 minutes, the spectrum for this peak shows an [M + H]+ peak at 1255.52 m/z.
Di-substituted product, see Figure 18.





4


embedded image


One major peak in the LCMS chromatogram with a retention time of 2.665 minutes, the spectrum for this peak shows an [M + H]+ peak at 1045.674 m/z.
Di-substituted product, see Figure 19.





5


embedded image


A major peak in the LCMS chromatogram with a retention time of 3.071 minutes, the spectrum for this peak shows an [M + H]+ peak at 1231.929 m/z.
Cyclic mono-substituted product, see Figure 20.





6


embedded image


Two major peaks in the LCMS chromatogram with retention times of 2.950 minutes and 3.394 minutes. The spectrum for these peaks show an [M + H]+ peak at 1203.590 m/z and [M + H]+ peak at 1328.009 m/z respectively.
Di-substituted and the tri-substituted products were formed, see Figure 21.





7


embedded image


A major peak in the LCMS chromatogram with a retention times 3.180 minutes, the spectrum for this peaks shows an [M + H]+ peak at 1280.062 m/z.
Tri-substituted product, see Figure 22.





8


embedded image


One major peak in the LCMS chromatogram with a retention time of 2.265 minutes, the spectrum for this peak shows an [M + H]+ peak at 929.874 m/z.
Cyclic product see Figure 23.









As mentioned previously, in the prior art hexafluorobenzene was found to readily react with peptides containing two cysteine residues to generate a cyclic peptide. Accordingly, the result obtained for entry 8 of table 3 is consistent with the teachings of the prior aft.


Example 2
Reaction of Glutathione with Pentafluoropyridine

Peptide 5, was reacted according to procedure E. The reaction is shown below. This shows a single mono-substituted product was formed.




embedded image


Analysis of the crude reaction products was carried out using 19F NMR spectroscopy, and the spectrum is shown in FIG. 24. Residual pentafluoropyridine is seen at −93.36, −137.42 and −164.43 ppm. However, the peaks at −102.76 and −171.46 ppm relate to the tagged peptide and are consistent with a single, mono-substituted product.


Example 3
Tagging of Tyrosine-Containing Peptides with Fluoro-Heteroaromatics

Peptide 2, was reacted according to procedures A and C. The reaction is shown below and the products for each reaction are shown in table 4.




embedded image









TABLE 4







Reaction of peptide 2 with perfluoro-heteroaromtics using procedures A and C









Procedure
ArF
Products formed





A


embedded image




embedded image







C


embedded image




embedded image











At room temperature pentafluoropyridine was found to only react with the phenolic OH on the tyrosine (Y) residue.


The crude reaction products were analysed used LCMS. The LCMS spectrum and chromatogram of the reaction of peptide 2 according to procedure A shows one major peak in the LCMS chromatogram with a retention time of 2.455 minutes. The spectrum for this peak shows an [M+H]+ peak at 900.688 m/z, which indicates a mono-substituted product was formed. The structure of this product is shown in FIG. 25.


Similarly, the LCMS spectrum and chromatogram of the reaction of peptide 2 according to procedure C shows one major peak in the LCMS chromatogram with a retention time of 2.261 minutes. The spectrum for this peak shows an [M+H]+ peak at 900.358 m/z, which also indicates a mono-substituted product was formed.


Again 19F NMR spectroscopy was used to analysis the results. FIG. 26 shows the 19F NMR spectrum of the products of reaction of peptide 2 according to procedure A and FIG. 27 shows expansions of the peaks. The spectrum shows two different peaks which is consistent with the two different fluorine environments you would expect for a mono-substituted product.


Example 4
Tagging of Serine-Containing Peptides with Fluoro-Heteroaromatics

Peptide 2, was reacted according to procedure A with either a fluoro-heteroaromatic (I-VII) or a fluoro-aromatic (VIII). The chemical structures for each of the various fluoro-heteroaromatics (I-VII) or fluoro-aromatic (VIII) are shown in table 5. The crude reaction products for the reactions were analysed using LCMS, and the results are also shown in table 3.









TABLE 5







Reaction of peptide 2 with various fluoro-heteroaromatics (I-VII) or fluoro-


aromatic (VIII) reagents using procedure A.












LCMS spectrum and



Entry
ArF
chromatogram
Products





1


embedded image


Four major peak in the LCMS chromatogram with retention times of 2.625 minutes. 2.763 minutes, 2.818 minutes and 2.946 minutes. The spectrum for the peak at 2.625 minutes shows an [M + H]+ peak at 883.918
Mono-substituted, di- substituted, tri- substituted and cyclic products, see Figure 28.




m/z. The spectrum for





the peak at 2.763 minutes





shows an [M + H]+ peak at





995.921 m/z. The spectrum for





the peak at 2.818 minutes shows an





[M + H]+ peak at 1015.805 m/z.





