Cyclotide genes in the fabaceae plant family

Information

  • Patent Grant
  • 9796764
  • Patent Number
    9,796,764
  • Date Filed
    Friday, March 23, 2012
    12 years ago
  • Date Issued
    Tuesday, October 24, 2017
    7 years ago
  • CPC
  • Field of Search
    • US
    • NON E00000
  • International Classifications
    • C07K14/415
    • Term Extension
      803
Abstract
The present invention relates to cyclotides and cyclotide-encoding genes from the Fabaceae plant family, and to the expression of cyclotides in Fabaceae. The present invention further relates to isolated nucleic acids configured to express cyclotides comprising heterologous peptide grafts in plants of the Fabaceae family.
Description
FIELD OF THE INVENTION

The present invention relates to cyclotides and cyclotide genes from the Fabaceae plant family, and to the expression of cyclotides in Fabaceae. The present invention further relates to isolated nucleic acids configured to express cyclotides comprising heterologous peptide grafts in plants of the Fabaceae family.


BACKGROUND OF THE INVENTION

Cyclotides are a topologically unique family of plant proteins that are exceptionally stable (Craik, D. J., et al., (1999) J. Mol. Biol. 294, 1327-1336). They comprise ˜30 amino acids arranged in a head-to-tail cyclized peptide backbone that additionally is restrained by a cystine knot motif associated with six conserved cysteine residues. The cystine knot (Pallaghy, P. K., Nielsen, K. J., Craik, D. J. & Norton, R. S. (1994) Protein Sci. 3, 1833-1839) is built from two disulfide bonds and their connecting backbone segments forming an internal ring in the structure that is threaded by the third disulfide bond to form an interlocking and cross braced structure (FIG. 1). Superimposed on this cystine knot core motif are a well-defined β-sheet and a series of turns displaying short surface-exposed loops.


Cyclotides express a diversity of peptide sequences within their backbone loops and have a broad range of biological activities, including uterotonic (Gran, L. (1970) Medd. Nor. Farm. Selsk. 12, 173-180), anti-HIV (Gustafson, K. R., Sowder, R. C. I., Henderson, L. E., Parsons, I. C., Kashman, Y., Cardellina, J. H. I., McMahon, J. B., Buckheit, R. W. J., Pannell, L. K. & Boyd, M. R. (1994) J. Am. Chem. Soc. 116, 9337-9338), antimicrobial (Tam, J. P., Lu, Y. A., Yang, J. L. & Chiu, K. W. (1999) Proceedings of the National Academy of Sciences of the United States of America 96, 8913-8918), and anticancer activities (Svångard, E., Burman, R., Gunasekera, S., Lovborg, H., Gullbo, J. & Göransson, U. (2007) J Nat Prod 70, 643-7). They are thus of great interest for pharmaceutical applications. Some plants from which they are derived are used in indigenous medicines, including kalata-kalata, a tea from the plant Oldenlandia affinis that is used for accelerating childbirth in Africa that contains the prototypic cyclotide kalata B1 (Gran, L. (1973) Lloydia 36, 174-178). This ethnobotanical use and more recent biophysical studies (Colgrave, M. L. & Craik, D. J. (2004) Biochemistry 43, 5965-5975) illustrate the remarkable stability of cyclotides, i.e., they survive boiling and ingestion, observations unprecedented for conventional peptides. Their exceptional stability means that they have attracted attention as potential templates in peptide-based drug design applications (Craik, D. J. (2006) Science 311, 1563-1564). In particular, the grafting of bioactive peptide sequences into a cyclotide framework offers the promise of a new approach to stabilize peptide-based therapeutics, thereby overcoming one of the major limitations on the use of peptides as drugs. Chemical (Daly, N. L., Love, S., Alewood, P. F. & Craik, D. J. (1999) Biochemistry 38, 10606-14; Tam, J. P. & Lu, Y.-A. (1998) Protein Sci. 7, 1583-1592), chemo-enzymatic (Thongyoo, P., Roque-Rosell, N., Leatherbarrow, R. J. & Tate, E. W. (2008) Org Biomol Chem 6, 1462-1470), and recombinant (Camarero, J. A., Kimura, R. H., Woo, Y.-H., Shekhtman, A. & Cantor, J. (2007) ChemBioChem 8, 1363-1366) approaches to the synthesis of cyclotides have been developed, thus facilitating these pharmaceutical applications. See also WO 01/27147 to Craik, et al, and WO 01/34829 to Craik, et al., each incorporated herein by reference.


