Cycloalkyl-containing apoptosis signal-regulating kinase 1 inhibitors and methods of use thereof

Information

  • Patent Grant
  • 10968199
  • Patent Number
    10,968,199
  • Date Filed
    Wednesday, August 21, 2019
    5 years ago
  • Date Issued
    Tuesday, April 6, 2021
    3 years ago
Abstract
The present invention discloses compounds of Formula (I),
Description
TECHNICAL FIELD

The present invention relates generally to compounds and pharmaceutical compositions useful as ASK-1 inhibitors. Specifically, the present invention relates to compounds useful as inhibitors of ASK-1 and methods for their preparation and use.


BACKGROUND OF THE INVENTION

Apoptosis signal-regulating kinase 1 (ASK-1) is a member of the mitogen-activated protein kinase kinase kinase (MAPKKK, MAP3K) family, which when activated phosphorylates downstream MAP kinase kinases (MAPKK, MAP2K), which in turn activate MAP kinases (MAPK). MAPKs elicit a response by phosphorylating cellular substrates, thus regulating the activity of transcription factors that ultimately control gene expression. Specifically ASK-1, also known as MAPKKK5, phosphorylates MAPKK4/MAPKK7 or MAPKK3/MAPKK6, which subsequently phosphorylates and activates the c-Jun N-terminal protein kinase (JNK) and p38 MAPKs, respectively (H. Ichijo, et al., Cell Comm. Signal 2009, 7, 1-10; K. Takeda, et al., Annu. Rev. Pharmacol. Toxicol. 2008, 48, 199-225; H. Nagai, et al., J. Biochem. Mol. Biol. 2007, 40, 1-6). Activation of the JNK and p38 pathways triggers a downstream stress response such as apoptosis, inflammation, or differentiation (H. Ichijo, et al., Science 1997, 275, 90-94; K. Takeda, et al., J. Biol. Chem. 2000, 275, 9805-9813; K. Tobiume, et al., EMBO Rep. 2001, 2, 222-228; K. Sayama et al., J. Biol. Chem. 2001, 276, 999-1004).


The activity of ASK-1 is regulated by thioredoxin (Trx), which binds to the N-terminal end of ASK-1 (M. Saitoh, et al., EMBO J. 1998, 17, 2596-2606). ASK-1 is activated succeeding autophosphorylation at Thr838 in response to environmental stimuli including oxidative stress, lipopolysaccharides (LPS), reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, an increase in cellular calcium ion concentrations, Fas ligand, and various cytokines such as tumor necrosis factor (TNF) (H. Nishitoh, et al., Genes Dev. 2002, 16, 1345-1355; K. Takeda, et al., EMBO Rep. 2004, 5, 161-166; A. Matsuzawa, et al., Nat. Immunol. 2005, 6, 587-592).


ASK-1 has been associated with autoimmune disorders, neurodegenerative disorders, inflammatory diseases, chronic kidney disease, cardiovascular disease, metabolic disorders, and acute and chronic liver diseases (R. Hayakawa, et al., Proc. Jpn. Acad., Ser. B 2012, 88, 434-453).


More specifically, ASK-1 has been associated with hepatic steatosis, including non-alcoholic fatty liver disease (NAFLD) and non-alcohol steatohepatitis (NASH). In a mouse model, high fat diets have caused induction of hepatic steatosis, ultimately causing fat accumulation and fatty acid oxidation. This led to the generation of ROS which caused hepatocyte dysfunction and death (S. K. Mantena, et al., Free Radic. Biol. Med. 2008, 44, 1259-1272; S. K. Mantena, et al., Biochem. 1 2009, 417, 183-193). Moreover, TNF was shown to be critical for apoptosis of hepatocytes through the ASK-1-JNK pathway, and TNF deficient mice showed reduced hepatic steatosis and fibrosis (W. Zhang, et al., Biochem. Biophys. Res. Commun. 2010, 391, 1731-1736).


Small molecule compounds which act as ASK-1 inhibitors have been disclosed in the following publications: WO 2008/016131, WO 2009/027283, WO 2009/0318425, WO 2009/123986, US 2009/0318425, WO 2011/041293, WO 2011/097079, US 2011/0009410, G. P. Volynets, et al., J. Med. Chem. 2011, 54, 2680-2686, WO 2012/003387, WO 2012/011548, WO 2012/080735, Y. Terao, et al., Bioorg. Med. Chem. Lett. 2012, 22, 7326-7329, WO 2013/112741, G. P. Volynets, et al., Eur. J. Med. Chem. 2013, 16, 104-115, US 2014/0018370, WO 2014/100541, WO 2015/095059, WO 2016/049069, WO 2016/049070.


There is a need for the development of ASK-1 inhibitors for the treatment and prevention of disease. The present invention has identified compounds which inhibit ASK-1 as well as methods of using these compounds to treat disease.


SUMMARY OF THE INVENTION

The present invention relates to compounds and pharmaceutical compositions useful as ASK-1 inhibitors. Specifically, the present invention relates to compounds useful as inhibitors of ASK-1 and methods for their preparation and use. In addition, the present invention includes the process for the preparation of the said compounds.


In its principal aspect, the present invention provides a compound of Formula (I), or a pharmaceutically acceptable salt or ester thereof:




embedded image



wherein

  • R1 is an optionally substituted heteroaryl, preferably an optionally substituted 5-membered heteroaryl, such as one of the groups below:




embedded image




    • wherein R4 is selected from the group consisting of:

    • 1) Hydrogen;

    • 2) Optionally substituted —C1-C8 alkyl;

    • 3) Optionally substituted —C2-C8 alkenyl;

    • 4) Optionally substituted —C2-C8 alkynyl;

    • 5) Optionally substituted —C3-C8 cycloalkyl;

    • 6) Optionally substituted aryl;

    • 7) Optionally substituted arylalkyl;

    • 8) Optionally substituted heterocycloalkyl;

    • 9) Optionally substituted heteroaryl; and

    • 10) Optionally substituted heteroarylalkyl;







embedded image



is selected from wherein




embedded image




    • X2 and X3 are each independently selected from N or C(R5);

    • R5 and R6 are each independently selected from the group consisting of:

    • 1) Hydrogen;

    • 2) Halogen;

    • 3)—NO2;

    • 4) Cyano;

    • 5) Optionally substituted —C1-C8 alkyl;

    • 6) Optionally substituted —C3-C8 cycloalkyl; and

    • 7) Optionally substituted 3- to 8-membered heterocycloalkyl;



  • X1 is N or C(R11), R11 is hydrogen, halogen or optionally substituted alkoxy;





embedded image



is selected from —C3-C8 cycloalkyl and —C4-C8 cycloalkenyl, preferably cyclopropyl, cyclobutyl, cyclopentenyl or cyclohexenyl, each of which is optionally substituted with one or more substituents which are not R3; R2 is selected from the group consisting of:

    • 1) Hydrogen;
    • 2) Halogen;
    • 3) —NO2;
    • 4) Cyano;
    • 5) Optionally substituted —C1-C8 alkyl;
    • 6) Optionally substituted —C2-C8 alkenyl;
    • 7) Optionally substituted —C2-C8 alkynyl;
    • 8) Optionally substituted —C3-C8 cycloalkyl;
    • 9) Optionally substituted aryl;
    • 10) Optionally substituted arylalkyl;
    • 11) Optionally substituted 3- to 8-membered heterocycloalkyl;
    • 12) Optionally substituted heteroaryl;
    • 13) Optionally substituted heteroarylalkyl;
    • 14) —N(R7)(R8);
    • 15) —S(O)2N(R7)(R8);
    • 16) —N(R7)C(O)(R8); and
    • 17) —N(R7)S(O)2(R8);
  • R3 is selected from the group consisting of:
    • 1) —NO2;
    • 2) Cyano;
    • 3) —N(R7)(R8);
    • 4) —N(R9)C(O) N(R7)(R8);
    • 5) —N(R7)C(O)(R8);
    • 6) —N(R7)C(O)2(R8);
    • 7) —N(R9) S(O)2N(R7)(R8);
    • 8) —N(R7)S(O)2(R8);
    • 9) —C(O)2 (R7);
    • 10) —C(O)N(R7)(R8);
    • 11) —C(O)N(R7)S(O)2(R8);
    • 12) —CH2(O)C(O)2(R7);
    • 13) —CH2(O)C(O)N(R7)(R8);
    • 14) Optionally substituted —C1-C8 alkyl;
    • 15) Optionally substituted —C2-C8 alkenyl;
    • 16) Optionally substituted —C2-C8 alkynyl;
    • 17) Optionally substituted —C3-C8 cycloalkyl;
    • 18) Optionally substituted aryl;
    • 19) Optionally substituted arylalkyl;
    • 20) Optionally substituted 3- to 8-membered heterocycloalkyl;
    • 21) Optionally substituted heteroaryl; and
    • 22) Optionally substituted heteroarylalkyl;


      wherein R7, R8, and R9 are independently selected from the group consisting of hydrogen, —C1-C8 alkyl, —C3-C8 cycloalkyl, 3- to 8-membered heterocycloalkyl, aryl, and heteroaryl, all of which are optionally substituted with 1-3 substituents selected from halo, alkyl, mono- or dialkylamino, alkyl or aryl or heteroaryl amide, —CN, alkoxy, —CF3, aryl, and heteroaryl. Alternatively, R7 and R8 are taken together with the nitrogen to which they are attached to form a heterocyclic.


In another embodiment, the present invention provides a pharmaceutical composition comprising a therapeutically effective amount of a compound or combination of compounds of the present invention, or a pharmaceutically acceptable salt form, stereoisomer, solvate, hydrate or combination thereof, in combination with a pharmaceutically acceptable carrier or excipient.


In another embodiment, the present invention provides a method for the prevention or treatment of an ASK-1 mediated disease or condition. The method comprises administering a therapeutically effective amount of a compound of Formula (I). The present invention also provides the use of a compound of Formula (I) for the preparation of a medicament for the prevention or treatment of an ASK-1 mediated disease or condition. Such diseases include autoimmune disorders, neurodegenerative disorders, inflammatory diseases, chronic kidney disease, cardiovascular disease, metabolic disorders, and acute and chronic liver diseases.







DETAILED DESCRIPTION OF THE INVENTION

A first embodiment of the invention is a compound represented by Formula (I) as described above, or a pharmaceutically acceptable salt or ester thereof.


In certain embodiments, the present invention relates to compounds of Formula (I), and pharmaceutically acceptable salts and esters thereof, wherein




embedded image



is selected from:




embedded image



wherein each of the above shown groups is optionally substituted when possible, and each R5 and R6 are as previously defined.


In certain embodiments, the present invention relates to compounds of Formula (I), and pharmaceutically acceptable salts and esters thereof, wherein




embedded image



is




embedded image



each of which is optionally further substituted.


In certain embodiments, the present invention relates to compounds of Formula (I), and pharmaceutically acceptable salts and esters thereof, wherein R1 is selected from the groups below:




embedded image



and R4 is selected from:




embedded image



wherein each of the above shown groups is optionally substituted.


In certain embodiments, the present invention relates to compounds of Formula (I), and pharmaceutically acceptable salts and esters thereof, wherein R2 is selected from the groups below:




embedded image



wherein each of the above shown groups is optionally substituted.


In certain embodiments, the present invention relates to compounds of Formula (I), and pharmaceutically acceptable salts and esters thereof, wherein




embedded image



is selected from the groups below:




embedded image



wherein each of the above shown groups is optionally substituted.


In certain embodiments, the present invention relates to compounds of Formula (I), and pharmaceutically acceptable salts and esters thereof, wherein R3 is selected from:




embedded image


In one embodiment, the invention provides a compound represented by Formula (IIa), or (IIb), or a pharmaceutically acceptable salt or ester thereof:




embedded image



wherein R3, R4,




embedded image



and X1 are as previously defined.


In another embodiment, the invention provides a compound represented by Formula (IIIa) or (IIIb), or a pharmaceutically acceptable salt or ester thereof:




embedded image



wherein R3 and R4 are as previously defined.


Representative compounds of the invention include, but are not limited to, the following compounds (compound 1 to compound 60 in Table 1) according to Formula (IIIa), and pharmaceutically acceptable salts thereof, wherein R3 and R4 are delineated for each compound in Table 1.




embedded image











TABLE 1





compound
R3
R4

















1


embedded image




embedded image







2


embedded image




embedded image







3


embedded image




embedded image







4


embedded image




embedded image







5


embedded image




embedded image







6


embedded image




embedded image







7


embedded image




embedded image







8


embedded image




embedded image







9


embedded image




embedded image







10


embedded image




embedded image







11


embedded image




embedded image







12


embedded image




embedded image







13


embedded image




embedded image







14


embedded image




embedded image







15


embedded image




embedded image







16


embedded image




embedded image







17


embedded image




embedded image







18


embedded image




embedded image







19


embedded image




embedded image







20


embedded image




embedded image







21


embedded image




embedded image







22


embedded image




embedded image







23


embedded image




embedded image







24


embedded image




embedded image







25


embedded image




embedded image







26


embedded image




embedded image







27


embedded image




embedded image







28


embedded image




embedded image







29


embedded image




embedded image







30


embedded image




embedded image







31


embedded image




embedded image







32


embedded image




embedded image







33


embedded image




embedded image







34


embedded image




embedded image







35


embedded image




embedded image







36


embedded image




embedded image







37


embedded image




embedded image







38


embedded image




embedded image







39


embedded image




embedded image







40


embedded image




embedded image







41


embedded image




embedded image







42


embedded image




embedded image







43


embedded image




embedded image







44


embedded image




embedded image







45


embedded image




embedded image







46


embedded image




embedded image







47


embedded image




embedded image







48


embedded image




embedded image







49


embedded image




embedded image







50


embedded image




embedded image







51


embedded image




embedded image







52


embedded image




embedded image







53


embedded image




embedded image







54


embedded image




embedded image







55


embedded image




embedded image







56


embedded image




embedded image







57


embedded image




embedded image







58


embedded image




embedded image







59


embedded image




embedded image







60


embedded image




embedded image











Representative compounds of the invention include, but are not limited to, the following compounds (compound 61 to compound 120 in Table 2) according to Formula (IIIb), and pharmaceutically acceptable salts thereof, wherein R3 and R4 are delineated for each compound in Table 2.




embedded image











TABLE 2





compound
R3
R4

















61


embedded image




embedded image







62


embedded image




embedded image







63


embedded image




embedded image







64


embedded image




embedded image







65


embedded image




embedded image







66


embedded image




embedded image







67


embedded image




embedded image







68


embedded image




embedded image







69


embedded image




embedded image







70


embedded image




embedded image







71


embedded image




embedded image







72


embedded image




embedded image







73


embedded image




embedded image







74


embedded image




embedded image







75


embedded image




embedded image







76


embedded image




embedded image







77


embedded image




embedded image







78


embedded image




embedded image







79


embedded image




embedded image







80


embedded image




embedded image







81


embedded image




embedded image







82


embedded image




embedded image







83


embedded image




embedded image







84


embedded image




embedded image







85


embedded image




embedded image







86


embedded image




embedded image







87


embedded image




embedded image







88


embedded image




embedded image







89


embedded image




embedded image







90


embedded image




embedded image







91


embedded image




embedded image







92


embedded image




embedded image







93


embedded image




embedded image







94


embedded image




embedded image







95


embedded image




embedded image







96


embedded image




embedded image







97


embedded image




embedded image







98


embedded image




embedded image







99


embedded image




embedded image







100


embedded image




embedded image







101


embedded image




embedded image







102


embedded image




embedded image







103


embedded image




embedded image







104


embedded image




embedded image







105


embedded image




embedded image







106


embedded image




embedded image







107


embedded image




embedded image







108


embedded image




embedded image







109


embedded image




embedded image







110


embedded image




embedded image







111


embedded image




embedded image







112


embedded image




embedded image







113


embedded image




embedded image







114


embedded image




embedded image







115


embedded image




embedded image







116


embedded image




embedded image







117


embedded image




embedded image







118


embedded image




embedded image







119


embedded image




embedded image







120


embedded image




embedded image











In another embodiment, the invention provides a compound represented by Formula (IVa) or (IVb), or a pharmaceutically acceptable salt or ester thereof:




embedded image



wherein R3 and R4 are as previously defined.