The spectrum for the peak at





2.946 minutes shows an





[M + H]+ peak at 1148.058 m/z.






2


embedded image


One major peak in the LCMS chromatogram with a retention time of 1.828 minutes, the spectrum for this peak shows an [M + H]+ peak at 753.132 m/z.
Unreacted peptide 2 detected.





3


embedded image


One major peak in the LCMS chromatogram with a retention time of 3.007 minutes, the spectrum for this peak shows an [M + H]+ peak at 1221.554 m/z.
Di-substituted product, see Figure 29.





4


embedded image


One major peak in the LCMS chromatogram with a retention time of 1.842 minutes, the spectrum for this peak shows an [M + H]+ peak at 752.061 m/z.
Unreacted peptide 2 detected.





5


embedded image


One major peak in the LCMS chromatogram with a retention time of 3.1 minutes.
Structure of this product could not be assigned.





6


embedded image


Two major peaks in the LCMS chromatogram with retention times of 2.490 minutes and 2.931 minutes. The spectrum for these peaks show an [M + H]+ peak at 932.907 m/z, and an [M + H]+ peak 1115.768 m/z.
Mono-substituted and the di-substituted products were formed, see Figure 30.





7


embedded image


Two major peaks in the LCMS chromatogram with a retention times of 2.426 minutes and 2.758 minutes. The spectrum for these peaks show an [M + H]+ peak at 916.777 m/z, and an [M + H]+ peak at 1081.649 m/z.
Mono-substituted and the di-substituted products were formed, see Figure 31.





8


embedded image


One major peak in the LCMS chromatogram with a retention time of 1.810 minutes, the spectrum for this peak shows an [M + H]+ peak at 752.026 m/z.
Unreacted peptide 2 detected.









While hexafluorobenzene (VIII) was found to readily react with peptides containing two cysteine residues to generate a cyclic peptide, it was found to be completely unreactive towards nucleophilic attack by serine or tyrosine.


Example 5
Tagging of Lysine-Containing Peptides with Fluoro-Heteroaromatics

Peptide 3, was reacted according to procedures A and C. The reaction is shown below and the products for each reaction are shown in table 6.




embedded image









TABLE 6







Reaction of peptide 3 with perfluoro-heteroaromatics using procedures A and C









Procedure
ArF
Products formed





A


embedded image




embedded image







C


embedded image




embedded image











The crude reaction products were analysed used LCMS. The LCMS spectrum and chromatogram of the reaction of peptide 3 according to procedure A shows one major peak in the LCMS chromatogram with a retention time of 3.209 minutes. The spectrum for this peak shows an [M+H]+ peak at 1281.571 m/z, which indicates a tri-substituted product was formed. The structure of this product is shown in FIG. 32.


However, the LCMS spectrum and chromatogram of the reaction of peptide 3 according to procedure C is shows one major peak in the LCMS chromatogram with a retention time of 3.086 minutes. The spectrum for this peak shows an [M+H]+ peak at 1131.913 m/z, which indicates a bi-substituted product was formed. The structure of this product is shown in FIG. 33.


Peptide 3, was reacted according to procedure A with either a fluoro-heteroaromatic (I-VII) or a fluoro-aromatic (VIII). The chemical structures for each of the various fluoro-heteroaromatics (I-VII) or fluoro-aromatic (VIII) are shown in table 7.









TABLE 7







Reaction of peptide 3 with various fluoro-heteroaromatics (I-VII) or fluoro-


aromatic (VIII) reagents using procedure A.












LCMS spectrum and



Entry
ArF
chromatogram
Products





1


embedded image


One major peak in the LCMS chromatogram with a retention time of 2.608 minutes, the spectrum for this peak shows an [M + H]+ peak at 1229.630 m/z.
Tri-substituted product, see Figure 34.





2


embedded image


Three major peaks in the LCMS chromatogram.
Structure of these products could not be assigned.





3


embedded image


One major peak in the LCMS chromatogram with a retention time of 3.115 minutes, the spectrum for this peak shows an [M + H]+ peak at 1303.728 m/z.
Di-substituted product, see Figure 35.





4


embedded image


One major peak in the LCMS chromatogram with a retention time of 2.659 minutes, the spectrum for this peak shows an [M + H]+ peak at 1086.348 m/z.
Di-substituted product, see Figure 36.





5


embedded image


This shows one major peak in the LCMS chromatogram with a retention time of 3.261 minutes, the spectrum for this peak shows an [M + H]+ peak at 1263.562 m/z.
Di-substituted product, see Figure 37.





