Claims
- 1. A process for preparing a cycloolefin polymer having a solution viscosity >0.25 ml/g (at 135.degree. C. in decalin in accordance with DIN 53 728) and comprising 0.1-100% by weight, based on the total mass of the cycloolefin polymer of polymerized units of at least one polycyclic olefin of the formulae II, III, IV, V, VI or VII: ##STR8## wherein R.sup.4, R.sup.5, R.sup.6, R.sup.7, R.sup.8, R.sup.9, R.sup.10 and R.sup.11 are identical or different and are each a hydrogen atom or a C.sub.1 -C.sub.30 -hydrocarbon radical or two or more radicals R.sup.4 to R.sup.11 are joined cyclically, with identical radicals in the various formulae being able to have a different meaning, from 0 to 45% by weight, based on the total mass of the cycloolefin polymer, of polymerized units of at least one monocyclic olefin of the formula VIII ##STR9## where n is a number from 2 to 10, from 5 to 80% by weight, based on the total mass or the cycloolefin polymer, of polymerized units of an acyclic olefin of the formula IX ##STR10## where R.sup.12, R.sup.13, R.sup.14, R.sup.15 are identical or different and are each a hydrogen atom or a C.sub.1 -C.sub.8 -alkyl or a C.sub.6 -C.sub.8 alkyl or a C.sub.6 -C.sub.14 aryl, wherein the cycloolefin polymer has at one or both ends an olefinically unsaturated group having at least three carbon atoms and wherein the olefinically unsaturated group is produced from an olefin that is different from the cycloolefins of the formulae II-VIII and the acyclic olefins of the formula IX and has the formula I ##STR11## where any of R.sup.1, R.sup.2, R.sup.3 can be a hydrogen, except that each of R.sup.1, R.sup.2, R.sup.3 cannot simultaneously be hydrogen, or R.sup.1, R.sup.2, R.sup.3 are identical or different and are each a C.sub.1 -C.sub.16 -alkyl, a C.sub.1 -C.sub.16 -aryl, a C.sub.1 -C.sub.16 -alkenyl, a C.sub.1 -C.sub.16 -haloalkyl or a C.sub.1 -C.sub.16 -haloaryl, which comprises reacting in the presence of a metallocene-aluminoxane catalyst a first olefinic reactant comprised of one or more cycloolefins of the formulae II, III, IV, V, VI or VII ##STR12## wherein R.sup.4, R.sup.5, R.sup.6, R.sup.7, R.sup.8, R.sup.9, R.sup.10 and R.sup.11 are identical or different and are each a hydrogen atom or a C.sub.1 -C.sub.30 -hydrocarbon radical or two or more radicals R.sup.4 to R.sup.11 are joined cyclically, with identical radicals in the various formulae being able to have a different meaning, with less than 25 mole % based on the total amount of monomers, of a second olefinic reactant comprised of a cyclic olefin of the formula VIII ##STR13## wherein n is a number from 2 to 10, or an acyclic olefin having at least three carbon atoms of the formula IX ##STR14## where R.sup.12, R.sub.13, R.sup.14, R.sup.15 are identical or different and are each a hydrogen atom or a C.sub.1 -C.sub.8 -alkyl or a C.sub.6 -C.sub.8 alkyl or a C.sub.6 -C.sub.14 aryl, wherein the cycloolefin polymer has at one or both ends an olefinically unsaturated group having at least three carbon atoms and wherein the olefinically unsaturated group is produced from an olefin that is different from the cycloolefins of the formulae II-VIII and the acyclic olefins of the formula IX and has the formula I ##STR15## where any of R.sup.1, R.sup.2, R.sup.3 can be a hydrogen, except that each of R.sup.1, R.sup.2, R.sup.3 cannot simultaneously be hydrogen, or R.sup.1, R.sup.2, R.sup.3 are identical or different and are each a C.sub.1 -C.sub.16 -alkyl, a C.sub.1 -C.sub.16 -aryl, a C.sub.1 -C.sub.16 -alkenyl, a C.sub.1 -C.sub.16 -haloalkyl or a C.sub.1 -C.sub.16 -haloaryl, wherein when the second olefinic reactant is a cycloolefin, the first and second reactants are different cycloolefins.
- 2. A process as claimed in claim 1 which further comprises reacting the first and second olefinic reactant of formulae II, III, IV, V, VI and VII, and VIII, respectively, with a third olefinic reactant compound of one or more acyclic olefins of the formula IX, wherein when the second olefinic reactant is an acyclic olefin, the second and third reactants are different acyclic olefins.
- 3. A process as claimed in claim 1 or 2, wherein the second olefinic reactant is selected from the group consisting of propylene, butene, isobutylene, pentene, hexene, heptene, octene, 4-methylpentene, butadiene, isoprene, cyclopentene, cyclohexane, vinylcyclohexane, vinylnorbornene, vinylcyclohexene, cyclopentadiene, dicyclopentadiene, styrene and a-methylstyrene.
- 4. A process as claimed in claim 1 or 2, wherein the reactants are reacted at temperatures of from -78.degree. to 150.degree. C. and a pressure of from 0.01 to 64 bar and wherein the transition metal catalyst comprises at least one cocatalyst and at least one transition metal compound.
- 5. The process according to claim 1 or 2 wherein the metallocene-aluminoxane catalyst system is isopropylene(1-cyclopentadienyl)(1-indenyl)zirconium-methylaluminoxane.
- 6. The process as claimed in claim 1 or 2 wherein the cycloolefin is norbornene or tetracyclododecane and the acyclic olefin is ethylene.
Priority Claims (1)
Number |
Date |
Country |
Kind |
44 25 409.1 |
Jul 1994 |
DEX |
|
Parent Case Info
This is a continuation of application Ser. No. 08/762,565 filed Dec. 9, 1996, abandoned which is a division of application Ser. No. 08/500,658 filed Jul. 11, 1995, now U.S. Pat. No. 5,623,039 which issued Apr. 22, 1997.
US Referenced Citations (5)
Foreign Referenced Citations (8)
Number |
Date |
Country |
0156464 |
Oct 1985 |
EPX |
0203799 |
Dec 1986 |
EPX |
0407870 |
Jan 1991 |
EPX |
0441548 |
Aug 1991 |
EPX |
2421838 |
Jan 1975 |
DEX |
4030399 |
Apr 1992 |
DEX |
957105 |
May 1964 |
GBX |
9324539 |
Dec 1993 |
WOX |
Divisions (1)
|
Number |
Date |
Country |
Parent |
500658 |
Jul 1995 |
|
Continuations (1)
|
Number |
Date |
Country |
Parent |
762565 |
Dec 1996 |
|