Representative compounds of the invention include, but are not limited to, the following compounds (compound 121 to compound 180 in Table 3) according to Formula (IVa), and pharmaceutically acceptable salts thereof, wherein R3 and R4 are delineated for each compound in Table 3.




embedded image











TABLE 3





compound
R3
R4







121


embedded image




embedded image







122


embedded image




embedded image







123


embedded image




embedded image







124


embedded image




embedded image







125


embedded image




embedded image







126


embedded image




embedded image







127


embedded image




embedded image







128


embedded image




embedded image







129


embedded image




embedded image







130


embedded image




embedded image







131


embedded image




embedded image







132


embedded image




embedded image







133


embedded image




embedded image







134


embedded image




embedded image







135


embedded image




embedded image







136


embedded image




embedded image







137


embedded image




embedded image







138


embedded image




embedded image







139


embedded image




embedded image







140


embedded image




embedded image







141


embedded image




embedded image







142


embedded image




embedded image







143


embedded image




embedded image







144


embedded image




embedded image







145


embedded image




embedded image







146


embedded image




embedded image







147


embedded image




embedded image







148


embedded image




embedded image







149


embedded image




embedded image







150


embedded image




embedded image







151


embedded image




embedded image







152


embedded image




embedded image







153


embedded image




embedded image







154


embedded image




embedded image







155


embedded image




embedded image







156


embedded image




embedded image







157


embedded image




embedded image







158


embedded image




embedded image







159


embedded image




embedded image







160


embedded image




embedded image







161


embedded image




embedded image







162


embedded image




embedded image







163


embedded image




embedded image







164


embedded image




embedded image







165


embedded image




embedded image







166


embedded image




embedded image







167


embedded image




embedded image







168


embedded image




embedded image







169


embedded image




embedded image







170


embedded image




embedded image







171


embedded image




embedded image







172


embedded image




embedded image







173


embedded image




embedded image







174


embedded image




embedded image







175


embedded image




embedded image







176


embedded image




embedded image







177


embedded image




embedded image







178


embedded image




embedded image







179


embedded image




embedded image







180


embedded image




embedded image











Representative compounds of the invention include, but are not limited to, the following compounds (compound 181 to compound 240 in Table 4) and pharmaceutically acceptable salts thereof, according to Formula (IVb), wherein R3 and R4 are delineated for each compound in Table 4.




embedded image











TABLE 4





compound
R3
R4







181


embedded image




embedded image







182


embedded image




embedded image







183


embedded image




embedded image







184


embedded image




embedded image







185


embedded image




embedded image







186


embedded image




embedded image







187


embedded image




embedded image







188


embedded image




embedded image







189


embedded image




embedded image







190


embedded image




embedded image







191


embedded image




embedded image







192


embedded image




embedded image







193


embedded image




embedded image







194


embedded image




embedded image







195


embedded image




embedded image







196


embedded image




embedded image







197


embedded image




embedded image







198


embedded image




embedded image







199


embedded image




embedded image







200


embedded image




embedded image







201


embedded image




embedded image







202


embedded image




embedded image







203


embedded image




embedded image







204


embedded image




embedded image







205


embedded image




embedded image







206


embedded image




embedded image







207


embedded image




embedded image







208


embedded image




embedded image







209


embedded image




embedded image







210


embedded image




embedded image







211


embedded image




embedded image







212


embedded image




embedded image







213


embedded image




embedded image







214


embedded image




embedded image







215


embedded image




embedded image







216


embedded image




embedded image







217


embedded image




embedded image







218


embedded image




embedded image







219


embedded image




embedded image







220


embedded image




embedded image







221


embedded image




embedded image







222


embedded image




embedded image







223


embedded image




embedded image







224


embedded image




embedded image







225


embedded image




embedded image







226


embedded image




embedded image







227


embedded image




embedded image







228


embedded image




embedded image







229


embedded image




embedded image







230


embedded image




embedded image







231


embedded image




embedded image







232


embedded image




embedded image







233


embedded image




embedded image







234


embedded image




embedded image







235


embedded image




embedded image







236


embedded image




embedded image







237


embedded image




embedded image







238


embedded image




embedded image







239


embedded image




embedded image







240


embedded image




embedded image











In another embodiment, the invention provides a compound represented by Formula (Va) or (Vb), or a pharmaceutically acceptable salt or ester thereof:




embedded image



wherein R3 and R4 are as previously defined.


Representative compounds of the invention include, but are not limited to, the following compounds (compound 241 to compound 300 in Table 5) according to Formula (Va), and pharmaceutically acceptable salts thereof, wherein R3 and R4 are delineated for each compound in Table 5.




embedded image











TABLE 5





compound
R3
R4







241


embedded image




embedded image







242


embedded image




embedded image







243


embedded image




embedded image







244


embedded image




embedded image







245


embedded image




embedded image







246


embedded image




embedded image







247


embedded image




embedded image







248


embedded image




embedded image







249


embedded image




embedded image







250


embedded image




embedded image







251


embedded image




embedded image







252


embedded image




embedded image







253


embedded image




embedded image







254


embedded image




embedded image







255


embedded image




embedded image







256


embedded image




embedded image







257


embedded image




embedded image







258


embedded image




embedded image







259


embedded image




embedded image







260


embedded image




embedded image







261


embedded image




embedded image







262


embedded image




embedded image







263


embedded image




embedded image







264


embedded image




embedded image







265


embedded image




embedded image







266


embedded image




embedded image







267


embedded image




embedded image







268


embedded image




embedded image







269


embedded image




embedded image







270


embedded image




embedded image







271


embedded image




embedded image







272


embedded image




embedded image







273


embedded image




embedded image







274


embedded image




embedded image







275


embedded image




embedded image







276


embedded image




embedded image







277


embedded image




embedded image







278


embedded image




embedded image







279


embedded image




embedded image







280


embedded image




embedded image







281


embedded image




embedded image







282


embedded image




embedded image







283


embedded image




embedded image







284


embedded image




embedded image







285


embedded image




embedded image







286


embedded image




embedded image







287


embedded image




embedded image







288


embedded image




embedded image







289


embedded image




embedded image







290


embedded image




embedded image







291


embedded image




embedded image







292


embedded image




embedded image







293


embedded image




embedded image







294


embedded image




embedded image







295


embedded image




embedded image







296


embedded image




embedded image







297


embedded image




embedded image







298


embedded image




embedded image







299


embedded image




embedded image







300


embedded image




embedded image











Representative compounds of the invention include, but are not limited to, the following compounds (compound 301 to compound 360 in Table 6) according to Formula (Vb), and pharmaceutically acceptable salts thereof, wherein R3 and R4 are delineated for each compound in Table 6.




embedded image











TABLE 6





compound
R3
R4







301


embedded image




embedded image







302


embedded image




embedded image







303


embedded image




embedded image







304


embedded image




embedded image







305


embedded image




embedded image







306


embedded image




embedded image







307


embedded image




embedded image







308


embedded image




embedded image







309


embedded image




embedded image







310


embedded image




embedded image







311


embedded image




embedded image







312


embedded image




embedded image







313


embedded image




embedded image







314


embedded image




embedded image







315


embedded image




embedded image







316


embedded image




embedded image







317


embedded image




embedded image







318


embedded image




embedded image







319


embedded image




embedded image







320


embedded image




embedded image







321


embedded image




embedded image







322


embedded image




embedded image







323


embedded image




embedded image







324


embedded image




embedded image







325


embedded image




embedded image







326


embedded image




embedded image







327


embedded image




embedded image







328


embedded image




embedded image







329


embedded image




embedded image







330


embedded image




embedded image







331


embedded image




embedded image







332


embedded image




embedded image







333


embedded image




embedded image







334


embedded image




embedded image







335


embedded image




embedded image







336


embedded image




embedded image







337


embedded image




embedded image







338


embedded image




embedded image







339


embedded image




embedded image







340


embedded image




embedded image







341


embedded image




embedded image







342


embedded image




embedded image







343


embedded image




embedded image







344


embedded image




embedded image







345


embedded image




embedded image







346


embedded image




embedded image







347


embedded image




embedded image







348


embedded image




embedded image







349


embedded image




embedded image







350


embedded image




embedded image







351


embedded image




embedded image







352


embedded image




embedded image







353


embedded image




embedded image







354


embedded image




embedded image







355


embedded image




embedded image







356


embedded image




embedded image







357


embedded image




embedded image







358


embedded image




embedded image







359


embedded image




embedded image







360


embedded image




embedded image











In one embodiment, the invention provides a compound represented by Formula (VIa), or (VIb), or (VIc), or a pharmaceutically acceptable salt or ester thereof:




embedded image



Wherein R1, R2, R3, and X1 are as previously defined.


In one embodiment, the invention provides a compound represented by Formula (VIIa), or (VIIb), or (VIIc), or a pharmaceutically acceptable salt or ester thereof:




embedded image



Wherein R1, R2, R3, and X1 are as previously defined.


In one embodiment, the invention provides a compound represented by Formula (VIIIa), or (VIIIb), or a pharmaceutically acceptable salt or ester thereof:




embedded image



Wherein R2, R3, R4, and X1 are as previously defined.


In certain embodiments, the present invention provides a method for the prevention or treatment of an ASK-1 mediated disease or condition. The method comprises administering a therapeutically effective amount of a compound of Formula (I). The present invention also provides the use of a compound of Formula (I) for the preparation of a medicament for the treatment of an ASK-1 mediated disease or condition.


In certain embodiments, the ASK-1 mediated disease or condition is an autoimmune disorder, a neurodegenerative disorder, an inflammatory disease, chronic kidney disease, renal disease, cardiovascular disease, a metabolic disease, or an acute or chronic liver disease.


In certain embodiments, the chronic liver disease is primary biliary cirrhosis (PBC), cerebrotendinous xanthomatosis (CTX), primary sclerosing cholangitis (PSC), drug induced cholestasis, intrahepatic cholestasis of pregnancy, parenteral nutrition associated cholestasis (PNAC), bacterial overgrowth or sepsis associated cholestasis, autoimmune hepatitis, chronic viral hepatitis, alcoholic liver disease, nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), liver transplant associated graft versus host disease, living donor transplant liver regeneration, congenital hepatic fibrosis, choledocholithiasis, granulomatous liver disease, intra- or extrahepatic malignancy, Sjogren's syndrome, Sarcoidosis, Wilson's disease, Gaucher's disease, hemochromatosis, or alpha 1-antitrypsin deficiency. In certain embodiments, the gastrointestinal disease is inflammatory bowel disease (IBD) (including Crohn's disease and ulcerative colitis), irritable bowel syndrome (IBS), bacterial overgrowth, malabsorption, post-radiation colitis, or microscopic colitis.


In certain embodiments, the renal disease is diabetic nephropathy, focal segmental glomerulosclerosis (FSGS), hypertensive nephrosclerosis, chronic glomerulonephritis, chronic transplant glomerulopathy, chronic interstitial nephritis, or polycystic kidney disease.


In certain embodiments, the cardiovascular disease is atherosclerosis, arteriosclerosis, reperfusion/ischemia in stroke, cardiac hypertrophy, respiratory diseases, heart attacks, myocardial ischemia.


In certain embodiments, the metabolic disease is insulin resistance, Type I and Type II diabetes, or obesity.


In certain embodiments, the chronic kidney disease is polycystic kidney disease, pyelonephritis, kidney fibrosis and glomerulonephritis.


Yet a further aspect of the present invention is a process of making any of the compounds delineated herein employing any of the synthetic means delineated herein.


Definitions

Listed below are definitions of various terms used to describe this invention. These definitions apply to the terms as they are used throughout this specification and claims, unless otherwise limited in specific instances, either individually or as part of a larger group.


The term “alkyl” as used herein, refers to saturated, straight- or branched-chain hydrocarbon radicals. “C1-C3 alkyl,” “C1-C6 alkyl,” “C1-C10 alkyl”C2-C4 alkyl,” or “C3-C6 alkyl,” refer to alkyl groups containing from one to three, one to six, one to ten carbon atoms, 2 to 4 and 3 to 6 carbon atoms respectively. Examples of C1-C8 alkyl radicals include, but are not limited to, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, neopentyl, n-hexyl, heptyl and octyl radicals.


The term “alkenyl” as used herein, refers to straight- or branched-chain hydrocarbon radicals having at least one carbon-carbon double bond by the removal of a single hydrogen atom. “C2-C10 alkenyl,” “C2-C8 alkenyl,” “C2-C4 alkenyl,” or “C3-C6 alkenyl,” refer to alkenyl groups containing from two to ten, two to eight, two to four or three to six carbon atoms respectively. Alkenyl groups include, but are not limited to, for example, ethenyl, propenyl, butenyl, 1-methyl-2-buten-1-yl, heptenyl, octenyl, and the like.


The term “alkynyl” as used herein, refers to straight- or branched-chain hydrocarbon radicals having at least one carbon-carbon triple bond by the removal of a single hydrogen atom. “C2-C10 alkynyl,” “C2-C8 alkynyl,” “C2-C4 alkynyl,” or “C3-C6 alkynyl,” refer to alkynyl groups containing from two to ten, two to eight, two to four or three to six carbon atoms respectively. Representative alkynyl groups include, but are not limited to, for example, ethynyl, 1-propynyl, 1-butynyl, heptynyl, octynyl, and the like.


The term “cycloalkyl”, as used herein, refers to a monocyclic or polycyclic saturated carbocyclic ring or a bi- or tri-cyclic group fused, bridged or spiro system, and the carbon atoms may be optionally oxo-substituted or optionally substituted with exocyclic olefinic, iminic or oximic double bond. Preferred cycloalkyl groups include C3-C12 cycloalkyl, C3-C6 cycloalkyl, C3-C8 cycloalkyl and C4-C7 cycloalkyl. Examples of C3-C12 cycloalkyl include, but not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopentyl, cyclooctyl, 4-methylene-cyclohexyl, bicyclo[2.2.1]heptyl, bicyclo[3.1.0]hexyl, spiro[2.5]octyl, 3-methylenebicyclo[3.2.1]octyl, spiro[4.4]nonanyl, and the like.


The term “cycloalkenyl”, as used herein, refers to monocyclic or polycyclic carbocyclic ring or a bi- or tri-cyclic group fused, bridged or spiro system having at least one carbon-carbon double bond and the carbon atoms may be optionally oxo-substituted or optionally substituted with exocyclic olefinic, iminic or oximic double bond. Preferred cycloalkenyl groups include C3-C12 cycloalkenyl, C3-C8 cycloalkenyl or C5-C7 cycloalkenyl groups. Examples of C3-C12 cycloalkenyl include, but not limited to, cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl, bicyclo[2.2.1]hept-2-enyl, bicyclo[3.1.0]hex-2-enyl, spiro[2.5]oct-4-enyl, spiro[4.4]non-1-enyl, bicyclo[4.2.1]non-3-en-9-yl, and the like.


The term “aryl,” as used herein, refers to a mono- or polycyclic carbocyclic ring system comprising at least one aromatic ring, including, but not limited to, phenyl, naphthyl, tetrahydronaphthyl, indanyl, and indenyl. A polycyclic aryl is a polycyclic ring system that comprises at least one aromatic ring. Polycyclic aryls can comprise fused rings, covalently attached rings or a combination thereof.