6


embedded image


Two major peaks in the LCMS chromatogram with retention times of 2.874 minutes and 3.343 minutes. The spectrum for these peak shows an [M + H]+ peak at 1197.389 m/z and an [M + H]+ peak at 1378.105 m/z.
Di-substituted and tri- substituted products, see Figure 38.





7


embedded image


This shows two major peaks in the LCMS chromatogram with retention times of 2.807 minutes and 3.245 minutes. The spectrum for these peak shows an [M + H]+ peak at 1165.693 m/z, and an [M + H]+
Di-substituted and tri- substituted products, see Figure 39.




peak at 11328.587 m/z.






8


embedded image


One major peak in the LCMS chromatogram with a retention time of 1.680 minutes. This peak corresponds to unreacted peptide 3.
Unreacted peptide 3 detected.









While, hexafluorobenzene (VIII) will readily react with peptides containing two cysteine residues it was found to be completely unreactive towards nucleophilic attack by lysine.


Example 6
Effective on Cysteine, Lysine and Serine Tagging Using Fluoro-Heteroaromatics or Fluoro-Aromatics in the Presence of Organic or Inorganic Bases

Peptides 1-3, were reacted according to procedure H, where the solvent used was DMF and the base used was caesium carbonate. A reaction scheme is shown below, although the products obtained varied, as shown in table 8.




embedded image









TABLE 8







Summary of the reactions of peptides 1-3 carried according to reaction


procedure H where the base used was caesium carbonate.


















[m/z]obs



Entry
ArF
Peptide
Products
Position
(Da)
Product





R1.4


embedded image


1, X = Cys
Tri-substituted (main) Di-substituted (minor)   Mono- substituted
2Cys and Tyr Cys and Tyr   Cys/Tyr mixture
1231.28   1138.35     1048.3 
P5, see Figure 62 P6a and P6b, see Figure 63 P7a and P7b, see





(minor)


Figure 64





R1.5


embedded image


2, X = Ser
Mono- substituted   Di-substituted     Tri-substituted
Tyr/Ser mixture   Tyr and Ser   2 Ser and Tyr
 901.34     1050.34     1199.33
P8a and P8b, see Figure 65 P9a and P9b, see Figure 66 P10, see Figure 67





R1.6


embedded image


3, X = Lys
Tri-substituted
2Lys and Tyr
1281.45
P11, see Figure 68









Peptides 1-3, were reacted according to procedure H, where the solvent used was DMF and the base used was N,N-diisopropylethylamine (DIPEA). A reaction scheme is shown below, although the products obtained varied, as shown in table 9.




embedded image









TABLE 9







Summary of tagging reactions of peptides 1-3 carried out according to


reaction procedure H where the base used was DIPEA.


















[m/z]obs



Entry
ArF
Peptide
Products
Position
(Da)
Product





R2.4


embedded image


1, X = Cys
Tri- substituted
2Cys and Tyr
1233.7 
P5, see Figure 62





R2.5


embedded image


2, X = Ser
Mono- substituted
Tyr
 901.35
P12, see Figure 69





R2.6


embedded image


3, X = Lys
Tri- substituted
2Lys and Tyr
1281.45
P11, see Figure 68









It will be noted that there are clear differences in the products obtained depending on the base used.


For example;

    • DIPEA provides less of a mixture of products. This is evident when comparing entries R1.4 (table 8) and R2.4 (table 9). Here it can be seen that when the reaction of peptide 1 and pentafluoropyridine is carried out using DIPEA as the base (R2.4, table 9) only one main product is formed. When the analogous reaction is carried out with caesium carbonate as the base (R1.4, table 8) three products were observed and isolated.


Example 7
Selective Cysteine Tagging Using Fluoroheteroaromatics in the Presence of Tyrosine Employing 2,2,2-trifluoroethanol (TFE) as Solvent

Peptide 1, was reacted according to procedure D. The reaction is shown below and the product for the reaction is shown in table 10.




embedded image









TABLE 10







Reaction of peptide 1 with fluoro-heteroaromatics using Procedure D










Stapling



Procedure
reagent
Comments/Products formed





D


embedded image




embedded image











The crude reaction products were analysed used LCMS. The LCMS spectrum and chromatogram of the reaction of peptide 1 according to procedure D shows one major peak in the LCMS chromatogram with a retention time of 2.617 minutes. The spectrum for this peak shows an [M+H]+ peak at 1081.629 m/z, which indicates a bi-substituted product was formed. The structure of this product is shown in FIG. 40.


Peptides 1-3 were reacted with both hexafluorobenzene and pentafluoropyridine according to procedure D. A reaction scheme is shown below, although the products obtained varied, as shown in table 11.




embedded image









TABLE 11







Reaction of peptides 1-3 with hexafluorobenzene and pentafluoropyridine


according to procedure D.


