One issue with expressing cyclotides in different host plants is ensuring that the host plant has the necessary cellular machinery to process the expressed polypeptides to produce mature cyclic molecules. One approach is to identify host plant families that produce naturally occurring cyclotides, and to adapt the natural genes to facilitate the expression of foreign or engineered cyclotides (e.g., cyclotides from other plant families, or cyclotides engineered to contain one or more grafted peptide sequences). Until recently cyclotides had been found only in the Rubiaceae (coffee) and Violaceae (violet) plant families (Kaas, Q., Westermann, J. C. & Craik, D. J. (2010) Toxicon 55, 1491-509), apart from two atypical members in the Cucurbitaceae (cucurbit) family (Chiche, L., Heitz, A., Gelly, J. C., Gracy, J., Chau, P. T., Ha, P. T., Hernandez, J. F. & Le-Nguyen, D. (2004) Curr Protein Pept Sci 5, 341-349). Cyclotides from the Rubiaceae and Violaceae are biosynthesized via processing from dedicated precursor proteins encoded by multi-domain genes which contain one, two or three cyclotide domains (Dutton, J. L., Renda, R. F., Waine, C., Clark, R. J., Daly, N. L., Jennings, C. V., Anderson, M. A. & Craik, D. J. (2004) J. Biol. Chem. 279, 46858-46867).


There remains a need for expression systems configured to express foreign and modified cyclotides in additional plant families.


SUMMARY OF THE INVENTION

The present invention provides systems and methods for producing cyclotides in plants of the Fabaceae family. In some embodiments, the present invention provides isolated genes encoding cyclotides of the Fabaceae family, while in some embodiments, the present invention provides expression systems making use of Fabaceae cyclotide genetic framework for the expression of foreign or modified cyclotides in plants of the Fabaceae family.


In some embodiments, the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides encoding a precursor form of a cystine knot polypeptide (e.g., a linear polypeptide), wherein the amino acid sequence of the precursor form comprises a signal peptide, a cystine knot polypeptide, and a non-cystine knot polypeptide, wherein the cystine knot polypeptide in its mature form comprises the structure:




embedded image




    • wherein C1 to C6 are cysteine residues;

    • wherein each of C1 and C4, C2 and C5, and C3 and C6 are connected by a disulfide bond to form a cystine knot;

    • wherein each X represents an amino acid residue in a loop, wherein the amino acid residues may be the same or different;
      • wherein d is about 1-2;
      • wherein for a, b, c, e, and f, and
      • i) a may be any number from 3-10, and
      • ii) b, c, e, and f may be any number from 1 to 20.





In certain embodiments, in the isolated nucleic acid molecule described above, a is from about 3 to 6, b is from about 3 to about 5, c is from about 2 to about 7, e is from about 3 to about 6 and f is from about 4 to about 9. In some embodiments, a is about 3, b is about 4, c is from about 4 to about 7, d is about 1, e is about 4 or 5 and f is from about 4 to about 7.