The term “heteroaryl,” as used herein, refers to a mono- or polycyclic aromatic radical having one or more ring atom selected from S, O and N; and the remaining ring atoms are carbon, wherein any N or S contained within the ring may be optionally oxidized. Heteroaryl includes, but is not limited to, pyridinyl, pyrazinyl, pyrimidinyl, pyrrolyl, pyrazolyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, thiadiazolyl, oxadiazolyl, thiophenyl, furanyl, quinolinyl, isoquinolinyl, benzimidazolyl, benzoxazolyl, quinoxalinyl. A polycyclic heteroaryl can comprise fused rings, covalently attached rings or a combination thereof.


In accordance with the invention, aromatic groups can be substituted or unsubstituted. The term “bicyclic aryl” or “bicyclic heteroaryl” refers to a ring system consisting of two rings wherein at least one ring is aromatic; and the two rings can be fused or covalently attached.


As used herein, the term “arylalkyl” means a functional group wherein an alkylene chain is attached to an aryl group, e.g., —CH2CH2-phenyl. The term “substituted arylalkyl” means an arylalkyl functional group in which the aryl group is substituted. Similarly, the term “heteroarylalkyl” means a functional group wherein an alkylene chain is attached to a heteroaryl group. The term “substituted heteroarylalkyl” means a heteroarylalkyl functional group in which the heteroaryl group is substituted.


The term “alkylene” as used herein, refers to a diradical of a branched or unbranched saturated hydrocarbon chain, typically having from 1 to 20 carbon atoms (e.g. 1-10 carbon atoms, or 1, 2, 3, 4, 5, or 6 carbon atoms). This term is exemplified by groups such as methylene (—CH2—), ethylene (—CH2CH2—), the propylene isomers (e.g., —CH2CH2CH2— and —CH(CH3)CH2—), and the like.


The term “substituted” as used herein, refers to independent replacement of one, two, or three or more of the hydrogen atoms thereon with substituents including, but not limited to, deuterium, —F, —Cl, —Br, —I, —OH, protected hydroxy, —NO2, —CN, —NH2, N3, protected amino, alkoxy, thioalkoxy, oxo, C1-C12-alkyl, C2-C12-alkenyl, C2-C12-alkynyl-halo-C1-C12-alkyl,-halo-C2-C12-alkenyl,-halo-C2-C12-alkynyl,-halo-C3-C12-cycloalkyl, —NH—C1-C12-alkyl, —NH—C2-C12-alkenyl, —NH—C2-C12-alkynyl, —NH—C3-C12-cycloalkyl, —NH-aryl, —NH-heteroaryl, —NH-heterocycloalkyl, -dialkylamino, -diarylamino, -diheteroarylamino, —O—C1-C12-alkyl, —O—C2-C12-alkenyl, —O—C2-C12-alkynyl, —O—C3-C12-cycloalkyl, —O-aryl, —O-heteroaryl, —O-heterocycloalkyl, —C(O)—C1-C12-alkyl, —C(O)—C2-C12-alkenyl, —C(O)—C2-C12-alkynyl, —C(O)—C3-C12-cycloalkyl, —C(O)-aryl, —C(O)-heteroaryl, —C(O)-heterocycloalkyl, —CONH2, —CONH—C1-C12-alkyl, —CONH—C2-C12-alkenyl, —CONH—C2-C12-alkynyl, —CONH—C3-C12-cycloalkyl, —CONH-aryl, —CONH-heteroaryl, —CONH-heterocycloalkyl, —OCO2—C1-C12-alkyl, —OCO2—C2-C12-alkenyl, —OCO2—C2-C12-alkynyl, —OCO2—C3-C12-cycloalkyl, —OCO2-aryl, —OCO2-heteroaryl, —OCO2-heterocycloalkyl, —OCONH2, —OCONH—C1-C12-alkyl, —OCONH—C2-C12-alkenyl, —OCONH—C2-C12-alkynyl, —OCONH—C3-C12-cycloalkyl, —OCONH-aryl, —OCONH-heteroaryl, —OCONH-heterocycloalkyl, —NHC(O)—C1-C12-alkyl, —NHC(O)—C2-C12-alkenyl, —NHC(O)—C2-C12-alkynyl, —NHC(O)—C3-C12-cycloalkyl, —NHC(O)-aryl, —NHC(O)-heteroaryl, —NHC(O)-heterocycloalkyl, —NHCO2—C1-C12-alkyl, —NHCO2—C2-C12-alkenyl, —NHCO2—C2-C12-alkynyl, —NHCO2—C3-C12-cycloalkyl, —NHCO2-aryl, —NHCO2-heteroaryl, —NHCO2-heterocycloalkyl, —NHC(O)NH2, —NHC(O)NH—C1-C12-alkyl, —NHC(O)NH—C2-C12-alkenyl, —NHC(O)NH—C2-C12-alkynyl, —NHC(O)NH—C3-C12-cycloalkyl, —NHC(O)NH-aryl, —NHC(O)NH-heteroaryl, —NHC(O)NH-heterocycloalkyl, NHC(S)NH2, —NHC(S)NH—C1-C12-alkyl, —NHC(S)NH—C2-C12-alkenyl, —NHC(S)NH—C2-C12-alkynyl, —NHC(S)NH—C3-C12-cycloalkyl, —NHC(S)NH-aryl, —NHC(S)NH-heteroaryl, —NHC(S)NH-heterocycloalkyl, —NHC(NH)NH2, —NHC(NH)NH—C1-C12-alkyl, —NHC(NH)NH—C2-C12-alkenyl, —NHC(NH)NH—C2-C12-alkynyl, —NHC(NH)NH—C3-C12-cycloalkyl, —NHC(NH)NH-aryl, —NHC(NH)NH-heteroaryl, —NHC(NH)NH-heterocycloalkyl, —NHC(NH)—C1-C12-alkyl, —NHC(NH)—C2-C12-alkenyl, —NHC(NH)—C2-C12-alkynyl, —NHC(NH)—C3-C12-cycloalkyl, —NHC(NH)-aryl, —NHC(NH)-heteroaryl, —NHC(NH)-heterocycloalkyl, —C(NH)NH—C2-C12-alkenyl, —C(NH)NH—C2-C12-alkynyl, —C(NH)NH—C3-C12-cycloalkyl, —C(NH)NH-aryl, —C(NH)NH-heteroaryl, —C(NH)NH-heterocycloalkyl, —S(O)—C1-C12-alkyl, —S(O)—C2-C12-alkenyl, —S(O)—C2-C12-alkynyl, —S(O)—C3-C12-cycloalkyl, —S(O)-aryl, —S(O)-heteroaryl, —S(O)-heterocycloalkyl-SO2NH2, —SO2NH—C1-C12-alkyl, —SO2NH—C2-C12-alkenyl, —SO2NH—C2-C12-alkynyl, —SO2NH—C3-C12-cycloalkyl, —SO2NH-aryl, —SO2NH-heteroaryl, —SO2NH-heterocycloalkyl, —NHSO2—C1-C12-alkyl, —NHSO2—C2-C12-alkenyl, —NHSO2—C2-C12-alkynyl, —NHSO2—C3-C12-cycloalkyl, —NHSO2-aryl, —NHSO2-heteroaryl, —NHSO2-heterocycloalkyl, —CH2NH2, —CH2SO2CH3, -aryl, -arylalkyl, -heteroaryl, -heteroarylalkyl, -heterocycloalkyl, —C3-C12-cycloalkyl, polyalkoxyalkyl, polyalkoxy, -methoxymethoxy, -methoxyethoxy, —SH, —S—C1-C12-alkyl, —S—C2-C12-alkenyl, —S—C2-C12-alkynyl, —S—C3-C12-cycloalkyl, —S-aryl, —S-heteroaryl, —S-heterocycloalkyl, methylthiomethyl, or -L′-R′, wherein L′ is C1-C6alkylene, C2-C6alkenylene or C2-C6alkynylene, and R′ is aryl, heteroaryl, heterocyclic, C3-C12cycloalkyl or C3-C12cycloalkenyl. In certain embodiments, the substituents are independently selected from halo, preferably C1 and F; C1-C4-alkyl, preferably methyl and ethyl; C2-C4-alkenyl; halo-C1-C4-alkyl, such as fluoromethyl, difluoromethyl, and trifluoromethyl; halo-C2-C4-alkenyl; C3-C6-cycloalkyl, such as cyclopropyl; —CN; —OH; NH2; C1-C4-alkylamino; di(C1-C4-alkyl)amino; and NO2. It is understood that the aryls, heteroaryls, alkyls, and the like can be further substituted. In some cases, each substituent in a substituted moiety is additionally optionally substituted with one or more groups, each group being independently selected from C1-C4-alkyl; CF3, —F, —Cl, —Br, —I, —OH, —NO2, —CN, and —NH2.


In accordance with the invention, any of the aryls, substituted aryls, heteroaryls and substituted heteroaryls described herein, can be any aromatic group. Aromatic groups can be substituted or unsubstituted.


It is understood that any alkyl, alkenyl, alkynyl, cycloalkyl and cycloalkenyl moiety described herein can also be an aliphatic group, an alicyclic group or a heterocyclic group. An “aliphatic group” is non-aromatic moiety that may contain any combination of carbon atoms, hydrogen atoms, halogen atoms, oxygen, nitrogen or other atoms, and optionally contain one or more units of unsaturation, e.g., double and/or triple bonds. An aliphatic group may be straight chained, branched or cyclic and preferably contains between about 1 and about 24 carbon atoms, more typically between about 1 and about 12 carbon atoms. In addition to aliphatic hydrocarbon groups, aliphatic groups include, for example, polyalkoxyalkyls, such as polyalkylene glycols, polyamines, and polyimines, for example. Such aliphatic groups may be further substituted. It is understood that aliphatic groups may be used in place of the alkyl, alkenyl, alkynyl, alkylene, alkenylene, and alkynylene groups described herein.


The term “alicyclic” as used herein, denotes a monovalent group derived from a monocyclic or polycyclic saturated carbocyclic ring compound by the removal of a single hydrogen atom. Examples include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, bicyclo[2.2.1]heptyl, and bicyclo[2.2.2]octyl. Such alicyclic groups may be further substituted.


As used herein, the term “alkoxy” employed alone or in combination with other terms means, unless otherwise stated, an alkyl group having the designated number of carbon atoms connected to the rest of the molecule via an oxygen atom, such as, for example, methoxy, ethoxy, 1-propoxy, 2-propoxy (isopropoxy) and the higher homologs and isomers. Preferred alkoxy are (C1-C3) alkoxy.


The term “aryloxy” refers to the group aryl-O— wherein the aryl group is as defined above, and includes optionally substituted aryl groups as also defined above. The term “arylthio” refers to the group R—S—, where R is as defined for aryl.


The terms “heterocyclic” or “heterocycloalkyl” can be used interchangeably and referred to a non-aromatic ring or a bi- or tri-cyclic group fused, bridged or spiro system, where (i) each ring system contains at least one heteroatom independently selected from oxygen, sulfur and nitrogen, (ii) each ring system can be saturated or unsaturated (iii) the nitrogen and sulfur heteroatoms may optionally be oxidized, (iv) the nitrogen heteroatom may optionally be quaternized, (v) any of the above rings may be fused to an aromatic ring, and (vi) the remaining ring atoms are carbon atoms which may be optionally oxo-substituted or optionally substituted with exocyclic olefinic, iminic or oximic double bond. Representative heterocycloalkyl groups include, but are not limited to, 1,3-dioxolane, pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, 2-azabicyclo[2.2.1]-heptyl, 8-azabicyclo[3.2.1]octyl, 5-azaspiro[2.5]octyl, 1-oxa-7-azaspiro[4.4]nonanyl, 7-oxooxepan-4-yl, and tetrahydrofuryl. Such heterocyclic groups may be further substituted. Heteroaryl or heterocyclic groups can be C-attached or N-attached (where possible).


It is understood that any alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic and cycloalkenyl moiety described herein can also be an aliphatic group or an alicyclic group.


It will be apparent that in various embodiments of the invention, the substituted or unsubstituted alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, cycloalkynyl, arylalkyl, heteroarylalkyl, and heterocycloalkyl are intended to be monovalent or divalent. Thus, alkylene, alkenylene, and alkynylene, cycloaklylene, cycloalkenylene, cycloalkynylene, arylalkylene, heteroarylalkylene and heterocycloalkylene groups are to be included in the above definitions, and are applicable to provide the Formulas herein with proper valency.


The terms “halo” and “halogen,” as used herein, refer to an atom selected from fluorine, chlorine, bromine and iodine. Preferred halogens are fluorine and chlorine.


The term “optionally substituted”, as used herein, means that the referenced group may be substituted or unsubstituted. In one embodiment, the referenced group is optionally substituted with zero substituents, i.e., the referenced group is unsubstituted. In another embodiment, the referenced group is optionally substituted with one or more additional group(s) individually and independently selected from groups described herein.


The term “hydrogen” includes hydrogen and deuterium. In addition, the recitation of an atom includes other isotopes of that atom so long as the resulting compound is pharmaceutically acceptable.


In certain embodiments, the compounds of each formula herein are defined to include isotopically labelled compounds. An “isotopically labelled compound” is a compound in which at least one atomic position is enriched in a specific isotope of the designated element to a level which is significantly greater than the natural abundance of that isotope. For example, one or more hydrogen atom positions in a compound can be enriched with deuterium to a level which is significantly greater than the natural abundance of deuterium, for example, enrichment to a level of at least 1%, preferably at least 20% or at least 50%. Such a deuterated compound may, for example, be metabolized more slowly than its non-deuterated analog, and therefore exhibit a longer half-life when administered to a subject. Such compounds can synthesize using methods known in the art, for example by employing deuterated starting materials. Unless stated to the contrary, isotopically labelled compounds are pharmaceutically acceptable.


The compounds described herein contain one or more asymmetric centers and thus give rise to enantiomers, diastereomers, and other stereoisomeric forms that may be defined, in terms of absolute stereochemistry, as (R)- or (S)-, or as (D)- or (L)- for amino acids. The present invention is meant to include all such possible isomers, as well as their racemic and optically pure forms. Optical isomers may be prepared from their respective optically active precursors by the procedures described above, or by resolving the racemic mixtures. The resolution can be carried out in the presence of a resolving agent, by chromatography or by repeated crystallization or by some combination of these techniques which are known to those skilled in the art. Further details regarding resolutions can be found in Jacques, et al., Enantiomers, Racemates, and Resolutions (John Wiley & Sons, 1981). When the compounds described herein contain olefinic double bonds, other unsaturation, or other centers of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both E and Z geometric isomers or cis- and trans-isomers. Likewise, all tautomeric forms are also intended to be included. Tautomers may be in cyclic or acyclic. The configuration of any carbon-carbon double bond appearing herein is selected for convenience only and is not intended to designate a particular configuration unless the text so states; thus a carbon-carbon double bond or carbon-heteroatom double bond depicted arbitrarily herein as trans may be cis, trans, or a mixture of the two in any proportion.


The term “subject” as used herein refers to a mammal. A subject therefore refers to, for example, dogs, cats, horses, cows, pigs, guinea pigs, and the like. Preferably the subject is a human. When the subject is a human, the subject may be referred to herein as a patient.


As used herein, the term “pharmaceutically acceptable salt” refers to those salts of the compounds formed by the process of the present invention which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. Pharmaceutically acceptable salts are well known in the art.


Berge, et al. describes pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 66: 1-19 (1977). The salts can be prepared in situ during the final isolation and purification of the compounds of the invention, or separately by reaction of the free base function with a suitable organic acid. Examples of pharmaceutically acceptable salts include, but are not limited to, nontoxic acid addition salts e.g., salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange. Other pharmaceutically acceptable salts include, but are not limited to, adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, p-toluenesulfonate, undecanoate, valerate salts, and the like. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like. Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, alkyl having from 1 to 6 carbon atoms, sulfonate and aryl sulfonate.