[m/z]obs



Entry
ArF
Peptide
Products
Position
(Da)
Product





1


embedded image


1, X = Cys
No reaction








2


embedded image


2, X = Ser
No reaction








3


embedded image


3, X = Lys
No reaction








4


embedded image


1, X = Cys
Mono- substituted Di-substituted
Cys   2Cys
 989.36   1038.29
P7a   P14





5


embedded image


2, X = Ser
No reaction








6


embedded image


3, X = Lys
No reaction












The crude reaction products were analysed used LCMS.


The reaction of peptides 1-3 with hexafluorobenezne according to procedure D did not yield any products (table 11, entries 1-3). Similarly, the reaction of peptides 2 and 3 with pentafluoropyridine according to procedure D also did not yield any products (table 11, entries 5 and 6).


However, the reaction of peptide 1 with pentafluoropyridine according to procedure D produced two products that were isolated, purified and characterised. The first of the products was P7a, the chemical structure of which is shown in FIG. 41. The second product, was characterised to be the di-cysteine substituted product P14. The chemical structure for P14 are shown in FIG. 42. Both P7a and P14 have no substitution on the tyrosine residue of peptide 1. This shows that by using TFE as the solvent, it is possible to selectively introduce fluoro-heteroaromatic groups at the sulphur (cysteine) positions of peptide 1 over the oxygen-containing tyrosine position.


Perfluorinated solvents have been shown to accelerate organic chemistry reactions,viii including SNAr reactions of fluoropurines.ix 2,2,2-Trifluoroethanol (TFE) has also been the subject of several studies involving peptides and proteins and has been shown to stabilise α-helical secondary structures.x,xi,xii,xiii Using the procedures developed previouslyviii we have demonstrated that, rather than enhancing reactivity, employing 2,2,2-trifluoroethanol (TFE) as the solvent in our system broadly attenuated the reactivity of the electrophiles under investigation. Under these conditions hexafluorobenzene did not react with any peptide side chain (see table 11 entries 1-3). Previously, regiocontrol using pentafluoropyridine was challenging and multiple substitution products were observed, including substitution on the competing tyrosine. Replacement of DMF with TFE afforded a mild method for controlled introduction of fluoro-heteroaromatics at cysteine.


Also as table 11, entries 5 and 6 show in the presence of the solvent TFE peptide 2 (di-serine peptide) and peptide 3 (di-lysine peptide) do not react with pentafluoropyridine.


Accordingly, TFE can be used to allow selective tagging of cysteine (or sulphur nucleophiles) in the presence of serine and lysine residues.


Example 8
Selective Cysteine Tagging Using with Fluoro-Heteroaromatics in the Presence of Lysine Employing TFE as Solvent

Based on the results from Example 7, the inventors subsequently wanted to apply the application of TFE induced selectivity to peptide systems containing mixed cysteine and lysine side chain functionalities, such as peptide 4, to provide further evidence that they could obtain selective functionalization between sulphur (cysteine) and nitrogen (lysine).


Peptide 4, was reacted according to procedures E and F. The general reaction is shown below. The differences between the various reactions and the relative ratio of the products obtained is outlined below and is summarised in table 14.




embedded image


As can be seen above, two products were obtained. The main peak in the mass spectrum for product P15 was at 1265.84 m/z, which corresponds to product P15 with an MeCN adduct. Similarly, the main peak in the mass spectrum for product P16 is at 1565.99 m/z, which corresponds to product P16 with an MeCN adduct.


The LCMS chromatogram of the reaction of peptide 4 according to procedure E, using DMF as the solvent for the reaction is shown in FIG. 43. This shows two major peaks in the LCMS chromatogram, with retention times of 5.77 minutes and 6.98 minutes, and a smaller peak with a retention time of 6.44 minutes. It was found that the peak at 5.77 minutes corresponded to unreacted peptide 4, the peak at 6.44 minutes corresponded to product P15 and the peak at 6.98 minutes corresponded to product P16.


The LCMS chromatogram of the reaction of peptide 4 according to procedure F, using DMF as the solvent for the reaction is shown in FIG. 44. As before, this shows two major peaks in the LCMS chromatogram, with retention times of 5.77 minutes (corresponding to unreacted peptide) and 7.04 minutes (corresponding to product P16), and a smaller peak with a retention time of 6.49 minutes (corresponding to product P15).


Both these show that while product P15 was present, the predominant product formed when the solvent was DMF was product P16.


The LCMS chromatogram of the reaction of peptide 4 according to procedure E, using TFE as the solvent for the reaction is shown in FIG. 45. This shows a major peak in the LCMS chromatogram, with a retention time of 6.33 minutes (corresponding to product P15), and a smaller peak with a retention time of 7.01 minutes (corresponding to product P16). There was no peak present corresponding to unreacted peptide.