In some embodiments, in the precursor form of a cystine knot polypeptide, the sequence of at least one cystine knot polypeptide comprises on at least one end an amino acid triplet selected from the group consisting of GLP, GIP, and SLP. In certain preferred embodiments, in the cyclic form of the cystine knot polypeptide, loop 6 of the encoded polypeptide has an amino acid sequence selected from the group consisting of YRNGVIP (SEQ ID NO:110), YLNGVIP (SEQ ID NO:111), YLDGVP (SEQ ID NO:112), YLNGIP (SEQ ID NO:113), YLDGIP (SEQ ID NO:114), YLNGLP (SEQ ID NO:115), YNNGLP (SEQ ID NO:116), YNDGLP (SEQ ID NO:117), YINGTVP (SEQ ID NO:118), YIDGTVP (SEQ ID NO:119), YNHEP (SEQ ID NO:120), YDHEP (SEQ ID NO:121), LKNGSAF (SEQ ID NO:122), MKNGLP (SEQ ID NO:123), YRNGIP (SEQ ID NO:124), YKNGIP (SEQ ID NO:125, and YRDGVIP (SEQ ID NO:126).


In some embodiments, the cystine knot polypeptide portion of said linear precursor comprises the structure:

    • Z1 C1(X1 . . . Xa)C2(XI1 . . . XIb)C3(XII1 . . . XIIc)C4(XIII1 . . . XIIId)C5(XIV1 . . . XIVe)C6Z2
      • wherein C1 to C6 are cysteine residues;
      • wherein each of C1 and C4, C2 and C5, and C3 and C6 are connected by a disulfide bond to form a cystine knot,
      • wherein each X represents an amino acid residue in a loop, wherein said amino acid residues may be the same or different;
        • wherein d is about 1-2;
        • wherein for a, b, c, and e, and
        • i) a may be any number from 3-10, and
        • ii) b, c, and e may be any number from 1 to 20 and wherein Z1 is GVP, GIP, GVIP, GLP, HEP, GTVP, or GSA, and Z2 is YLN, YLD, YKN, YRN, YNN. YND, TN, TD, YRD, YIN, MKN, or LKN.


In some embodiments of the encoded precursor form of the cystine knot polypeptide, a linker peptide comprising two or more amino acids connects the non-cystine knot polypeptide with the C-terminal amino acid of the sequence that forms the mature form of the cystine knot polypeptide. The non-cystine knot polypeptide may comprise a protein associated with a different function in an organism (e.g., a protein such as albumin, known to have functions that are not typically associated with or requiring the presence of a cyclic cystine knot peptide). In certain preferred embodiments, the non-cystine knot polypeptide comprises an albumin or albumin-like polypeptide, and the CCK portion replaces a portion of a typical albumin polypeptide sequence. In some particularly preferred embodiment, the albumin polypeptide comprises an albumin-1 a-chain and the CCK portion replaces some or, all of the b-chain portion of the albumin-1 polypeptide.


As used herein, the “signal” peptide generally refers to an endoplasmic reticulum (ER) signal sequence, typically of about 24 amino acids. (Emanuelssson, O., Brunak, S., von Heijne, G., Nielsen H. (2007) Nature Protocols, 2, 953-971) In certain embodiments, in the isolated nucleic acid molecule described above, in the amino acid sequence of the precursor form the signal peptide is contiguous with the N-terminal amino acid of the sequence that makes up the mature form of the cystine knot polypeptide. In particularly preferred embodiments, the isolated nucleic acid molecule comprising a sequence encoding a precursor form of a cystine knot polypeptide is from a plant belong to the family Fabaceae. In certain particularly preferred embodiments, the nucleic acid sequence encoding the precursor form of a cystine knot polypeptide is from Clitoria ternatea. In some embodiments, the signal peptide is encoded by a nucleotide sequence comprising ATGGCTTACGTTAGACTTACTTCTCTTGCCGTTCTCTTCTTCCTTGCTGCTTCCGTT ATGAAGACAGAAGGA (JF501210) (SEQ ID NO:127), while in some embodiments, the signal peptide is encoded by a nucleic acid sequence selected from SEQ ID NOS:150, 152, 154, 156, 158, and 160. In some embodiments, the isolated nucleic acid encodes a signal peptide comprising the amino acid sequence MAYVRLTSLAVLFFLAASVMKTEG (JF501210) (SEQ ID NO:128), while in some embodiments, the isolated nucleic acid encodes a signal peptide having an amino acid sequence selected from SEQ ID NOS:151, 153, 155, 157, 159 and 161.