As used herein, the term “pharmaceutically acceptable ester” refers to esters which hydrolyze in vivo and include those that break down readily in the human body to leave the parent compound or a salt thereof. Suitable ester groups include, for example, those derived from pharmaceutically acceptable aliphatic carboxylic acids, particularly alkanoic, alkenoic, cycloalkanoic and alkanedioic acids, in which each alkyl or alkenyl moiety advantageously has not more than 6 carbon atoms. Examples of particular esters include, but are not limited to, esters of C1-C6-alkanoic acids, such as acetate, propionate, butyrate and pivalate esters.


The term “hydroxy activating group,” as used herein, refers to a labile chemical moiety which is known in the art to activate a hydroxyl group so that it will depart during synthetic procedures such as in a substitution or an elimination reaction. Examples of hydroxyl activating group include, but not limited to, mesylate, tosylate, triflate, p-nitrobenzoate, phosphonate and the like.


The term “activated hydroxyl,” as used herein, refers to a hydroxy group activated with a hydroxyl activating group, as defined above, including mesylate, tosylate, triflate, p-nitrobenzoate, phosphonate groups, for example.


The term “hydroxy protecting group,” as used herein, refers to a labile chemical moiety which is known in the art to protect a hydroxyl group against undesired reactions during synthetic procedures. After said synthetic procedure(s) the hydroxy protecting group as described herein may be selectively removed. Hydroxy protecting groups as known in the art are described generally in T.H. Greene and P.G. M. Wuts, Protective Groups in Organic Synthesis, 3rd edition, John Wiley & Sons, New York (1999). Examples of hydroxyl protecting groups include benzyloxycarbonyl, 4-methoxybenzyloxycarbonyl, tert-butoxy-carbonyl, isopropoxycarbonyl, diphenylmethoxycarbonyl, 2,2,2-trichloroethoxycarbonyl, allyloxycarbonyl, acetyl, formyl, chloroacetyl, trifluoroacetyl, methoxyacetyl, phenoxyacetyl, benzoyl, methyl, t-butyl, 2,2,2-trichloroethyl, 2-trimethylsilyl ethyl, allyl, benzyl, triphenyl-methyl (trityl), methoxymethyl, methylthiomethyl, benzyloxymethyl, 2-(trimethylsilyl)-ethoxymethyl, methanesulfonyl, trimethylsilyl, triisopropylsilyl, and the like.


The term “protected hydroxy,” as used herein, refers to a hydroxy group protected with a hydroxy protecting group, as defined above, including benzoyl, acetyl, trimethylsilyl, triethylsilyl, methoxymethyl groups, for example.


The term “hydroxy prodrug group,” as used herein, refers to a promoiety group which is known in the art to change the physicochemical, and hence the biological properties of a parent drug in a transient manner by covering or masking the hydroxy group. After said synthetic procedure(s), the hydroxy prodrug group as described herein must be capable of reverting back to hydroxy group in vivo. Hydroxy prodrug groups as known in the art are described generally in Kenneth B. Sloan, Prodrugs, Topical and Ocular Drug Delivery, (Drugs and the Pharmaceutical Sciences; Volume 53), Marcel Dekker, Inc., New York (1992) and in “Prodrugs of Alcohols and Phenols” by S. S. Dhareshwar and V. J. Stella, in Prodrugs Challenges and Rewards Part-2, (Biotechnology: Pharmaceutical Aspects), edited by V. J. Stella, et al, Springer and AAPSPress, 2007, pp 31-99.


The term “amino” as used herein, refers to the group —NH2.


The term “substituted amino” as used herein, refers to the group —NRR where each R is independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, aryl, heteroaryl and heterocycloalkyl provided that at least one R group is not hydrogen, or a group —Y—Z, in which Y is optionally substituted alkylene and Z is alkenyl, cycloalkenyl, or alkynyl.


The term “amino protecting group” as used herein, refers to a labile chemical moiety which is known in the art to protect an amino group against undesired reactions during synthetic procedures. After said synthetic procedure(s) the amino protecting group as described herein may be selectively removed. Amino protecting groups as known in the are described generally in T.H. Greene and P.G. M. Wuts, Protective Groups in Organic Synthesis, 3rd edition, John Wiley & Sons, New York (1999). Examples of amino protecting groups include, but are not limited to, t-butoxycarbonyl, 9-fluorenylmethoxycarbonyl, benzyloxycarbonyl, and the like.


The term “leaving group” means a functional group or atom which can be displaced by another functional group or atom in a substitution reaction, such as a nucleophilic substitution reaction. By way of example, representative leaving groups include chloro, bromo and iodo groups; sulfonic ester groups, such as mesylate, tosylate, brosylate, nosylate and the like; and acyloxy groups, such as acetoxy, trifluoroacetoxy and the like.


As used herein, the term “pharmaceutically acceptable ester” refers to esters of the compounds formed by the process of the present invention which hydrolyze in vivo and include those that break down readily in the human body to leave the parent compound or a salt thereof. Suitable ester groups include, for example, those derived from pharmaceutically acceptable aliphatic carboxylic acids, particularly alkanoic, alkenoic, cycloalkanoic and alkanedioic acids, in which each alkyl or alkenyl moiety advantageously has not more than 6 carbon atoms. Examples of particular esters include, but are not limited to, formates, acetates, propionates, butyrates, acrylates and ethylsuccinates.


The term “pharmaceutically acceptable prodrugs” as used herein refers to those prodrugs of the compounds formed by the process of the present invention which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals with undue toxicity, irritation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio, and effective for their intended use, as well as the zwitterionic forms, where possible, of the compounds of the present invention. “Prodrug”, as used herein means a compound, which is convertible in vivo by metabolic means (e.g. by hydrolysis) to afford any compound delineated by the Formulae of the instant invention. Various forms of prodrugs are known in the art, for example, as discussed in Bundgaard, (ed.), Design of Prodrugs, Elsevier (1985); Widder, et al. (ed.), Methods in Enzymology, Vol. 4, Academic Press (1985); Krogsgaard-Larsen, et al., (ed). “Design and Application of Prodrugs, Textbook of Drug Design and Development, Chapter 5, 113-191 (1991); Bundgaard, et al., Journal of Drug Deliver Reviews, 8:1-38(1992); Bundgaard, J. of Pharmaceutical Sciences, 77:285 et seq. (1988); Higuchi and Stella (eds.) Prodrugs as Novel Drug Delivery Systems, American Chemical Society (1975); and Bernard Testa & Joachim Mayer, “Hydrolysis In Drug And Prodrug Metabolism: Chemistry, Biochemistry And Enzymology,” John Wiley and Sons, Ltd. (2002).


The term “treating”, as used herein, means relieving, lessening, reducing, eliminating, modulating, or ameliorating, i.e. causing regression of the disease state or condition. Treating can also include inhibiting, i.e. arresting the development, of an existing disease state or condition, and relieving or ameliorating, i.e. causing regression of an existing disease state or condition, for example when the disease state or condition may already be present.


The term “preventing”, as used herein means, to completely or almost completely stop a disease state or condition, from occurring in a patient or subject, especially when the patient or subject is predisposed to such or at risk of contracting a disease state or condition.


Additionally, the compounds of the present invention, for example, the salts of the compounds, can exist in either hydrated or unhydrated (the anhydrous) form or as solvates with other solvent molecules. Nonlimiting examples of hydrates include monohydrates, dihydrates, etc. Nonlimiting examples of solvates include ethanol solvates, acetone solvates, etc.


“Solvates” means solvent addition forms that contain either stoichiometric or non-stoichiometric amounts of solvent. Some compounds have a tendency to trap a fixed molar ratio of solvent molecules in the crystalline solid state, thus forming a solvate. If the solvent is water, the solvate formed is a hydrate, when the solvent is alcohol, the solvate formed is an alcoholate. Hydrates are formed by the combination of one or more molecules of water with one of the substances in which the water retains its molecular state as H2O, such combination being able to form one or more hydrate.


As used herein, the term “analog” refers to a chemical compound that is structurally similar to another but differs slightly in composition (as in the replacement of one atom by an atom of a different element or in the presence of a particular functional group, or the replacement of one functional group by another functional group). Thus, an analog is a compound that is similar to or comparable in function and appearance to the reference compound.


The term “aprotic solvent,” as used herein, refers to a solvent that is relatively inert to proton activity, i.e., not acting as a proton-donor. Examples include, but are not limited to, hydrocarbons, such as hexane and toluene, for example, halogenated hydrocarbons, such as, for example, methylene chloride, ethylene chloride, chloroform, and the like, heterocyclic compounds, such as, for example, tetrahydrofuran and N-methylpyrrolidinone, and ethers such as diethyl ether, bis-methoxymethyl ether. Such solvents are well known to those skilled in the art, and individual solvents or mixtures thereof may be preferred for specific compounds and reaction conditions, depending upon such factors as the solubility of reagents, reactivity of reagents and preferred temperature ranges, for example. Further discussions of aprotic solvents may be found in organic chemistry textbooks or in specialized monographs, for example: Organic Solvents Physical Properties and Methods of Purification, 4th ed., edited by John A. Riddick et al., Vol. II, in the Techniques of Chemistry Series, John Wiley & Sons, N Y, 1986.


The terms “protogenic organic solvent” or “protic solvent” as used herein, refer to a solvent that tends to provide protons, such as an alcohol, for example, methanol, ethanol, propanol, isopropanol, butanol, t-butanol, and the like. Such solvents are well known to those skilled in the art, and individual solvents or mixtures thereof may be preferred for specific compounds and reaction conditions, depending upon such factors as the solubility of reagents, reactivity of reagents and preferred temperature ranges, for example. Further discussions of protogenic solvents may be found in organic chemistry textbooks or in specialized monographs, for example: Organic Solvents Physical Properties and Methods of Purification, 4th ed., edited by John A. Riddick et al., Vol. II, in the Techniques of Chemistry Series, John Wiley & Sons, N Y, 1986.


Combinations of substituents and variables envisioned by this invention are only those that result in the formation of stable compounds. The term “stable”, as used herein, refers to compounds which possess stability sufficient to allow manufacture and which maintains the integrity of the compound for a sufficient period of time to be useful for the purposes detailed herein (e.g., therapeutic or prophylactic administration to a subject).


The synthesized compounds can be separated from a reaction mixture and further purified by a method such as column chromatography, high pressure liquid chromatography, or recrystallization. Additionally, the various synthetic steps may be performed in an alternate sequence or order to give the desired compounds. In addition, the solvents, temperatures, reaction durations, etc. delineated herein are for purposes of illustration only and variation of the reaction conditions can produce the desired isoxazole products of the present invention. Synthetic chemistry transformations and protecting group methodologies (protection and deprotection) useful in synthesizing the compounds described herein include, for example, those described in R. Larock, Comprehensive Organic Transformations, VCH Publishers (1989); T. W. Greene and P.G.M. Wuts, Protective Groups in Organic Synthesis, 2d. Ed., John Wiley and Sons (1991); L. Fieser and M. Fieser, Fieser and Fieser's Reagents for Organic Synthesis, John Wiley and Sons (1994); and L. Paquette, ed., Encyclopedia of Reagents for Organic Synthesis, John Wiley and Sons (1995).


The compounds of this invention may be modified by appending various functionalities via synthetic means delineated herein to enhance selective biological properties. Such modifications include those which increase biological penetration into a given biological system (e.g., blood, lymphatic system, central nervous system), increase oral availability, increase solubility to allow administration by injection, alter metabolism and alter rate of excretion.


Pharmaceutical Compositions


The pharmaceutical compositions of the present invention comprise a therapeutically effective amount of a compound of the present invention Formulated together with one or more pharmaceutically acceptable carriers. As used herein, the term “pharmaceutically acceptable carrier” means a non-toxic, inert solid, semi-solid or liquid filler, diluent, encapsulating material or Formulation auxiliary of any type. Some examples of materials which can serve as pharmaceutically acceptable carriers are sugars such as lactose, glucose and sucrose; starches such as corn starch and potato starch; cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients such as cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil; safflower oil; sesame oil; olive oil; corn oil and soybean oil; glycols; such a propylene glycol; esters such as ethyl oleate and ethyl laurate; agar; buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ringer's solution; ethyl alcohol, and phosphate buffer solutions, as well as other non-toxic compatible lubricants such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, releasing agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the composition, according to the judgment of the Formulator. The pharmaceutical compositions of this invention can be administered to humans and other animals orally, rectally, parenterally, intracisternally, intravaginally, intraperitoneally, topically (as by powders, ointments, or drops), buccally, or as an oral or nasal spray.


The pharmaceutical compositions of this invention may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir, preferably by oral administration or administration by injection. The pharmaceutical compositions of this invention may contain any conventional non-toxic pharmaceutically-acceptable carriers, adjuvants or vehicles. In some cases, the pH of the Formulation may be adjusted with pharmaceutically acceptable acids, bases or buffers to enhance the stability of the Formulated compound or its delivery form. The term parenteral as used herein includes subcutaneous, intracutaneous, intravenous, intramuscular, intraarticular, intraarterial, intrasynovial, intrasternal, intrathecal, intralesional and intracranial injection or infusion techniques.


Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active compounds, the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.


Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution, suspension or emulsion in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1, 3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, U.S.P. and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil can be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid are used in the preparation of injectables.


The injectable Formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.


In order to prolong the effect of a drug, it is often desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution, which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle. Injectable depot forms are made by forming microencapsule matrices of the drug in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of drug to polymer and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable Formulations are also prepared by entrapping the drug in liposomes or microemulsions which are compatible with body tissues.


Compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the compounds of this invention with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.


Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active compound is mixed with at least one inert, pharmaceutically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or: a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia, c) humectants such as glycerol, d) disintegrating agents such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, e) solution retarding agents such as paraffin, f) absorption accelerators such as quaternary ammonium compounds, g) wetting agents such as, for example, cetyl alcohol and glycerol monostearate, h) absorbents such as kaolin and bentonite clay, and i) lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof. In the case of capsules, tablets and pills, the dosage form may also comprise buffering agents.


Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.


The active compounds can also be in micro-encapsulated form with one or more excipients as noted above. The solid dosage forms of tablets, dragées, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings, release controlling coatings and other coatings well known in the pharmaceutical Formulating art. In such solid dosage forms the active compound may be admixed with at least one inert diluent such as sucrose, lactose or starch. Such dosage forms may also comprise, as is normal practice, additional substances other than inert diluents, e.g., tableting lubricants and other tableting aids such a magnesium stearate and microcrystalline cellulose. In the case of capsules, tablets and pills, the dosage forms may also comprise buffering agents. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions which can be used include polymeric substances and waxes.


Dosage forms for topical or transdermal administration of a compound of this invention include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants or patches. The active component is admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as may be required. Ophthalmic Formulation, ear drops, eye ointments, powders and solutions are also contemplated as being within the scope of this invention.


The ointments, pastes, creams and gels may contain, in addition to an active compound of this invention, excipients such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.


Powders and sprays can contain, in addition to the compounds of this invention, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances. Sprays can additionally contain customary propellants such as chlorofluorohydrocarbons.


Transdermal patches have the added advantage of providing controlled delivery of a compound to the body. Such dosage forms can be made by dissolving or dispensing the compound in the proper medium. Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate can be controlled by either providing a rate controlling membrane or by dispersing the compound in a polymer matrix or gel.


Unless otherwise defined, all technical and scientific terms used herein are accorded the meaning commonly known to one with ordinary skill in the art. All publications, patents, published patent applications, and other references mentioned herein are hereby incorporated by reference in their entirety.