The LCMS chromatogram of the reaction of peptide 4 according to procedure F, using TFE as the solvent for the reaction is shown in FIG. 46. This shows a major peak in the LCMS chromatogram, with a retention time of 6.31 minutes (corresponding to product P15), and a smaller peak with a retention time of 6.87 minutes (corresponding to product P16). There was no peak present corresponding to unreacted peptide.


Both these show that while product P16 was present, the predominant product formed when the solvent was TFE was product P15. Thus, when TFE was used as the solvent the cystenine was tagged selectively in the presence of lysine.


The relative ratios of products P15 and P16 for the various reactions are set out in table 12 below.









TABLE 12







Differences between the reaction procedures used and the ratio of the


products obtained when peptide was reacted according to


procedures E and F














Relative





Molar equivalents
ratio



Procedure
of
of products













Solvent
used
pentafluoropyridine
P15
P16

















DMF
E
3
1
10.7



DMF
F
1
1
9.6



TFE
E
3
13.3
1



TFE
F
1
2.8
1










As explained above, treatment of the mixed functionality peptide with pentafluopyridine in DMF led to almost complete reaction at both cysteine and both lysine side chains, whereas, the reaction carried out in TFE afforded reaction almost exclusively at both cysteine, leaving the lysines free.


Example 9
Preparing Cyclic Peptides Using Perfluoroheteroaromatics

Peptide 1, was reacted according to procedure G. The reaction is shown below and the product for the reaction is shown in table 12.




embedded image









TABLE 13







Reaction of peptide 1 with perfluoroheteroaromatics using procedure G









Procedure
ArF
Products formed





G


embedded image




embedded image











The crude reaction products were analysed used LCMS. The LCMS chromatogram had a peak with a retention time of 2.90 minutes, which was analysed and showed an [M+H]+ peak at 1063.544 m/z, which indicated a cyclic product was formed, as shown above.


This shows that when the concentration of the reagents is lower the reaction favours the formation of a cyclic peptide in a one step synthesis as opposed to a multiply substituted product, as described in many of the previous examples.


Example 10
Preparation of Multi-Cyclic Peptides Using Fluoro-Heteroaromatics

It is also possible to prepare multi cyclic peptide constructs from linear peptide and peptide mimetic sequences containing 3 or more nucleophilic side chains using the methods outlined previously.


These multicyclic peptides (or peptide mimetics may be prepared in a ‘one-pot’ fashion by nucleophilic aromatic substitution reaction of an appropriate perfluoro heteroaromatic with a peptide (or peptide mimic) containing 3 or more nucleophilic side chains according to the general reaction set out below. Examples of mutli-cyclic peptoid constructs prepared using this approach are detailed in Example 11.




embedded image


It is also conceivable that multicyclic peptides (or peptide mimetics) can be accessed in a regioselective ‘step-wise’ fashion by sequential reaction of judiciously positioned thiol (e.g. cysteine) residues with a chosen perfluoroheteroaromatic using TFE as the solvent to selectively form a first macrocycle, followed by reaction in DMF with a second perfluoro heteroaromatic to furnish a second attached macrocycle through reaction at amine (e.g. lysine) side chains as shown below.




embedded image


Alternatively, a peptide (or peptide mimetics) can initially form a monocyclic peptide as in Method 2, however, rather than reacting with a second perfluoro heteroaromatic, the available amine (e.g. lysine) functionality can react further at available positions on the attached perfluoro heteroaromatic to form a multicyclic system as shown below.




embedded image


Alternatively, a peptide (or peptide mimetic) can initially be prepared where only one reactive site is revealed and the remaining nucleophilic side chains are protected. An example of this peptide is peptide 6. Peptide 6 can then be reacted selectively with a fluoro-heteroaromatic as shown in the two examples below.


The LCMS chromatogram (280 nm) for purified P17 has a peak with a retention time of 2.622 minutes and the mass spectrum for that peak has an [M+H]+ peak at 1235.84 m/z. The LCMS chromatogram (280 nm) for purified P18 has a peak with a retention time of 2.571 minutes and the mass spectrum for that peak has an [M+H]+ peak at 1219.037 m/z.




embedded image


Removal of the Acm protecting group and subsequent cyclisation onto the fluoro-heteroaromatic rings would give rise to multi-cyclic peptide systems. An overview of this stepwise approach to prepare multi-cyclic peptide constructs is shown below.




embedded image


Example 11
Reaction of Cysteine-Containing Peptoids with Fluoro-Heteroaromatics

The chemical structures for peptoid 1 and 2 is given in FIGS. 47 and 48 respectively.


Peptoids 1 and 2 were reacted according to procedure I, and the results are shown in table 14.









TABLE 14







Reaction of peptoids 1 and 2 with pentafluoropyridine and fluoro-


heteroaromatic (I) using procedure I.