In some embodiments, the present invention provides an isolated nucleic acid molecule encoding a proteinaceous molecule having a cyclic cystine knot backbone and a defined biological activity, comprising a sequence of nucleotides encoding a precursor form of a cystine knot polypeptide operably linked to a promoter, wherein the amino acid sequence of the precursor form comprises a signal peptide, a cystine knot polypeptide and a non-cystine knot polypeptide, wherein the cystine knot polypeptide in its mature form comprises the structure:




embedded image



wherein C1 to C6 are cysteine residues and each of C1 and C4, C2 and C5, and C3 and C6 are connected by a disulfide bond to form a cystine knot, and wherein each X represents an amino acid residue in a loop, which may be the same or different. In certain preferred embodiments, d is about 1-2 and one or more of loops 1, 2, 3, 5 or 6 have an amino acid sequence comprising the sequence of a heterologous peptide comprising a plurality of contiguous amino acids and having a defined biological activity, the peptide being generally about 2 to 30 amino acid residues, such that any loop comprising the sequence of the peptide comprises 2 to about 30 amino acids, and such that for any of loops 1, 2, 3, 5, or 6 that do not contain the sequence of the peptide, a, b, c, e, and f, may be the same or different, and a may be any number from 3-10, and b, c, e, and f may be any number from 1 to 20.


In some embodiments of the isolated nucleic acid described above, the amino acid sequence of the heterologous peptide comprises a portion of an amino acid sequence of a larger protein, wherein the heterologous peptide confers the defined biological activity on the larger protein.


In some embodiments of the isolated nucleic acid described above, for any of loops 1, 2, 3, 4, 5, or 6 that do not contain the sequence of the heterologous peptide, a is from about 3 to 6, b is from about 3 to about 5, c is from about 2 to about 7, d is about 1 to 2, e is from about 3 to about 6 and f is from about 4 to about 9. In some preferred embodiments, a is about 3 and d is about 1, and for any of loops 2, 3, 5, or 6 that do not contain the sequence of the heterologous peptide, b is about 4, c is from about 4 to about 7, e is about 4 or 5 and f is from about 4 to about 7. In certain particularly preferred embodiments, a is about 6 and d is about 1, and for any of loops 2, 3, 5, or 6 that do not contain the sequence of the heterologous peptide, b is about 5, c is about 3, e is from about 5 and f is from about 8.


In some embodiments, any loop comprising the sequence of the heterologous peptide comprises 2 to about 20 amino acids, more preferably 2 to about 10 amino acids.


In certain embodiments of the isolated nucleic acid described above, when the encoded cystine knot polypeptide is processed into a cyclic form, loop 6 comprises an amino acid sequence selected from the group consisting of YRNGVIP (SEQ ID NO:110), YLNGVIP (SEQ ID NO:111), YLDGVP (SEQ ID NO:112), YLNGIP (SEQ ID NO:113), YLDGIP (SEQ ID NO:114), YLNGLP (SEQ ID NO:115), YNNGLP (SEQ ID NO:116), YNDGLP (SEQ ID NO:117), YINGTVP (SEQ ID NO:118), YIDGTVP (SEQ ID NO:119), YNHEP (SEQ ID NO:120), YDHEP (SEQ ID NO:121), LKNGSAF (SEQ ID NO:122), MKNGLP (SEQ ID NO:123), YRNGIP (SEQ ID NO:124), YKNGIP (SEQ ID NO:125, and YRDGVIP (SEQ ID NO:126).


In some embodiments of the isolated nucleic acid molecule the non-cystine knot polypeptide comprises an albumin-1 polypeptide and in certain preferred embodiments, the albumin polypeptide comprises an albumin-1 a-chain.


In some embodiments of the isolated nucleic acid molecule, in the encoded amino acid sequence of the precursor form, the signal peptide is adjacent to the N-terminal amino acid of the mature form of the cystine knot polypeptide.