Abbreviations

Abbreviations which have been used in the descriptions of the schemes and the examples that follow are:

    • BOP-Cl for bis(2-oxo-3-oxazolidinyl)phosphinic chloride;
    • CDI for carbonyldiimidazole;
    • DBU for 1,8-diazabicycloundec-7-ene;
    • DCC for N,N-dicyclohexylcarbodiimide;
    • DCM for dichloromethane;
    • DIPEA for N,N-diisopropylethylamine;
    • DMAP for N,N-dimethylaminopyridine;
    • DME for 1,2-dimethoxyethane;
    • DMF for N,N-dimethyl formamide;
    • DMPU for 1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone;
    • EDC for 1-(3-diethylaminopropyl)-3-ethylcarbodiimide hydrochloride;
    • Et3N for triethylamine;
    • EtOAc for ethyl acetate;
    • HATU for 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate;
    • HCl for hydrochloric acid;
    • mCPBA for meta-chloroperoxybenzoic acid;
    • NMO for N-methylmorpholine-N-oxide;
    • PhMe for toluene;
    • PyAOP for 7-azabenzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate;
    • PyBOP for benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate;
    • THF for tetrahydrofuran.


      Synthetic Methods


The compounds and processes of the present invention will be better understood in connection with the following synthetic schemes that illustrate the methods by which the compounds of the invention may be prepared, which are intended as an illustration only and not to limit the scope of the invention. Various changes and modifications to the disclosed embodiments will be apparent to those skilled in the art and such changes and modifications including, without limitation, those relating to the chemical structures, substituents, derivatives, and/or methods of the invention may be made without departing from the spirit of the invention and the scope of the appended claims.


As shown in Scheme 1, the compound of Formula (I) can be prepared from coupling of the carboxylic acid compound (1) and the amine compound (2) under suitable amide coupling conditions, wherein R1, R2, R3, X1,




embedded image



are as previously defined. Thus, a mixture of carboxylic acid compound (1) and amine compound (2) in an aprotic solvent is treated with suitable coupling reagent in the presence of organic base to form amide compound of Formula (I). The suitable coupling reagent can be, such as, but not limited to, but is not limited to, BOP-Cl, CDI, DCC, EDC, HATU, PyAOP or PyBOP and the organic base can be, such as, but not limited to, but is not limited to, Et3N, DIPEA, pyridine or N-methyl morpholine. The aprotic solvent can be, such as, but not limited to, but is not limited to, THF, DCM and DMF. The reaction temperature is from −20° C. to 80° C.




embedded image


Alternatively, the compound of Formula (I) can also be prepared by first converting carboxylic acid compound (1) to an acid chloride compound (3) and then reacting acid chloride compound (3) with amine compound (2) in the presence of an organic base (as shown in scheme 2).




embedded image



Thus, the carboxylic acid compound (1) is treated with thionyl chloride or oxalyl chloride or other acid chloride formation reagent in an aprotic solvent, such as, but not limited to but is not limited to, DCM or DMF, to afford an acid chloride compound (3). Then, the acid chloride compound (3) is reacted with the amine compound (2) in an aprotic solvent, such as, but not limited to DCM or DMF in the presence of an organic base, such as, but not limited to TEA, DIPEA. DMAP or pyridine to give the compound of Formula (I).


Another alternative way to prepare the compound of Formula (I) is by first converting carboxylic acid compound (1) to mixed anhydride compound (4) and then reacting mixed anhydride compound (4) with amine compound (2) in the presence of organic base (as shown in scheme 3).




embedded image


Thus, the carboxylic acid compound (1) is treated with a chloroformate reagent such as, but not limited to isobutylcloroformate in an aprotic solvent, such as, but not limited to DCM in the presence of a base such as, but not limited to TEA or DIPEA to afford mixed anhydride compound (4). Then, the mixed anhydride compound (4) is reacted with the amine compound (2) in an aprotic solvent, such as, but not limited to DCM or DMF in the presence of an organic base, such as, but not limited to TEA, DIPEA, or DMAP to give the compound of Formula (I).


Another alternative way to prepare the compound of Formula (I) is to subject carboxylic ester compound (5) and amine compound (2) in AlMe3-mediated amide formation condition (as shown in scheme 4).




embedded image


Thus, the amine compound (2) is first treated with AlMe3 in an aprotic solvent, such as, but not limited to but is not limited to, DCM, and then reacts with carboxylic ester compound (5) to afford the compound of Formula (I). The reaction temperature is from 0° C. to 80° C.


Another alternative way to prepare the compound of Formula (I) is to subject compound (6) and amine compound (2) to carbonylation conditions (as shown in scheme 5), wherein X is selected from Cl, Br and I.




embedded image


Thus, a mixture of compound (6) and amine compound (2) in an aprotic solvent is treated with suitable catalyst and ligand in the presence of base under CO atmosphere to form amide compound of Formula (I). The suitable catalyst and ligand can be, but is not limited to, Pd2dba3, dppf, Pd(OAc)2 and dppp. The base can be, but is not limited to, Et3N, DIPEA, K2CO3 or Cs2CO3. The aprotic solvent can be, but is not limited to, DMF. The reaction temperature is from 60° C. to 110° C.


Another alternative way to prepare the compound of Formula (I) is to subject bromide compound (7) and amide compound (8) to cross coupling conditions (as shown in scheme 6).




embedded image


Thus, a mixture of bromide compound (7) and amide compound (8) in an aprotic solvent is treated with the suitable combination of catalysts and reagents in the presence of base under blue LED irradiation to form amide compound of Formula (I). The suitable combination of catalysts and reagents can be, but is not limited to, Ir[dF(CF3)ppy]2(dtbpy)PF6 in combination use with NiCl2.dtbbpy and (Me3Si)3SiH. The base can be, but is not limited to, Na2CO3 or LiOH. The aprotic solvent can be, but is not limited to, dimethoxyethane or acetonitrile. The reaction temperature is from 20° C. to 50° C.


Another way to prepare the compound of Formula (I) is to subject boronic ester compound (9) and amide compound (10) to suitable Suzuki cross coupling conditions (as shown in scheme 7), wherein X is selected from C1, Br and I. The catalyst can be, but is not limited to, Pd(PPh3)4, Pd(OAc)2, Pd(dppf)C1 and Pd2dba3. The base can be, but is not limited to, K2CO3, Cs2CO3 and K3PO4. The solvent can be, but is not limited to, dioxane/H2O, THF/H2O and DMF. The reaction temperature is from 60° C. to 110° C.




embedded image


Examples

The compounds and processes of the present invention will be better understood in connection with the following examples, which are intended as an illustration only and not limiting of the scope of the invention. Various changes and modifications to the disclosed embodiments will be apparent to those skilled in the art and such changes and modifications including, without limitation, those relating to the chemical structures, substituents, derivatives, Formulations and/or methods of the invention may be made without departing from the spirit of the invention and the scope of the appended claims.


Synthesis of ethyl 2-(4-fluoro-5-((6-(4-isopropyl-4H-1,2,4-triazol-3-yl)pyridin-2-yl)carbamoyl)-2-methylphenyl)cyclopropane-1-carboxylate (example 1)



embedded image


Step 1

To a suspension of 5-bromo-2-fluoro-4-methylbenzoic acid (1.5 g, 6.44 mmol) in DCM (21.4 mL) was added Ghosez's reagent (1.02 mL, 7.72 mmol). The reaction was allowed to stir at room temperature for 1 h before concentration under high vac. Then the resulting crude residue was redissolved in DCM (21.4 mL), and then 6-(4-isopropyl-4H-1,2,4-triazol-3-yl)pyridin-2-amine (1.31 g, 6.44 mmol) and pyridine (2.1 mL, 25.7 mmol) was added at 0° C. The reaction was allowed to stir at room temperature for overnight. Direct filtration afforded 1.61 g white solid as compound 3. The filtrate was then concentrated and purified by chromatography on silica gel using 0->5% MeOH in DCM to afford 1.03 g white solid as compound 3 (98% combined yield). 1H NMR (400 MHz, DMSO-d6) δ 10.90 (s, 1H), 8.89 (s, 1H), 8.19 (dd, J=8.3, 0.9 Hz, 1H), 8.04 (t, J=8.0 Hz, 1H), 7.95-7.87 (m, 2H), 7.48 (d, J=10.9 Hz, 1H), 5.65 (p, J=6.7 Hz, 1H), 2.43 (s, 3H), 1.44 (d, J=6.7 Hz, 6H).


6-(4-isopropyl-4H-1,2,4-triazol-3-yl)pyridin-2-amine (compound 2) was prepared according to the method disclosed in WO 2016106384.


Step 2

To a microwave vial was charged with compound 3(1.61 g, 3.86 mmol), ethyl acrylate (1.05 mL, 9.64 mmol), tris(dibenzylideneacetone)dipalladium(O) (177 mg, 0.193 mmol), tri-o-tolylphosphine (117 mg, 0.386 mmol) and triethylamine (1.6 mL, 11.57 mmol) in DMF (9.6 mL). The reaction was allowed to stir under microwave irradiation at 100° C. for 1 hour. The crude was then diluted with EtOAc and washed with aq. NH4Cl, water and brine. The organic layer was dried over Na2SO4, filtered and concentrated. The crude was purified by chromatography on silica gel using 0->10% MeOH in DCM to afford 1.607 g white solid as compound 4 (95% yield). 1H NMR (400 MHz, DMSO-d6) δ 10.90 (s, 1H), 8.87 (s, 1H), 8.21 (d, J=8.3 Hz, 1H), 8.10 (d, J=7.3 Hz, 1H), 8.04 (t, J=8.0 Hz, 1H), 7.90 (d, J=7.6 Hz, 1H), 7.84 (d, J=15.9 Hz, 1H), 7.34 (d, J=11.0 Hz, 1H), 6.65 (d, J=15.8 Hz, 1H), 5.66 (p, J=6.7 Hz, 1H), 4.21 (q, J=7.1 Hz, 2H), 2.48 (s, 3H), 1.43 (d, J=6.7 Hz, 6H), 1.27 (t, J=7.1 Hz, 3H).


Step 3

To a vial was charged with trimethylsulfonium iodide (425 mg, 1.932 mmol) and sodium hydride (77 mg, 1.932 mmol) in DMSO (2 mL). The resulting suspension was allowed to stir at room temperature for 40 min before addition of a solution of compound 4 (338 mg, 0.773 mmol) in DMSO (1.9 mL). The reaction was allowed to stir at room temperature for 5 hours before carefully quenched with water at 0° C. The reaction was then diluted with EtOAc, washed with water and brine. The organic layer was dried over Na2SO4, filtered and concentrated. The crude was purified by chromatography on silica gel using 0->10% MeOH in DCM to afford 241.5 mg white solid as ethyl 2-(4-fluoro-5-((6-(4-isopropyl-4H-1,2,4-triazol-3-yl)pyridin-2-yl)carbamoyl)-2-methylphenyl)cyclopropane-1-carboxylate (example 1) (69% yield). LC-MS observed [M+H], 452.22, Calcd. 452.21. 1H NMR (400 MHz, DMSO-d6) δ 10.75 (s, 1H), 8.87 (s, 1H), 8.20 (d, J=8.3 Hz, 1H), 8.03 (t, J=8.0 Hz, 1H), 7.89 (d, J=7.3 Hz, 1H), 7.38 (d, J=7.2 Hz, 1H), 7.25 (d, J=11.1 Hz, 1H), 5.65 (p, J=6.7 Hz, 1H), 4.15 (d, J=7.8 Hz, 2H), 2.46-2.36 (m, 1H), 2.41 (s, 3H), 1.90-1.81 (m, 1H), 1.47 (t, J=4.7 Hz, 2H), 1.43 (d, J=6.7 Hz, 6H), 1.23 (t, J=7.1 Hz, 3H).


Synthesis of 2-(4-fluoro-5-((6-(4-isopropyl-4H-1,2,4-triazol-3-yl)pyridin-2-yl)carbamoyl)-2-methylphenyl)cyclopropane-1-carboxylic acid (example 2)



embedded image


To a solution of example 1 (1.38 g, 3.07 mmol) in THF/H2O (8 mL/2 mL) was added LiOH (110 mg, 4.60 mmol). The reaction was allowed to stir at 50° C. for 5 hours. The reaction was then cooled to room temperature and acidified by 1 M aq. HCl. The crude residue was extracted with EtOAc (X3). The combined organic layers were dried over Na2SO4, filtered and concentrated. The crude was purified by chromatography on silica gel using 0->5% MeOH in DCM to afford 586 mg white solid as 2-(4-fluoro-5-((6-(4-isopropyl-4H-1,2,4-triazol-3-yl)pyridin-2-yl)carbamoyl)-2-methylphenyl)cyclopropane-1-carboxylic acid (example 2) (45% yield). LC-MS observed [M+H], 424.19, Calcd. 424.18. 1H NMR (400 MHz, DMSO-d6) δ 12.38 (s, 1H), 10.74 (s, 1H), 8.87 (s, 1H), 8.19 (d, J=8.6 Hz, 1H), 8.03 (t, J=8.0 Hz, 1H), 7.89 (d, J=8.0 Hz, 1H), 7.37 (d, J=7.2 Hz, 1H), 7.25 (d, J=11.2 Hz, 1H), 5.65 (p, J=6.7 Hz, 1H), 2.42 (s, 3H), 2.40-2.36 (m, 1H), 1.78-1.66 (m, 1H), 1.43 (d, J=6.7 Hz, 6H), 1.43-1.37 (m, 2H).


Synthesis of 5-(2-(cyclopropylcarbamoyl)cyclopropyl)-2-fluoro-N-(6-(4-isopropyl-4H-1,2,4-triazol-3-yl)pyridin-2-yl)-4-methylbenzamide (example 3)



embedded image


To a solution of example 2 (18.4 mg, 0.043 mmol) in DMF (0.4 mL) was added cyclopropanamine (5 mg, 0.087 mmo), HATU (33 mg, 0.087 mmol) and DIPEA (23 μL, 0.13 mmol). The reaction was allowed to stir at room temperature for overnight. The crude was directly purified by chromatography on silica gel using 0->5% MeOH in DCM to afford 12 mg white solid as 5-(2-(cyclopropylcarbamoyl)cyclopropyl)-2-fluoro-N-(6-(4-isopropyl-4H-1,2,4-triazol-3-yl)pyridin-2-yl)-4-methylbenzamide (example 3) (60% yield). LC-MS observed [M+H], 463.24, Calcd. 463.23. 1H NMR (400 MHz, DMSO-d6) δ 10.74 (s, 1H), 8.87 (s, 1H), 8.27 (d, J=4.2 Hz, 1H), 8.20 (d, J=8.3 Hz, 1H), 8.03 (t, J=7.9 Hz, 1H), 7.89 (d, J=7.6 Hz, 1H), 7.35 (d, J=7.2 Hz, 1H), 7.23 (d, J=11.1 Hz, 1H), 5.72-5.58 (m, 1H), 2.70-2.65 (m, 1H), 2.39 (s, 3H), 2.26-2.17 (m, 1H), 1.77-1.69 (m, 1H), 1.43 (d, J=6.8 Hz, 6H), 1.38-1.28 (m, 1H), 1.20-1.12 (m, 1H), 0.67-0.59 (m, 2H), 0.48-0.29 (m, 2H).


Synthesis of tert-butyl (2-(4-fluoro-5-((6-(4-isopropyl-4H-1,2,4-triazol-3-yl)pyridin-2-yl)carbamoyl)-2-methylphenyl)cyclopropyl)carbamate (example 4)



embedded image


Step 1

To a suspension of example 2 (523 mg, 1.24 mmol) in toluene (6 mL) was added diphenyl phosphoryl azide (0.53 mL, 2.47 mmol) and triethylamine (0.52 mL, 3.71 mmol). The reaction was allowed to stir at room temperature for 20 hours. The reaction was carefully quenched with aq. NaHCO3 and extracted with EtOAc (X3). The combined organic layers were dried over Na2SO4, filtered and concentrated. The crude was purified by chromatography on silica gel using 0->5% MeOH in DCM to afford 380.7 mg white solid as compound 5 (69% yield). 1H NMR (400 MHz, DMSO-d6) δ 10.75 (s, 1H), 8.87 (s, 1H), 8.19 (dd, J=8.3, 0.9 Hz, 1H), 8.03 (t, J=8.0 Hz, 1H), 7.88 (dd, J=7.7, 0.9 Hz, 1H), 7.40 (d, J=7.2 Hz, 1H), 7.26 (d, J=11.1 Hz, 1H), 5.64 (p, J=6.7 Hz, 1H), 2.63-2.55 (m, 1H), 2.42 (s, 3H), 1.97-1.89 (m, 1H), 1.74-1.65 (m, 1H), 1.65-1.57 (m, 1H), 1.43 (d, J=6.7 Hz, 6H).