Entry
Peptoid
ArF
Analysis
Products





1
1


embedded image


LCMS shown in Figure 49.
A mixture of products were obtained. The main product observed was a tetra- substituted, see Figure 50





2
1


embedded image


MALDI- Tof analysis shown in Figure 51.
A bi-cyclic product, see Figure 52, a mono-cyclic, di- substituted product, see Figure 53, and a tetra-substituted product, see Figure 54, were obtained.





3
2


embedded image


LCMS shown in Figure 55.
A mixture of products were obtained. The main product observed was an octa-substituted, see Figure 56.





4
2


embedded image


MALDI- Tof analysis shown in Figure 57.
A mono-cyclic, di-substituted product, see Figure 58, a tetra- substituted product, see Figure 59, a di-cyclic, tetra- substituted product, see Figure 60, and a






mono-cyclic,






hexa-substituted






product, see






Figure 61, were






obtained.









The reaction of peptoids 1 and 2 with pentafluoropyridine according to procedure I results predominately in the formation of linear multiply substituted products (FIGS. 50 and 56).


However, the reaction peptoids 1 and 2 with fluoro-heteroaromatic (I) according to procedure I results predominately in the formation of cyclic (FIGS. 53, 58, 61) and multi-cyclic (FIGS. 52 and 60) products.


Example 12
Cyclisation with Further Heteroaromatics

To show that further fluoro-heteroaromatic compounds could be used to cyclise peptides further reactions were carried out on peptides 7 to 10 using procedure D, and the results are shown below in table 15.









TABLE 15







Reaction of peptides 7 to 10 according to procedure D












LCMS




Fluoro-
spectrum and



Peptide
heteroaromatic
chromatogram
Product





 7


embedded image


Peak in LCMS chromatogram with retention time of 3.183 minutes/ The spectrum for this peak shows an [M + H]+ peak at 1254.47 m/z.


embedded image







 8


embedded image


Two major peaks in the LCMS chromatogram with retention times of 2.750 minutes and 3.833 minutes. The spectrum for these peaks show an [M + 2 MeCN + H]+ peak at 1288 m/z and an [M + H]+ peak at 1686 m/z.


embedded image









embedded image







 9


embedded image


One major peak in the LCMS chromatogram with a retention time of 2.292 minutes, the spectrum for this peak shows an [M + H]+ peak at 880 m/z.


embedded image







 9


embedded image


Two peaks in the LCMS chromatogram with retention times of 3.650 minutes and 3.125 minutes. The spectrum for these peaks show an [M + H]+ peak at 1238 m/z and an [M + H]+ peak at 982 m/z.


embedded image












embedded image







 9


embedded image


Two major peaks in the LCMS chromatogram with retention times of 3.558 minutes and 2.583 minutes. The spectrum for these peaks showed an [M + H]+ peak at 1132 m/z, and [M + H]+ peak at and 929 m/z


embedded image












embedded image







 9


embedded image


Two major peaks in the LCMS chromatogram with retention times of 3.208 minutes and 2.417 minutes. The spectrum for these peaks show an [M + H]+ peak at 1064 m/z, and [M + H]+ peaks at 896 m/z and 879 m/z.


embedded image












embedded image












embedded image







10


embedded image


Two peaks in the LCMS chromatogram with retention times of 2.125 minutes and 2.197 minutes. The spectrum for these peaks show [M + H]+ peaks at 868 m/z, , 1000 m/z and 848 m/z.


embedded image












embedded image












embedded image







10


embedded image


Two peaks in the LCMS chromatogram with retention times of 3.650 minutes and 2.708 minutes. The spectrum for these peaks show [M + H]+ peaks at 1206 m/z and 951 m/z.


embedded image












embedded image











Accordingly, it will be apparent that a range of fluoro-heteroaromatic compounds can be used to produce cyclic peptide scaffolds. It should also be noted that peptide cyclisation is also possible via two serine residues which is not possible using current published work.


Summary

Advantages of the invention include the possibility of stapling a range of amino acid residues not only on cysteine as with other published methodologies. Use of fluorinated reagents allows monitoring and analysis to be carried out using 19F NMR, which is not available in other heteroaromatic tag methods and selectivity for specific amino acids can be tuned by varying the solvent e.g. using TFE no tagging is observed at tyrosine or lysine.