In some embodiments the present invention provides a composition comprising a host cell comprising a heterologous nucleic acid comprising an isolated nucleic acid as described above. In some embodiments, the host cell is a plant cell, and in certain preferred embodiments, the plant cell is from the plant family Fabaceae. In particularly preferred embodiments, the host cell carries an enzyme for processing a precursor form of the cystine knot polypeptide expressed from the nucleic acid to produce a cyclic cystine knot polypeptide.


In some embodiments, the present invention provides a method for producing a cystine knot polypeptide comprising transforming a host cell with a vector comprising a nucleic acid molecule as described above and the precursor form of the cystine knot polypeptide is expressed in the host cell.


In some embodiments the present invention provides methods for producing a cyclic cystine knot polypeptide, comprising: transforming a host cell with a vector comprising a nucleic acid molecule as described above; expressing a linear precursor form of a cyclic cystine knot polypeptide; and processing the linear precursor form to form a mature cyclic cystine knot polypeptide having the structure:




embedded image


In some embodiments, when the cystine knot polypeptide is processed into a cyclic form, loop 6 comprises an amino acid sequence selected from the group consisting of YRNGVIP (SEQ ID NO:110), YLNGVIP (SEQ ID NO:111), YLDGVP (SEQ ID NO:112), YLNGIP (SEQ ID NO:113), YLDGIP (SEQ ID NO:114), YLNGLP (SEQ ID NO:115), YNNGLP (SEQ ID NO:116), YNDGLP (SEQ ID NO:117), YINGTVP (SEQ ID NO:118), YIDGTVP (SEQ ID NO:119), YNHEP (SEQ ID NO:120), YDHEP (SEQ ID NO:121), LKNGSAF (SEQ ID NO:122), MKNGLP (SEQ ID NO:123), YRNGIP (SEQ ID NO:124), YKNGIP (SEQ ID NO:125, and YRDGVIP (SEQ ID NO:126).


In some embodiments, the host cell is a plant cell, and in certain preferred embodiments, the plant cell is from the plant family Fabaceae. In particularly preferred embodiments, the host cell carries an enzyme for processing the precursor form of the cystine knot polypeptide to produce a cyclic cystine knot polypeptide. In some embodiments, a linear form of the cystine knot polypeptide is cyclized in vitro using, e.g., enzymatic and/or chemical treatment.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 provides a diagram illustrating the botanical and geographical origins of the first cyclotides described from Rubiaceae, Violaceae and Fabaceae plant families.



FIG. 2 provides MALDI-TOF spectra indicating the presence of cyclotides in C. ternatea seed extract. Offset-aligned MALDI-TOF spectra of ‘native’ (A) and ‘reduced and carbamidomethylated’ (B) putative cyclotide species, Cter A.



FIG. 3 provides nanospray tandem MS fragmentation patterns for ‘native’ vs. chemically modified Cter A at a collision energy setting of 50 V. (A) ‘Native’ (cyclic oxidized) cyclotide precursor m/z 1090.1, (B) cyclic reduced and alkylated precursor m/z 1206.1, (C) linear reduced and alkylated precursor m/z 1212.1. These apparent triply-charged fragment ions correspond to species of molecular masses 3267 Da, 3615 Da and 3633 Da, respectively.



FIGS. 4A-E provide nanospray sequencing of Cter B. (A) TOF-MS spectrum of combined trypsin and endoproteinase Glu-C digest. The peaks are labelled according to their charge state, where B2+, B3+ and B4+ correspond to the full-length linearized Cter B, and C3+ and D2+ signify smaller fragments produced through cleavage of the cyclic precursor at two points along the peptide backbone. (B) MS/MS of precursor 1092.43+ (3274.2 Da) (SEQ ID NO:1). (C) MS/MS of precursor 628.53+ (1882.6 Da) (SEQ ID NO:2). (D) MS/MS of precursor 705.72+ (1409.4 Da) (SEQ ID NO:3). (E) Digestion scheme and mass of proteolytic fragments.