Step 2

A solution of compound 5 (120 mg, 0.268 mmol) in toluene (1.3 mL) was heated at 80° C. for 1 hour before addition of tBuOH (0.26 mL, 2.68 mmol). The reaction was allowed to stir at the same temperature for overnight. The crude was concentrated and purified by chromatography on silica gel using 0->10% MeOH in DCM to afford 98.7 mg white solid as tert-butyl (2-(4-fluoro-5-((6-(4-isopropyl-4H-1,2,4-triazol-3-yl)pyridin-2-yl)carbamoyl)-2-methylphenyl)cyclopropyl)carbamate (example 4) (75% yield). LC-MS observed [M+H], 495.26, Calcd. 495.25. 1H NMR (400 MHz, DMSO-d6) δ 10.70 (s, 1H), 8.86 (s, 1H), 8.20 (d, J=8.3 Hz, 1H), 8.02 (t, J=8.0 Hz, 1H), 7.88 (d, J=7.5 Hz, 1H), 7.31 (s, br, 2H), 7.20 (d, J=11.2 Hz, 1H), 5.65 (p, J=6.8 Hz, 1H), 2.64-2.51 (m, 1H), 2.45 (s, 3H), 1.95-1.87 (m, 1H), 1.43 (dd, J=6.7, 1.2 Hz, 6H), 1.40 (s, 9H), 1.26-1.05 (m, 2H).


Synthesis of 3,3-difluoro-N-(2-(4-fluoro-5-((6-(4-isopropyl-4H-1,2,4-triazol-3-yl)pyridin-2-yl)carbamoyl)-2-methylphenyl)cyclopropyl)pyrrolidine-1-carboxamide (example 5)



embedded image


A solution of compound 5 (19.3 mg, 0.043 mmol) in toluene (0.43 mL) was heated at 80° C. for 1 hour before addition of 3,3-difluoropyrrolidine hydrochloride (18.5 mg, 0.129 mmol) and DIPEA (30 μL, 0.172 mmol). The reaction was allowed to stir at the same temperature for overnight. The crude was concentrated and purified by chromatography on silica gel using 0->10% MeOH in DCM to afford 20.8 mg white solid as 3,3-difluoro-N-(2-(4-fluoro-5-((6-(4-isopropyl-4H-1,2,4-triazol-3-yl)pyridin-2-yl)carbamoyl)-2-methylphenyl)cyclopropyl)pyrrolidine-1-carboxamide (example 5) (92% yield). LC-MS observed [M+H], 528.24, Calcd. 528.23. 1H NMR (400 MHz, DMSO-d6) δ 10.70 (s, 1H), 8.86 (d, J=0.9 Hz, 1H), 8.20 (d, J=8.3 Hz, 1H), 8.03 (t, J=8.0 Hz, 1H), 7.88 (d, J=7.6 Hz, 1H), 7.35 (d, J=7.2 Hz, 1H), 7.19 (d, J=11.1 Hz, 1H), 6.72 (d, J=3.5 Hz, 1H), 5.69-5.56 (m, 1H), 3.72-3.56 (m, 2H), 3.45 (d, J=7.9 Hz, 2H), 2.70-2.63 (m, 1H), 2.47 (s, 3H), 2.43-2.30 (m, 2H), 1.91 (s, 1H), 1.43 (d, J=6.7 Hz, 6H), 1.28-1.12 (m, 2H).


Synthesis of 2-fluoro-5-(2-(4-fluorobenzamido)cyclopropyl)-N-(6-(4-isopropyl-4H-1,2,4-triazol-3-yl)pyridin-2-yl)-4-methylbenzamide (example 6)



embedded image


Step 1

To a solution of example 4 (98.7 mg, 0.20 mmol) in dioxane (0.4 mL) was added 4M HCl in dioxane (0.5 mL, 2.0 mmol). The reaction was allowed to stir at room temperature for overnight.


The crude reaction was concentrated and the resulting white solid was directly used in the following transformation. LC-MS observed [M+H], 395.21, Calcd. 395.20.


Step 2

To a suspension of compound 6 (26 mg, 0.066 mmol) in DCM (0.66 mL) was added DIPEA (69 μL, 0.396 mmol) and 4-fluorobenzoyl chloride (12.6 mg, 0.079 mmol) at 0° C. The reaction was allowed to stir at the same temperature for 2 hours. The crude reaction was concentrated and purified by chromatography on silica gel using 0->10% MeOH in DCM to afford 27.4 mg white solid as 2-fluoro-5-(2-(4-fluorobenzamido)cyclopropyl)-N-(6-(4-isopropyl-4H-1,2,4-triazol-3-yl)pyridin-2-yl)-4-methylbenzamide (example 6) (80% yield). LC-MS observed [M+H], 517.22, Calcd. 517.22. 1H NMR (400 MHz, DMSO-d6) δ 10.73 (s, 1H), 8.87 (s, 1H), 8.74 (d, J=4.5 Hz, 1H), 8.21 (d, J=8.2 Hz, 1H), 8.03 (t, J=8.0 Hz, 1H), 7.94 (dd, J=8.8, 5.6 Hz, 2H), 7.89 (d, J=7.6 Hz, 1H), 7.42 (d, J=7.3 Hz, 1H), 7.32 (t, J=8.8 Hz, 2H), 7.23 (d, J=11.2 Hz, 1H), 5.66 (p, J=6.7 Hz, 1H), 3.07-2.97 (m, 1H), 2.48 (s, 3H), 2.14-2.07 (m, 1H), 1.44 (dd, J=6.7, 1.1 Hz, 6H), 1.41-1.29 (m, 2H).


Synthesis of 5-(2-((N,N-dimethylsulfamoyl)amino)cyclopropyl)-2-fluoro-N-(6-(4-isopropyl-4H-1,2,4-triazol-3-yl)pyridin-2-yl)-4-methylbenzamide (example 7)



embedded image


To a suspension of compound 6 (26 mg, 0.066 mmol) in DCM (0.66 mL) was added DIPEA (69 μL, 0.396 mmol) and dimethylsulfamoyl chloride (8.5 μL, 0.079 mmol) at 0° C. The reaction was allowed to stir at room temperature for 3 days. The crude reaction was concentrated and purified by chromatography on silica gel using 0->10% MeOH in DCM to afford 27.2 mg white solid as 5-(2-((N,N-dimethylsulfamoyl)amino)cyclopropyl)-2-fluoro-N-(6-(4-isopropyl-4H-1,2,4-triazol-3-yl)pyridin-2-yl)-4-methylbenzamide (example 7) (84% yield). LC-MS observed [M+H], 502.21, Calcd. 502.20. 1H NMR (400 MHz, DMSO-d6) δ 10.70 (s, 1H), 8.86 (s, 1H), 8.20 (dd, J=8.3, 0.9 Hz, 1H), 8.02 (t, J=8.0 Hz, 1H), 7.88 (dd, J=7.7, 0.9 Hz, 1H), 7.82 (d, J=2.5 Hz, 1H), 7.25 (d, J=7.2 Hz, 1H), 7.21 (d, J=11.2 Hz, 1H), 5.64 (p, J=6.5 Hz, 1H), 2.72 (s, 6H), 2.61-2.57 (m, 1H), 2.47 (s, 3H), 2.20-2.09 (m, 1H), 1.43 (dd, J=6.7, 0.9 Hz, 6H), 1.29-1.12 (m, 2H).


Synthesis of tert-butyl (2-(2-((6-(4-isopropyl-4H-1,2,4-triazol-3-yl)pyridin-2-yl)carbamoyl)-5-methylpyridin-4-yl)cyclopropyl)carbamate (example 8)



embedded image


Compound 8 was prepared in a similar way as example 4 from commercially available starting material compound 7.


To a solution of compound 8 (34.7 mg, 0.123 mmol) in DMF (0.6 mL) was added compound 2 (52.8 mg, 0.245 mmol), Pd(OAc)2 (2.8 mg, 0.012 mmol), dppp (10.1 mg, 0.025 mmol) and triethylamine (51 μL, 0.368 mmol). The reaction was purged with CO (X3) and allowed to stir at 80° C. under 1 atm CO atmosphere for overnight. The crude was diluted with EtOAc, washed with water and brine. The organic layer was dried over Na2SO4, filtered and concentrated. The crude was purified by chromatography on silica gel using 0->100% acetone in hex to afford 4.7 mg white solid tert-butyl (2-(2-((6-(4-isopropyl-4H-1,2,4-triazol-3-yl)pyridin-2-yl)carbamoyl)-5-methylpyridin-4-yl)cyclopropyl)carbamate (example 8) (8% yield). LC-MS observed [M+H], 478.26, Calcd. 478.26.


Synthesis of tert-butyl (R)-(3-(2-((6-(1-(1-hydroxypropan-2-yl)-1H-tetrazol-5-yl)pyri din-2-yl)carbamoyl)-5-methylpyridin-4-yl)cyclobutyl)carbamate (example 9)



embedded image


Step 1

To a solution of tert-butyl (3-hydroxycyclobutyl)carbamate (3.98 g, 21.24 mmol) in THF (106 mL) was added PPh3 (11.14 g, 42.5 mmol) and CBr4 (42.09 g, 42.5 mmol). The resulting suspension was allowed to stir at room temperature for 20 hours. The reaction was diluted with 500 mL EtOAc and washed with 10% H2O2 (100 mL×2), aq. Na2SO3 (100 mL×2) and brine. The organic layer was dried over Na2SO4, filtered and concentrated. The crude was redissolved in EtOH (160 mL) and was chagred with a homogeneous solution of zinc chloride (11.58 g, 85 mmol) in warm EtOH (80 mL). The resulting solution was allowed to stir at for 1 hour until precipitation occurred. Filtration. The resulting filtrate was concentrated and purified by chromatography on silica gel using 0->50% EtOAc in hex to afford 2.45 g white solid as compound 10 (46% yield).


Step 2

To an 8 mL vial was charged with photocatalyst Ir[dF(CF3)ppy]2(dtbbpy)PF6 (73 mg, 0.065 mmol), methyl 5-bromo-2-fluoro-4-methylbenzoate (compound 7) (1.348 g, 6.53 mmol), compound 10 (2.45 g, 9.79 mmol), tris(trimethylsilyl)silane (1.691 g, 6.53 mmol) and LiOH (0.313 g, 13.06 mmol) in DME (26 mL). To a separate vial was added NiCl2.glyme (14.6 mg) and 4,4″-di-tert-butyl-2,2″-dipyridine (19 mg). The catalyst vial was sealed, purged with nitrogen, and DME (6 mL) was then added. The precatalyst solution was stirred for 5 minutes, after which, 3 mL of the solution was added into the previous reaction vessel. The reaction solution was then degassed and irridiated with a Kessil blue LED lamp for 20 hours. The crude was diluted with EtOAc, washed with water and brine. The organic layer was dried over Na2SO4, filtered and concentrated. The crude was purified by chromatography on silica gel using 0->50% EtOAc in hex to afford 1.09 g pale yellow sticky oil as compound 11.


Step 3

To a solution of compound 11 (104.5 mg, 0.352 mmol) in DMF/EtOH (0.88 mL/0.88 mL) was added Pd(OAc)2 (7.9 mg, 0.035 mmol), dppp (29 mg, 0.070 mmol) and K2CO3 (97 mg, 0.704 mmol). The reaction was purged with CO (X3) and allowed to stir at 80° C. under 1 atm CO atmosphere for overnight. The crude was diluted with EtOAc, washed with water and brine. The organic layer was dried over Na2SO4, filtered and concentrated. The crude was purified by chromatography on silica gel using 0->40% acetone in hex to afford 48.9 mg white solid as compound 12 (42% yield).


Step 4

To a solution of AlMe3 (2.0 M in toluene solution, 0.24 mL, 0.48 mmol) in DCM (0.4 mL) was added compound 13 (35.6 mg, 0.161 mmol) at 0° C. The reaction was allowed to stir for 20 min at the same temperature before warm to room temperature for 1 hour. Then a solution of compound 12 (27 mg, 0.081 mmol) in DCM (0.4 mL) was carefully added in the reaction. The resulting reaction was allowed to stir at 40° C. for 18 hours. The reaction was carefully quenched with 20% Rochelle's salt aq. solution at 0° C. The aq. layer was extracted by DCM (X2). The combined organic layers were dried over Na2SO4, filtered and concentrated. The crude was purified by chromatography on silica gel using 0->50% acetone in hex to afford 15 mg white solid as tert-butyl (R)-(3-(2-((6-(1-(1-hydroxypropan-2-yl)-1H-tetrazol-5-yl)pyridin-2-yl)carbamoyl)-5-methylpyridin-4-yl)cyclobutyl)carbamate (example 9) (37% yield). LC-MS observed [M+H], 509.26, Calcd. 509.26.


Synthesis of (R)-2-(5-(6-aminopyridin-2-yl)-1H-tetrazol-1-yl)propan-1-ol (compound 13) was illustrated as below.




embedded image


Step 1

TFA (3.2 mL) was added to a solution of (R)-2-((tert-butoxycarbonyl)amino)propyl acetate (992 mg, 4.57 mmol) in DCM (6.5 mL) and the reaction was stirred for 3.5 hrs. The reaction was concentrated under reduced pressure at 45° C. until TFA was removed. Dried oil under vacuum 40° C. give crude (R)-1-acetoxypropan-2-ammonium 2,2,2-trifluoroacetate as a clear oil that was used without purification: 1H NMR (400 MHz, DMSO-d6) δ 4.12 (dd, J=11.8, 4.1 Hz, 1H), 4.02 (dd, J=11.8, 7.1 Hz, 1H), 3.55-3.41 (m, 1H), 2.06 (s, 3H), 1.18 (d, J=6.7 Hz, 3H).


Step 2

DIPEA (3.1 mL, 17.6 mmol), a solution of (R)-1-acetoxypropan-2-ammonium 2,2,2-trifluoroacetate (1.1 g, 4.57 mmol) in DMF (5 mL), and HATU (2.0 g, 5.28 mmol) was added to a solution of 6-nitropicolinic acid (592 mg, 3.52 mmol) in DMF (6.73 mL) and the reaction was stirred overnight. The reaction was quenched with H2O and diluted with EtOAc. The layers were separated and the aqueous layer was extracted with EtOAc (2×). The combined organic layers were washed with water (1×), brine (2×), dried (MgSO4), filtered, and concentrated under reduced pressure. The resultant yellow gum was purified by column chromatography eluting with hexanes/EtOAc (0% EtOAc→40% EtOAc) to give (R)-2-(6-nitropicolinamido)propyl acetate (770 mg, 2.88 mmol, 82% yield) as a yellow gum: 1H NMR (400 MHz, Chloroform-d) δ 8.57 (dd, J=7.7, 1.0 Hz, 1H), 8.39 (dd, J=8.1, 1.0 Hz, 1H), 8.23 (t, J=7.9 Hz, 1H), 7.92 (d, J=8.6 Hz, 1H), 4.58-4.43 (m, 1H), 4.24 (dd, J=11.3, 4.4 Hz, 1H), 4.18 (dd, J=11.3, 5.5 Hz, 1H), 2.11 (s, 3H), 1.36 (d, J=6.8 Hz, 3H).