REFERENCES


iBlackwell, H. E. and Grubbs, R. H. Highly Efficient Synthesis of Covalently Cross-Linked Peptide Helices by Ring-Closing Metathesis. Angew. Chem. Int. Ed. 1998, 37, 3281-3284.



iiSchafmeister, C. E. et al. An All-Hydrocarbon Cross-Linking System for Enhancing the Helicity and Metabolic Stability of Peptides. J. Am. Chem. Soc. 2000, 122, 5891-5892. iiiVerdine, G. L. and Hilinski, G. J. Stapled Peptides for Intracellular Drug Targets. Methods in Enzymology, Elsevier Inc, 2012, Vol. 503. ivCraik, D. J. et al. The Future of Peptide-based Drugs. Chem. Biol. Drug. Des. 2013, 81,136-147.



vChristopher J. White and Andrei K. Yudin. Contemporary strategies for peptide macrocyclization. Nature Chemistry, 2011, 3, 509-524



viHudson, A. S. et al. Synthesis of a novel tetrafluoropyridine-containing amino acid and tripeptide. Tet. Lett, 2013, 54, 4865-4867.



viiAlexandra M. Webster et al. A Mild Method for the Synthesis of a Dehydrobutyrine Containing Amino Acid. Tetrahedron, 2014, article accepted



viiiCoxon, C. R. et al. Investigating the potential application of pentafluoropyridine based reagents in the preparation of novel peptide systems. Org. Biomol. Chem.


Manuscript in Preparation


ixAlexander M. Spokoyny et al. A Perfluoroaryl-Cysteine SNAr Chemistry Approach to Unprotected Peptide Stapling. J. Am. Chem. Soc. 2013, 135, 5946-5949.



xYekui Zou et al. Convergent diversity-oriented side-chain macrocyclization scan for unprotected peptides. Org. Biomol. Chem. 2014, 135, 5946-5949



xi A. Berkessel et al. Dramatic Acceleration of Olefin Epoxidation in Fluorinated Alcohols: Activation of Hydrogen Peroxide by Multiple H-Bond Networks. J. Am. Chem. Soc., 2006, 128, 8421-8426.



xiiTrifluoroacetic Acid in 2,2,2-Trifluoroethanol Facilitates SNAr Reactions of Heterocycles with Arylamines. Benoit Carbain et al. Chem. Eur. J. 2014, 20, 2311-2317



xiiiKentaro Shiraki et al. Trifluoroethanol-induced Stabilization of the α-Helical Structure of β-Lactoglobulin: Implication for Non-hierarchical Protein Folding. J. Mol. Biol. 1995, 245, 180-194.



xivF. D. Sonnichsen et al. Effect of trifluoroethanol on protein secondary structure: an NMR and CD study using a synthetic actin peptide. Biochemistry, 1992, 31, 8790-8798.



xvPeizhi Luo and Robert L. Baldwin. Mechanism of Helix Induction by Trifluoroethanol: A Framework for Extrapolating the Helix-Forming Properties of Peptides from Trifluoroethanol/Water Mixtures Back to Water. Biochemistry, 1997, 36, 8413.



xviK. Gast et al. Trifluoroethanol-induced conformational transitions of proteins: insights gained from the differences between alpha-lactalbumin and ribonuclease A. Protein Sci. 1999, 8, 625-634.