FIG. 5 provides a “sequence logo” relative frequency plot of the amino acids in the first 12 C. ternatea cyclotides listed in Table 1. Conserved residues among sequences include Pro4, CysS, Glu7, Cys9, Ile12, Pro13, Cys14, Thr15, Cys22, Ser23, Cys24, Lys25, Lys27, Val28, Cys29 and Tyr30.



FIG. 6 shows isotopic distribution delineating isoform-specific sequence ions. Nanospray spectra for reduced and digested (trypsin and endoproteinase Glu-C) Cter B. (A) TOF-MS spectrum of full-length linearized Cter B-precursor 3274.2 Da. (B) TOF-MS spectrum of Cter B digest product with precursor 628.53+ (1882.6 Da). (C) TOF-MS spectrum of Cter B digest product with precursor 705.72+ (1409.4 Da). (D) Full product ion spectrum of precursor m/z 705.72+ (1409.4 Da). Sequence ions shown in bold represent cleavage of the amide bonds either side of the amino acid at position 7. (E) Isotopic distributions of diagnostic fragment ions b6, b7, y6 and y7 indicate the presence of both Asn and Asp at position 7 and thus the heterogeneous nature of the selected precursor ion within the transmission window. Dotted lines illustrate the theoretical isotopic distributions for precursor and fragment ions, assuming that the residue at position 7 is an asparagine. Arrows indicate the observed intensities of labelled monoisotopic peaks.



FIG. 7 illustrates distribution of ribosomally synthesized circular proteins within angiosperms. Cyclotide-containing plant families as reported in the literature appear in red italicized font. *A recent study reported evidence of cyclotides within the Apocynaceae family (Gruber, C. W., et al., (2008) Plant Cell 20, 2471-2483), but no cyclotide peptide or nucleic acid sequences have been published yet. Gene sequences encoding putative linear cyclotide-like proteins have been identified in several species within the Poaceae family. (These sequences lack the C-terminal Asn or Asp considered crucial for in planta cyclization). Backbone-cyclized circular peptides distinct from cyclotides have been characterized from species within the Asteraceae family.



FIG. 8 provides a sequence alignment of the prototypical cyclotide kalata B1 (kB1) from the Rubiaceae plant Oldenlandia affinis with other selected cyclotide sequences. The six conserved cysteine residues are labeled with Roman numerals and various loops in the backbone between these cysteines are labeled loops 1-6. The cystine knot arrangement is indicated. The sequences of kalata B1 (SEQ ID NO:4, Saether, O., et al. (1995) Biochemistry 34:4147-4158), cycloviolacin O2 (SEQ ID NO:5, Craik, D. J., et al., (1999) J Mol Biol 294:1327-1336), MCoTI-II (SEQ ID NO:6, Hernandez J.-F., et al. (2000) Biochemistry 39:5722-5730) and Cter A (SEQ ID NO:7, Poth, A. G., et al., (2011) ACS Chem. Biol. 10.1021/cb100388j) represent examples of cyclotides isolated from the Rubiaceae, Violaceae, Cucurbitaceae and Fabaceae plant families. The conserved cysteines are boxed and their location on the structure is indicated by the dotted arrows. The putative processing points by which mature cyclotides are excised from their precursor proteins are indicated and correspond to an N terminal glycine residue and a C terminal Asn (N) or Asp (D) residue. PDB ID code for kalata B1 is 1NB1.



FIG. 9 provides a CLUSTAL 2.1 multiple sequence alignment of nineteen cyclotides from seeds, leaves and flowers of C. ternatea. Identical amino acids are indicated by “*”, strongly similar amino acids are indicated by “:” and similar amino acids are indicated by “.”.



FIG. 10 provides a schematic representation of the complete cDNA sequence (SEQ ID NO:27) and putative translated protein sequence (SEQ ID NO:28) for the Cter M isolate from leaf tissue of butterfly pea (Clitoria ternatea). The site of initial degenerate primer Ct-For1A is shown in lower case letters, and gene-specific primers used for 5′ RACE are italicized. The mature cyclotide peptide is double underlined and the putative albumin-1 a-chain domain is single-underlined.