Step 3

To a mixture of (R)-2-(6-nitropicolinamido)propyl acetate (765 mg, 2.86 mmol) and sodium azide (298 mg, 4.58 mmol) in acetonitrile (19.1 mL) behind a blast shield at 0° C. was added Tf2O (4.29 mL, 4.29 mmol, 1.0M solution in DCM) dropwise, and the resulting mixture was stirred for 30 min at 0° C. The cold bath was removed, and the mixture was stirred at rt for 1 h. The reaction was quenched with sat. NaHCO3 and diluted with EtOAc. The organic layer was separated and washed with brine, dried, filtered and concentrated under reduced pressure. The resultant residue was purified by column chromatography eluting with hexanes/EtOAc (0% EtOAc→60% EtOAc) to give (R)-2-(5-(6-nitropyridin-2-yl)-1H-tetrazol-1-yl)propyl acetate (699 mg, 2.392 mmol, 84% yield) as a pale yellow solid: 1H NMR (500 MHz, Chloroform-d) δ 8.79 (dd, J=7.8, 0.9 Hz, 1H), 8.43 (dd, J=8.1, 1.0 Hz, 1H), 8.32 (dd, J=8.4, 7.4 Hz, 1H), 6.17 (pd, J=7.0, 4.5 Hz, 1H), 4.64 (dd, J=11.8, 4.6 Hz, 1H), 4.59 (dd, J=11.7, 7.5 Hz, 1H), 1.88 (d, J=1.0 Hz, 3H), 1.82 (dd, J=6.9, 1.1 Hz, 3H).


Step 4

Pd—C (140 mg, 10% loading) was added to a solution of (R)-2-(5-(6-nitropyridin-2-yl)-1H-tetrazol-1-yl)propyl acetate (699 mg, 2.392 mmol) in MeOH (18.4 mL) and EtOAc (18.4 mL). The reaction was evacuated and backfilled with H2 (3×) and the reaction was stirred under a balloon of H2 overnight. The reaction was filtered through Celite, rinsing with DCM. The filtrate was concentrated under reduced pressure, dissolved in DCM, and filtered through Celite, rinsing with DCM. The filtrate was concentrated under reduced pressure to give (R)-2-(5-(6-aminopyridin-2-yl)-1H-tetrazol-1-yl)propyl acetate (575 mg, 2.192 mmol, 92% yield) as a colorless gum that solidified upon standing: 1H NMR (500 MHz, Chloroform-d) δ 7.67-7.60 (comp, 2H), 6.66 (d, J=7.0 Hz, 1H), 6.21 (d, J=10.4 Hz, 1H), 4.67 (dd, J=11.4, 4.3 Hz, 1H), 4.30 (dd, J=11.4, 9.4 Hz, 1H), 1.84 (s, 3H), 1.70 (d, J=6.8 Hz, 3H).


Step 5

K2CO3 (1.1 g, 8.20 mmol) was added to a solution of (R)-2-(5-(6-aminopyridin-2-yl)-1H-tetrazol-1-yl)propyl acetate (430 mg, 1.64 mmol) in MeOH (6.6 mL) and the reaction was stirred for 30 min. The reaction was concentrated to remove MeOH and the residue was partitioned between DCM and H2O. The layers were separated and the aqueous layer was extracted with DCM (3×). The combined organic layers were washed with brine, dried (MgSO4), filtered, and concentrated under reduced pressure to give (R)-2-(5-(6-aminopyridin-2-yl)-1H-tetrazol-1-yl)propan-1-ol (compound 13)(327 mg, 1.485 mmol, 91% yield) as a yellow gum: 1H NMR (400 MHz, DMSO-d6) δ 7.59 (dd, J=8.4, 7.3 Hz, 1H), 7.27 (dd, J=7.3, 0.8 Hz, 1H), 6.62 (dd, J=8.4, 0.8 Hz, 1H), 6.36 (s, 2H), 5.83-5.76 (m, 1H), 4.96 (t, J=5.6 Hz, 1H), 3.80 (ddd, J=11.2, 8.1, 5.9 Hz, 1H), 3.71 (dt, J=11.0, 5.3 Hz, 1H), 1.52 (d, J=6.8 Hz, 3H).


The following examples were prepared by using procedures similar to those described above:

















ESIMS



Ex-

(M − H) or



ample
Structure
(M + H)+

1H NMR (400 MHz, DMSO-d6)








10


embedded image


521.20
10.71 (s, 1H), 8.86 (s, 1H), 8.23- 8.13 (m, 2H), 8.02 (t, J = 8.0 Hz, 1H), 7.88 (dd, J = 7.6, 0.9 Hz, 1H), 7.32 (d, J = 7.2 Hz, 1H), 7.21 (d, J = 11.2 Hz, 1H), 5.65 (p, J = 6.7 Hz, 1H), 4.68 (q, J = 9.1 Hz, 2H), 2.73-2.66 (m, 1H), 2.46 (s, 3H), 2.09-2.00 (m, 1H), 1.43 (d, J = 6.7 Hz, 6H), 1.22-1.11 (m, 2H).





11


embedded image


499.20






12


embedded image


513.23






13


embedded image


548.24






14


embedded image


479.27
10.71 (s, 1H), 8.86 (s, 1H), 8.20 (d, J = 8.3 Hz, 1H), 8.03 (t, J = 8.0 Hz, 1H), 7.88 (d, J = 7.7 Hz, 1H), 7.67 (d, J = 4.6 Hz, 1H), 7.38 (d, J = 7.3 Hz, 1H), 7.20 (d, J = 11.2 Hz, 1H), 5.65 (p, J = 6.7 Hz, 1H), 2.87-2.80 (m, 1H), 2.43 (s, 3H), 1.97-1.87 (m, 1H), 1.43 (dd, J = 6.6, 1.6 Hz, 6H), 1.22-1.08 (m, 2H), 1.11 (s, 9H).





15


embedded image


435.22






16


embedded image


525.25






17


embedded image


533.21






18


embedded image


560.26

1H NMR (400 MHz, DMSO-d6) δ 10.57 (s, 1H), 8.90 (s, 1H), 8.33 (dd, J = 8.3, 0.9 Hz, 1H), 8.03 (t, J = 8.0 Hz, 1H), 7.86 (dd, J = 7.6, 0.9 Hz, 1H), 7.63 (s, 1H), 7.12 (s, 1H), 6.67 (d, J = 3.5 Hz, 1H), 5.48 (p, J = 6.7 Hz, 1H), 3.99 (s, 3H), 3.45 (dp, J = 14.1, 7.0 Hz, 2H), 2.82 (s, 3H), 2.67 (dd, J = 4.1, 2.5 Hz, 1H), 2.48 (s, 3H), 2.47-2.40






(m, 2H), 1.87 (ddd, J = 9.7, 6.4,





3.5 Hz, 1H), 1.53 (dd, J = 6.7, 1.3





Hz, 6H), 1.20 (dt, J = 9.6, 5.0 Hz,





1H), 1.03 (q, J = 6.4 Hz, 1H).





19


embedded image


504.20






20


embedded image


514.23

1H NMR (400 MHz, DMSO-d6) δ 10.56 (s, 1H), 8.90 (s, 1H), 8.32 (dd, J = 8.4, 0.9 Hz, 1H), 8.03 (t, J = 8.0 Hz, 1H), 7.86 (dd, J = 7.7, 0.9 Hz, 1H), 7.81 (s, 1H), 7.54 (s, 1H), 7.13 (s, 1H), 5.48 (p, J = 6.8 Hz, 1H), 3.98 (s, 3H), 2.74 (s, 6H), 2.49 (s, 3H), 2.17-2.04 (m, 1H), 1.53 (d, J = 6.7 Hz, 6H), 1.23 (dt, J = 9.5, 4.6 Hz, 1H), 1.06 (q, J = 6.5






Hz, 1H).





21


embedded image


567.20






22


embedded image


529.24

1H NMR (500 MHz, DMSO-d6) δ 10.51 (s, 1H), 8.83 (s, 1H), 8.66 (d, J = 4.7 Hz, 1H), 8.27 (d, J = 8.5 Hz, 1H), 7.97 (t, J = 8.0 Hz, 1H), 7.88 (dd, J = 8.7, 5.6 Hz, 2H), 7.79 (d, J = 7.6 Hz, 1H), 7.60 (s, 1H), 7.25 (t, J = 8.8 Hz, 2H), 7.08 (s, 1H), 5.42 (p, J = 6.7 Hz, 1H), 3.93 (s, 3H), 2.92 (dt, J = 8.0, 4.0 Hz, 1H), 2.43 (s, 3H), 2.01 (ddd, J =






9.8, 6.4, 3.6 Hz, 1H), 1.46 (d, J =





6.7 Hz, 6H), 1.29 (dt, J = 9.7, 5.1





Hz, 1H), 1.15 (dt, J = 7.8, 5.8 Hz,





1H).





23


embedded image


491.28

1H NMR (400 MHz, DMSO-d6) δ 10.57 (s, 1H), 8.90 (s, 1H), 8.33 (dd, J = 8.4, 0.9 Hz, 1H), 8.04 (t, J = 8.0 Hz, 1H), 7.86 (dd, J = 7.6, 0.9 Hz, 1H), 7.65 (d, J = 5.2 Hz, 2H), 7.12 (s, 1H), 5.48 (p, J = 6.7 Hz, 1H), 3.99 (s, 3H), 2.79 (dq, J = 8.5, 4.5 Hz, 1H), 2.45 (s, 3H), 1.90 (ddd, J = 9.7, 6.2, 3.6 Hz, 1H), 1.53 (dd, J = 6.7, 1.3 Hz, 6H), 1.25






(dt, J = 9.6, 5.2 Hz, 1H), 1.12 (s,





9H), 1.10-0.97 (m, 1H).





24


embedded image


529.22






25


embedded image


537.19

1H NMR (400 MHz, DMSO-d6) δ 10.71 (s, 1H), 8.80 (s, 1H), 8.29- 8.14 (m, 2H), 8.05 (t, J = 8.1 Hz, 1H), 7.90 (dd, J = 7.6, 0.9 Hz, 1H), 7.35 (d, J = 7.2 Hz, 1H), 7.24 (d, J = 11.2 Hz, 1H), 5.58 (d, J = 6.5 Hz, 1H), 4.96 (t, J = 5.5 Hz, 1H), 4.71 (q, J = 9.2 Hz, 2H), 3.69- 3.61 (m, 2H), 2.49 (s, 3H), 2.05 (m, 1H), 1.47 (d, J = 6.9 Hz, 3H), 1.30 (d, J = 7.2 Hz, 1H), 1.26-






1.15 (m, 1H).





26


embedded image


564.23

1H NMR (400 MHz, DMSO-d6) δ 10.67 (s, 1H), 8.77 (s, 1H), 8.20 (d, J = 8.3 Hz, 1H), 8.02 (t, J = 8.0 Hz, 1H), 7.87 (d, J = 7.6 Hz, 1H), 7.35 (d, J = 7.2 Hz, 1H), 7.19 (d, J = 11.2 Hz, 1H), 6.69 (d, J = 3.4 Hz, 1H), 5.67-5.46 (m, 1H), 5.05 4.80 (m, 1H), 3.63 (d, J = 9.6 Hz, 2H), 3.46 (m, J = 7.5 Hz, 2H), 2.82 (s, 3H), 2.75-2.65 (m, 1H), 2.46 (s, 3H), 1.88 (s, 1H), 1.43 (dd, J =






7.0, 1.4 Hz, 3H), 1.22 (dt, J = 9.8,





5.1 Hz, 1H), 1.14 (q, J = 6.3 Hz,





1H).





27


embedded image


571.17






28


embedded image


518.20

1H NMR (400 MHz, DMSO-d6) δ 10.67 (s, 1H), 8.77 (s, 1H), 8.19 (d, J = 8.3 Hz, 1H), 8.02 (t, J = 7.9 Hz, 1H), 7.87 (d, J = 7.6 Hz, 1H), 7.82 (s, 1H), 7.23 (dd, J = 14.3, 9.2 Hz, 2H), 5.54 (d, J = 5.6 Hz, 1H), 4.93 (t, J = 5.3 Hz, 1H), 3.62 (d, J = 5.4 Hz, 1H), 2.73 (s, 6H), 2.47 (s, 3H), 2.14 (s, 1H), 1.43 (d, J = 6.9 Hz, 3H), 1.23 (dd, J = 9.8, 4.5 Hz, 1H), 1.18 (d, J = 6.6 Hz, 1H).






29


embedded image


495.25

1H NMR (400 MHz, DMSO-d6) δ 10.68 (s, 1H), 8.77 (s, 1H), 8.20 (d, J = 8.3 Hz, 1H), 8.02 (t, J = 8.0 Hz, 1H), 7.87 (d, J = 7.6 Hz, 1H), 7.68 (d, J = 4.7 Hz, 1H), 7.38 (d, J = 5.7 Hz, 1H), 7.20 (d, J = 11.2 Hz, 1H), 5.55 (d, J = 6.5 Hz, 1H), 4.93 (t, J = 5.4 Hz, 1H), 3.62 (m, 2H), 2.90-2.79 (m, 1H), 2.43 (s, 3H), 1.91 (s, 2H), 1.53-1.36 (m, 3H), 1.27 (dt, J = 9.5, 5.1 Hz, 1H),






1.22-1.15 (m, 1H), 1.11 (s, 9H).









Synthesis of example 30 is illustrated in the scheme below:




embedded image


Step 1

To a solution of commercially available compound 20 (1.25 g, 5.36 mmol) in DCM/tBuOH (10 mL/5 mL) was added Boc anhydride (2.34 g, 10.73 mmol) and DMAP (0.72 g, 5.9 mmol). The reaction was allowed to stir at room temperature for 3 hours. The crude was diluted with EtOAc and washed with aq. NH4Cl and brine. The organic layer was dried over Na2SO4, filtered and concentrated. The crude was purified by chromatography on silica gel using 0->50% EtOAc in hexanes to afford 1.214 g colorless oil as compound 21 (78% yield). 1H NMR (400 MHz, DMSO-d6) δ 7.93 (d, J=6.9 Hz, 1H), 7.41 (d, J=11.5 Hz, 1H), 2.39 (s, 3H), 1.54 (d, J=1.0 Hz, 9H).


Step 2

To a solution of compound 21 (1.093 g, 3.78 mmol) in dioxane/water (9.45 mL/2.36 mL) was added 4,4,5,5-tetramethyl-2-vinyl-1,3,2-dioxaborolane (1.165 g, 7.56 mmol), tetrakis(triphenylphosphine)palladium(O) (0.437 g, 0.378 mmol) and potassium carbonate (1.045 g, 7.56 mmol). The reaction was allowed to stir at 80° C. for 20 hours. The crude was diluted with EtOAc and washed with water and brine. The organic layer was dried over Na2SO4, filtered and concentrated. The crude was purified by chromatography on silica gel using 0->20% MTBE in hexanes to afford 0.624 g colorless oil as compound 22 (70% yield). 1H NMR (400 MHz, Chloroform-d) δ 7.97 (d, J=7.5 Hz, 1H), 6.91 (d, J=11.4 Hz, 1H), 6.85 (dd, J=17.4, 11.0 Hz, 1H), 5.67 (dd, J=17.3, 1.2 Hz, 1H), 5.35 (dt, J=10.9, 0.9 Hz, 1H), 2.38 (s, 3H), 1.58 (s, 9H).


Step 3

To a solution of compound 22 (149 mg, 0.631 mmol) and rhodium(II) acetate dimer (13.9 mg, 0.032 mmol) in DCM (3.1 mL) was slowly added ethyl 2-diazoacetate (381 μL, 3.15 mmol) via syring pump ove 8 hours at room temperature. The crude was concentrated and purified by chromatography on silica gel using 0->30% EtOAc in hexanes to afford 97.6 mg colorless oil as compound 23 (48% yield). 1H NMR (500 MHz, Chloroform-d) δ 7.63 (d, J=7.4 Hz, 1H), 6.79 (d, J=11.4 Hz, 1H), 3.81 (qd, J=7.2, 1.2 Hz, 2H), 2.29 (m, 1H), 2.27 (s, 3H), 2.08 (ddd, J=9.1, 8.0, 5.5 Hz, 1H), 1.67 (dt, J=7.5, 5.3 Hz, 1H), 1.51 (s, 9H), 1.33 (td, J=8.2, 5.0 Hz, 1H), 0.93 (t, J=7.1 Hz, 3H).