Claims
  • 1. A method for preparing a cyclic peptide, derivative or analogue thereof, the method comprising contacting a peptide, derivative or analogue thereof with a fluoro-heteroaromatic compound to cyclise the peptide, derivative or analogue thereof.
  • 2. The method according to claim 1, wherein the peptide comprises at least two, three, four or five amino acid residues, and preferably wherein the peptide comprises a polypeptide comprising at least five, ten or fifteen amino acid residues.
  • 3. (canceled)
  • 4. The method according to claim 1, wherein the fluoro-heteroaromatic compound contains at least one nitrogen atom in the aromatic ring, and preferably wherein the fluoro-heteroaromatic compound contains one, two or three nitrogen atoms in the aromatic ring.
  • 5. (canceled)
  • 6. The method according to claim 1, wherein the fluoro-heteroaromatic compound comprises at least one hydrogen atom, and each hydrogen atom is covalently bonded to a carbon atom in the aromatic ring, or wherein the fluoro-heteroaromatic compound contains at least two fluorine atoms, where each fluorine atom is covalently bonded to a carbon atom in the aromatic ring and the fluoro-heteroaromatic compound comprises a perfluoroaromatic compound, or wherein the fluoro-heteroaromatic compound contains at least one chlorine atom, where the or each chlorine atom is covalently bonded to a carbon atom in the aromatic ring.
  • 7. (canceled)
  • 8. (canceled)
  • 9. The method according to claim 1, wherein the peptide, derivative or analogue thereof contains at least two nucleophilic side chains, preferably wherein a first nucleophilic side chain reacts in an SNAr type reaction with the fluoro-heteroaromatic compound to displace a fluorine atom and create a covalent bond between the first nucleophilic side chain and the fluoro-heteroaromatic compound, and subsequently a second nucleophilic side chain reacts in an SNAr type reaction with the fluoro-heteroaromatic compound, which is covalently bonded to the first nucleophilic side chain, to displace a further fluorine atom and create a covalent bond between the second nucleophilic side chain and the fluoro-heteroaromatic compound, thereby forming the cyclic peptide, derivative or analogue thereof, preferably wherein the nucleophilic side chains which become linked by a linker as a result of the method are at least one, two, three, four or five amino acid residues apart, preferably wherein the nucleophilic side chains which become linked by a linker as a result of the method are at least six, seven, eight, nine or ten amino acid residues apart.
  • 10. (canceled)
  • 11. (canceled)
  • 12. The method according to claim 9, wherein at least one of the nucleophilic side chains comprises a thiol group, an amine group, and/or an alcohol group.
  • 13. The method according to claim 12, wherein the or each thiol is provided on a cysteine residue or modified cysteine residue in the peptide, derivative or analogue thereof, or the or each amine group is provided on a lysine residue in the peptide, derivative or analogue thereof, and/or the or each alcohol group is provided on a tyrosine, serine or threonine residue within the peptide, derivative or analogue thereof.
  • 14.-17. (canceled)
  • 18. The method according to claim 1, wherein the cyclic peptide, derivative or analogue thereof that is prepared is monocyclic.
  • 19. The method according to claim 1, wherein the cyclic peptide, derivative or analogue thereof that is prepared is multi-cyclic.
  • 20.-21. (canceled)
  • 22. The method according to claim 1, wherein the method is carried out with the peptide, derivative or analogue thereof in solution using a solvent, and the solvent is preferably dimethylformamide (DMF) or 2,2,2-trifluoroethanol (TFE).
  • 23.-24. (canceled)
  • 25. The method according to claim 9, wherein the at least two nucleophilic side chains comprise at least one thiol group and at least one phenol group and the fluoro-heteroaromatic compound reacts selectively with the at least one thiol group, preferably the solvent used is TFE.
  • 26. The method according to claim 9, wherein the at least two nucleophilic side chains comprise at least one amine group and at least one phenol group and the fluoro-heteroaromatic compound reacts selectively with the at least one amine group, preferably the solvent used is TFE.
  • 27. The method according to claim 9, wherein the at least two nucleophilic side chains comprise at least one thiol group and at least one amine group and the fluoro-heteroaromatic compound reacts selectively with the at least one thiol group, preferably, the solvent used is TFE.
  • 28. The method according to claim 1, wherein the method comprises dissolving a peptide, derivative or analogue thereof in a solvent, and adding a base, preferably N,N-diisopropylethylamine (DIPEA), thereto before the fluoro-heteroaromatic compound is added to the dissolved peptide to create a reaction solution, preferably, the reaction solution is mixed for at least one hour, two hours, three hours, four hours or five hours.
  • 29. (canceled)
  • 30. The method according to claim 28, wherein the method includes the final step of subjecting the solution to a vacuum to remove any volatile liquids, and/or wherein the step of mixing the solution is undertaken at room temperature or at at least 30° C. and preferably at least 40° C., and further preferably at least 50° C.
  • 31.-33. (canceled)
  • 34. The method according to claim 1, wherein the molar ratio of the peptide, derivative or analogue thereof to the fluoro-heteroaromatic compound is between 1:1 and 1:100, and preferably is between 1:5 and 1:50, and more preferably between 1:10 and 1:40, and most preferably is between 1:20 and 1:30.
  • 35. (canceled)
  • 36. A method for producing a cyclic peptide, derivative or analogue thereof in a “step-wise” fashion, the method comprising at least two steps sequentially, wherein the first step comprises contacting a peptide, derivative or analogue thereof with a fluoro-heteroaromatic compound to create a chemically modified peptide, derivative or analogue thereof, and the second step comprises contacting the chemically modified peptide, derivative or analogue thereof with a fluoro-heteroaromatic compound to cyclise the chemically modified peptide, derivative or analogue thereof.
  • 37. A method according to claim 36, wherein, the solvent for the first step is different to the solvent for the second step, and preferably TFE is the solvent for the first step and DMF is the solvent for the second step.
  • 38. The method according to claim 36, wherein the second step comprises contacting the peptide, derivative or analogue thereof with a fluoro-heteroaromatic compound which is added to the reaction during the second step, or further contacting the peptide, derivative or analogue thereof with a fluoro-heteroaromatic compound which is already attached to the peptide, derivative or analogue thereof by at least one chemical bond.
  • 39. (canceled)
  • 40. A cyclic peptide, derivative or analogue thereof obtained or obtainable by the method according to claim 1.
  • 41.-43. (canceled)
Priority Claims (1)
Number Date Country Kind
1409538.4 May 2014 GB national
PCT Information
Filing Document Filing Date Country Kind
PCT/GB2015/051543 5/28/2015 WO 00