FIG. 11A provides a comparison of several genes encoding kalata cyclotides in the Rubiaceae plant Oldenlandia affinis.



FIG. 11B provides a comparison of the gene structures for two Fabaceae family albumin genes [Glycine max (soybean) albumin-1 and Pisum savitum (green pea) albumin-1] with the gene encoding the Cter M cyclotide isolate from C. ternatea.



FIG. 12 compares the gene structures for an exemplary kalata cyclotide gene from O. affinis (encoding kB3/6), the gene encoding the Cter M cyclotide isolate from C. ternatea, and the Pisum savitum albumin-1 gene.



FIG. 13 provides an alignment of several complete and partial precursor cyclotide polypeptides from C. ternatea.



FIG. 14 shows the NMR spectra and three-dimensional structure of Cter M. (A) One-dimensional spectra of Cter M recorded before (top) and after (bottom) heating to 95° C. for 5 minutes. (B) Superposition of the 20 lowest energy structures of Cter M. Secondary structure of Cter M (C) and PA1b (E; PDB code 1P8B). The strands are shown as arrows and the helical turns as thickened ribbons. The disulfide bonds are shown in ball-and-stick format. The structure figures were generated using MOLMOL (Koradi, R., Billeter, M. & Wüthrich, K. (1996) J. Mol. Graph. 14, 29-32). Superimposition of Cter M and PA1b (D) showing cystine knot motif; disulfide bonds are indicated, and the aC are represented by spheres.



FIG. 15 provides a graph comparing haemolytic activity of Cter M with the prototypic cyclotide kalata B1 and the known pore-forming agent from bee venom, melittin.



FIG. 16 illustrates the results following exposure of nematodes to control (no peptide) and Cter M cyclotide solutions. The effect of Cter M of the motility of L3 larvae of Haemonchus contortus: control worms (A) and cyclotide treated worms (B).



FIG. 17 illustrates the effect of Cter M and kB1 on the growth of Helicoverpa armigera. The weight of larvae at 0, 24 and 48 h is plotted versus peptide concentration for Cter M (A) and kB1 (B) and the size of control larvae (bottom, right) alongside larvae fed at medium (0.25 μmol/g diet) (top, right) and high (1.0 μmol/g diet)(top, left) peptide concentrations at 48 h is depicted for Cter M (C) and kB1 (D).



FIGS. 18A-B show a ClustalW2 alignment of Cter M with BLASTP- and TBLASTN-matched Fabaceae albumin-1 precursor proteins, in order from Accession ID No.CAA11040.1 to Accession No. CAH05248.1 (SEQ ID NO:37 through SEQ ID NO:70). FIGS. 18C-D show a ClustalW2 alignment of Cter M with BLASTP- and TBLASTN-matched Fabaceae albumin-1 precursor proteins, in order from Accession ID No. CAH05245.1 to Accession ID No. BT053249.1 (SEQ ID NO:71 through SEQ ID NO:103), followed by Cter M (SEQ ID NO:28). N-terminal boxed regions outline mature PA1 chain-b peptide sequence in Fabaceae albumins, and the mature sequence of cyclotide Cter M. C-terminal boxed regions outline predicted mature PA1 chain-a peptide sequence.



FIG. 19A-19F provides SignalP analysis of Cter M, kalata B1 and selected albumin-1 precursors from Fabaceae. Panel A-SignalP (Bendtsen, J. D., et al., (2004), J. Mol. Biol. 340, 783-795) analysis of Cter M precursor protein (partial sequence shown as SEQ ID NO:104) predicts signal peptidase cleavage at the proto-N-terminus of the mature cyclotide sequence, between signal peptide residues 24 and 25 (72.9% probability). Panel B—SignalP analysis of kalata B1 precursor protein (partial sequence shown as SEQ ID NO:105) predicts signal peptidase cleavage between precursor protein residues 22 and 23 (82.5% probability). As in all previously characterized cyclotide genes, a pro-region and an N-terminal repeat region are encoded prior to the start of the first cyclotide domain. Panels C through F—Respective SignalP analyses of albumin-1 precursor proteins from Pisum sativum, Medicago truncatula, Phaseolus vulgaris, and Glycine max (partial sequences shown as SEQ ID NOS:106-109, respectively) predict signal peptidase cleavage at the proto-N-termini of mature PA1b peptide sequences. Cleavages are predicted between residues 26 and 27 (53.0%), 22 and 23 (51.1%), 27 and 28 (69.7%), and 19 and 20 (98.6%) respectively.