Step 4

To a solution of compound 23 (257 mg, 0.797 mmol) in DCM (2.8 mL) was added trifluoroacetic acid (0.31 mL, 3.99 mmol). The reaction was allowed to stir at room temperature for 16 hours. The crude was concentrated and purified by chromatography on silica gel using 0->50% EtOAc in hexanes to afford 188 mg white solid as compound 24 (89% yield). 1H NMR (400 MHz, Chloroform-d) δ 7.86 (d, J=7.4 Hz, 1H), 6.97 (d, J=11.5 Hz, 1H), 3.93 (q, J=7.1 Hz, 2H), 2.42 (m, 4H), 2.29-2.16 (m, 1H), 1.80 (dt, J=7.6, 5.4 Hz, 1H), 1.47 (td, J=8.3, 5.2 Hz, 1H), 1.03 (t, J=7.1 Hz, 3H).


Step 5

To a suspension of compound 24 (188 mg, 0.706 mmol) in DCM (3.5 mL) was added Ghosez's reagent (112 μL, 0.847 mmol). The reaction was allowed to stir at room temperature for 1 h before concentration under high vac. Then the resulting crude residue was redissolved in DCM (3.5 mL), and then compound 2 (172 mg, 0.847 mmol) and 2,6-lutidine (329 μL, 2.82 mmol) was added at 0° C. The reaction was allowed to stir at room temperature for overnight. The crude was diluted with EtOAc and washed with aq. NH4Cl and brine. The organic layer was dried over Na2SO4, filtered and concentrated. The crude was purified by chromatography on silica gel using 0->10% MeOH in DCM to afford 272 mg white solid as example 30 (85% yield). LC-MS observed [M+H], 452.22, Calcd. 452.21. 1H NMR (400 MHz, DMSO-d6) δ 10.66 (d, J=2.5 Hz, 1H), 8.87 (d, J=0.8 Hz, 1H), 8.21 (dd, J=8.3, 0.9 Hz, 1H), 8.03 (t, J=8.0 Hz, 1H), 7.89 (dd, J=7.6, 0.9 Hz, 1H), 7.51 (d, J=7.4 Hz, 1H), 7.19 (d, J=11.3 Hz, 1H), 5.67 (p, J=6.6 Hz, 1H), 3.85 (qd, J=7.3, 2.1 Hz, 2H), 2.53 (m, 1H), 2.36 (s, 3H), 2.22 (td, J=8.2, 5.2 Hz, 1H), 1.61 (q, J=5.4 Hz, 1H), 1.44 (m, 7H), 1.24-1.07 (m, 1H), 0.98 (td, J=7.1, 0.8 Hz, 3H).


ASSAYS

The ability (IC50) of compounds to inhibit ASK1 kinase activity was determined by HTRF® KinEASE™ Assay System.


ASK1 was purchased from Thermofisher (Catalogue #PV4011), ATP was purchased from Sigma (Catalogue #A7699), HTRF® KinEASE™ Assay System was obtained from Cisbio (Bedford, Mass.). ½ Area plate was purchased from Perkin Elmer (Catalogue # #6005560). HTRF® KinEASE™-STK is a generic method for measuring serine/threonine kinase activities using a time-resolved fluorescence resonance energy transfer (TR-FRET) immunoassay. The IC50 value for each compound was determined in the presence of compound (various concentration from 0 to 10 μM) and a fixed amount of ATP and peptide substrates. The test compound, 1 uM STK3 peptide substrate, and 5 nM of ASK1 kinase are incubated with kinase reaction buffer containing 50 mM HEPES pH 7.5, 0.01% BRIJ-35, 10 mM MgCl2, and 1 mM EGTA for 30 minutes. 100 uM ATP is added to start kinase reaction and incubated for 3 hours. The STK3-antibody labeled with Eu3+-Cryptate and 125 nM streptavidin-XL665 are mixed in a single addition with stop reagents provided by the Cisbio kit used to stop the kinase reaction. Fluorescence is detected using an Envision Multilabeled 2014 reader from PerkinElmer. The Fluorescence is measured at 615 nm (Cryptate) and 665 nm (XL665) and a ratio of 665 nm/615 nm is calculated for each well. The resulting TR-FRET is proportional to the phosphorylation level. Staurosporine was used as the positive control. IC50 was determined by XLfit 5.3.


By using above method, the inhibition of ASK1 was tested for the compound of formula (I). IC50 ranges are as follows: A<1 nM; 1 nM<B<10 nM; C>10 nM.












TABLE 7







Example




No.
IC50



















1
B



2
C



3
C



4
B



5
C



6
C



7
C



8
C



9
C



10
B



11
B



12
C



13
C



14
C



15
B



16
B



17
B



18
B



19
C



20
B



21
B



22
B



23
B



24
B



25
C



26
B



27
B



28
B



29
B



30
C










While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

Claims
  • 1. A compound represented by Formula I or a pharmaceutically acceptable salt thereof:
  • 2. The compound of claim 1, wherein
  • 3. The compound of claim 1, which is represented by Formula (VIIa), (VIIb), or (VIIc), or a pharmaceutically acceptable salt thereof:
  • 4. The compound of claim 1, which is represented by Formula (IIa) or (IIb), or a pharmaceutically acceptable salt thereof:
  • 5. The compound of claim 1, which is represented by Formula (VIIIa) or (VIIIb), or a pharmaceutically acceptable salt thereof:
  • 6. The compound of claim 1, which represented by Formula (IIIa), (IIIb), (IVa), (IVb), (Va), or (Vb) or a pharmaceutically acceptable salt thereof:
  • 7. The compound of claim 1, which is selected from compounds of Formula (IIIa) or a pharmaceutically acceptable salt thereof:
  • 8. The compound of claim 1, which is selected from compounds of Formula (IIIb) or a pharmaceutically acceptable salt thereof:
  • 9. The compound of claim 1, which is selected from compounds of Formula (IVa) or a pharmaceutically acceptable salt thereof:
  • 10. The compound of claim 1, which is selected from compounds of Formula (IVb) or a pharmaceutically acceptable salt thereof:
  • 11. The compound of claim 1, which is selected from compounds of Formula (Va) or a pharmaceutically acceptable salt thereof:
  • 12. The compound of claim 1, which is selected from compounds of Formula (Vb) or a pharmaceutically acceptable salt thereof:
  • 13. The compound of claim 1, selected from the compounds set forth below, or a pharmaceutically acceptable salt thereof:
  • 14. A pharmaceutical composition comprising a compound according to claim 1 and a pharmaceutically acceptable carrier or excipient.
  • 15. A method of treating a disease or condition selected from the group consisting of primary biliary cirrhosis, cerebrotendinous xanthomatosis, primary sclerosing cholangitis, drug induced cholestasis, intrahepatic cholestasis of pregnancy, parenteral nutrition associated cholestasis, bacterial overgrowth or sepsis associated cholestasis, autoimmune hepatitis, alcoholic liver disease, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, liver transplant associated graft versus host disease, congenital hepatic fibrosis, choledocholithiasis, diabetic nephropathy, focal segmental glomerulosclerosis, hypertensive nephrosclerosis, chronic transplant glomerulopathy, chronic interstitial nephritis, cardiac hypertrophy, heart attack, myocardial ischemia pyelonephritis, kidney fibrosis and glomerulonephritis, in a subject in need thereof, comprising administering to the subject a therapeutically effective amount of the compound of claim 1.
RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 62/721,214, filed on Aug. 22, 2018. The entire teachings of the above applications are incorporated herein by reference.

US Referenced Citations (38)
Number Name Date Kind
6140347 Castro et al. Oct 2000 A
6534651 Jagtap et al. Mar 2003 B2
7678792 Chianelli Mar 2010 B2
8378108 Corkey et al. Feb 2013 B2
8653075 Grundl et al. Feb 2014 B2
8895745 Berdini et al. Nov 2014 B2
9067933 Corkey et al. Jun 2015 B2
9132140 Reddy et al. Sep 2015 B2
9254284 Notte Feb 2016 B2
9751885 Tomita Sep 2017 B2
10246439 Granger et al. Apr 2019 B2
10253018 Wang et al. Apr 2019 B2
10450301 Granger et al. Oct 2019 B2
10597382 Wang et al. Mar 2020 B2
10683279 Wang et al. Jun 2020 B2
10683289 Granger et al. Jun 2020 B2
20050113450 Thorarensen et al. May 2005 A1
20090318425 Chang et al. Dec 2009 A1
20100029619 Uchikawa et al. Feb 2010 A1
20110009410 Corkey et al. Jan 2011 A1
20120004267 Corkey et al. Jan 2012 A1
20130203731 Chang et al. Aug 2013 A1
20130210810 Singh et al. Aug 2013 A1
20140018370 Corkey et al. Jan 2014 A1
20140249135 Burger et al. Sep 2014 A1
20140329850 Chang Nov 2014 A1
20150005280 Sasmal et al. Jan 2015 A1
20170210748 Witty et al. Jul 2017 A1
20180327388 Wang et al. Nov 2018 A1
20180362501 Wang et al. Dec 2018 A1
20180362502 Granger et al. Dec 2018 A1
20180362503 Granger et al. Dec 2018 A1
20190062310 Wang et al. Feb 2019 A1
20190337923 Wang et al. Nov 2019 A1
20190337935 Granger et al. Nov 2019 A1
20200157095 Granger et al. May 2020 A1
20200308193 Granger et al. Oct 2020 A1
20200331890 Wang et al. Oct 2020 A1
Foreign Referenced Citations (46)
Number Date Country
107793400 Mar 2018 CN
2004018428 Mar 2004 WO
2005009470 Feb 2005 WO
2005103288 Nov 2005 WO
2007000339 Jan 2007 WO
2008082579 Jul 2008 WO
2009011850 Jan 2009 WO
2009027283 Mar 2009 WO
2009123986 Oct 2009 WO
2010008843 Jan 2010 WO
2011008709 Jan 2011 WO
2011041293 Apr 2011 WO
2011097079 Aug 2011 WO
2012003387 Jan 2012 WO
2012011548 Jan 2012 WO
2012080735 Jun 2012 WO
2013112741 Aug 2013 WO
2014100541 Jun 2014 WO
2014106019 Jul 2014 WO
2014137728 Sep 2014 WO
2015095059 Jun 2015 WO
2015187499 Dec 2015 WO
2016049069 Mar 2016 WO
2016049070 Mar 2016 WO
2016105453 Jun 2016 WO
2016106384 Jun 2016 WO
2018090869 May 2018 WO
2018133856 Jul 2018 WO
2018133865 Jul 2018 WO
2018133866 Jul 2018 WO
2018148204 Aug 2018 WO
2018149284 Aug 2018 WO
2018151830 Aug 2018 WO
2018157277 Sep 2018 WO
2018157856 Sep 2018 WO
2018157857 Sep 2018 WO
2018160406 Sep 2018 WO
2018169742 Sep 2018 WO
2018183122 Oct 2018 WO
2018187506 Oct 2018 WO
2018218051 Nov 2018 WO
2018233553 Dec 2018 WO
2019034096 Feb 2019 WO
2019050794 Mar 2019 WO
2019051265 Mar 2019 WO
2019070742 Apr 2019 WO
Non-Patent Literature Citations (20)
Entry
Gibson, et al., “Structure-based drug design of novel ASK1 inhibitors using an integrated lead optimization strategy”, Bioorganic & Medicinal Chemistry Letters, 2017, 1-5.
Kawarazaki, et al., “Apoptosis signal-regulating kinase 1 as a therapeutic target”, Expert Opinion on Therapeutic Targets, 18(6), 2014, 651-664.
Lanier, Marion et al., “Structure-Based Design of ASK1 Inhibitors as Potential Agents for Heart Failure”, ACS Medicinal Chemistry Letters, vol. 8, 2017, 316-320.
Loomba, et al., “The ASK1 Inhibitor Selonsertib in Patients with Nonalcoholic Steatohepatitis: A Randomized, Phase 2 Trial”, Hepatology 67(2), 2018, 549-559.
Lovering, et al., “Rational approach to highly potent and selective apoptosis signal regulating kinase 1 (ASK1) inhibitors”, European Journal of Medicinal Chemistry, 145, 2018, 606-621.
Monastyrsky, et al., “Discovery of 2-arylquinazoline derivatives as a new class of ASK1 inhibitors”, Bioorganic & Medicinal Chemistry Letters, 28, 2018, 400-404.
Patani, George A. et al., “Bioisosterism: A Rational Approach in Drug Design”, Chem. Rev., 96, 1996, 3147-3176.
Sheridan, Robert P., “The Most Common Chemical Replacements in Drug-Like Compounds”, J. Chem. Info. Comput. Sci. 2002, vol. 42, 2002, 103-108.
Starosyla, S. et al., “ASK1 Pharmacophore Model Derived from Diverse Classes of Inhibitors”, Bioorganic & Medicinal Chemistry Letters, 24, 2014, 4418-4423.
Terao, et al., “Design and biological evaluation of imidazo[1,2-a]pyridines as novel and potent ASK1 inhibitors”, Bioorganic & Medicinal Chemistry Letters, 22, 2012, 7326-7329.
Volynets, et al., “Identification of 3H-Naphtho[1,2,3-de]quinoline-2,7-diones as Inhibitors of Apoptosis Signal-Regulating Kinase 1 (ASK1)”, Journal of Medicinal Chemistry, 54, 2011, 2680-2686.
Volynets, et al., “Rational design of apoptosis signal-regulating kinase 1 inhibitors: Discovering novel structural scaffold”, European Journal of Medicinal Chemistry 61, 2013, 104-115.
Wermuth, C. G, “Molecular Variations Based on Isosteric Replacements”, in “The Practice of Medicinal Chemistry”, Academic Press Limited, 1996, 203-237.
Pubmed Compound Summary for CID 53276841, ‘2-Methyl-1, 1,3-trioxo-N-pyridin-2-yl-1,2-benzolhiazole-6-carboxamide’, U.S. National library of Medicine, Aug. 1, 2011 (Aug. 1, 2011), p. 1-7; p. 2 (https:/lpubchem.ncbi.nlm.nih.gov/compound/53276841).
Burger, A. et al., “Isosteric Compounds. I. Acyl Derivatives of Dibenzothiophene”, J. Am. Chem. Soc., vol. 60, 11, 1938, 2628-2630.
Dudkin, V. Y., “Bioisosteric Equivalence of Five-Membered Heterocycles”, Chemistry of Heterocyclic Compounds, vol. 48, No. 1, 2012, 27-32.
Silverman, R. B., “The Organic Chemistry of Drug Design and Drug Action”, Elsevier Academic Press, 2004, 29-32.
U.S. Appl. No. 16/871,551, filed May 11, 2020.
Okamoto, M., “Identification of novel ASK1 inhibitors using virtual screening”, Bioorganic & Medicinal Chemistry, vol. 19, 2011, 486-489.
Starosyla, S. et al., “Identification of apoptosis signal-regulating kinase 1 (ASK1) Inhibitors among the derivatives of benzothiazol-2-yl-3-hydroxy-5-phenyl-1,5-dihydro-pyrrol-2-one”, Bioorganic & Medicinal Chemistry, vol. 23., 2015, 2489-2497.
Related Publications (1)
Number Date Country
20200062727 A1 Feb 2020 US
Provisional Applications (1)
Number Date Country
62721214 Aug 2018 US