FIG. 20 shows that Cter M is resistant to proteolysis by trypsin and chymotrypsin. Leaf extract showing native Cter M at m/z 3058.3 (A, C) was subjected to trypsin (B) and chymotrypsin (D) digestion with no observed hydrolysis. The reduced and alkylated peptide, m/z 3407.6 (E, G, I) underwent proteolytic cleavage by trypsin (F) and chymotrypsin (H, J). As there is only a single tryptic site, the trypsin digestion product is observed at m/z 3424.6, whereas there were three chymotryptic sites resulting in the formation of major products at m/z 1450.7, 1511.7 and 1931.8 corresponding to KNGLPTCGETCL (SEQ ID NO:129), VPDCSCSWPICM (SEQ ID NO:130) and KNGLPTCGETCLGTCY (SEQ ID NO:131) respectively.



FIG. 21 provides a sensorgram for Cter M binding to POPC vesicles (A) immobilized on the chip surface. The peptide samples were injected from 0 to 180 s otherwise buffer was flowing. The sensorgrams were referenced using a blank flow cell with no peptide. Equilibrium binding curves for Cter M and kB1 binding to immobilized lipid vesicles (B). Fit to the single site binding model is shown as a solid line.



FIG. 22 shows analytical HPLC and mass spectrometric analysis showing that native and synthetic Cter M are identical. (A) Native Cter M; (B) Synthetic Cter M; and (C) Co-elution of Native and Synthetic Cter M. MALDI-TOF mass spectra of (D) Native Cter M extracted from Clitoria ternatea leaf material and (E) Synthetic Cter M.





DEFINITIONS

As used herein, the term “molecular framework” refers to a proteinaceous molecule having a defined three-dimensional structure. This defined three-dimensional structure comprises loops of amino acid residues and other elements of molecular structure held in defined orientation with respect to each other. The molecular framework itself may exhibit a particularly useful property such as having anti-pathogen activities against viruses, microorganisms, fungi, yeast, arachnids and insects or it may confer useful therapeutic properties in plants or animals. Furthermore, it may provide the framework for inserting one or more amino acids or amino acid sequences capable of conferring a desired biological effect. Insertion of one or more amino acid residues or sequences may occur on a beta-turn or within a loop. The molecular framework may also be presented in a linear form as a substrate for cyclization. Alternatively, a cyclic molecule may be derivatized into a linear form which itself may have useful properties or it may act as an agonist or antagonist of such properties.


The sequence of amino acids forming the backbone of the molecular framework may be naturally occurring amino acid residues or chemical analogues thereof. Chemical analogues of amino acid residues include non-naturally occurring amino acids. Examples of non-naturally occurring amino acids are shown in Table 3.


By way of example, when a molecular framework in the form of a cyclic polypeptide is isolated and purified from a biological source, such as a plant, the molecule generally comprises naturally occurring amino acid residues. However, the present invention extends to derivatives of such a molecular framework resulting from the insertion or substitution of non-naturally occurring amino acid residues or chemical analogues of amino acid residues. Alternatively, a single and/or a heterologous sequence of naturally occurring amino acid residues may be inserted or substituted into the molecular framework to confer desired properties on the molecule.


As used herein, the term “cyclic backbone” refers to a molecule comprising a sequence of amino acid residues or analogues thereof without free amino and carboxy termini. Preferably, the linkage between all amino acids in the cyclic backbone is via amide (peptide) bonds, but other chemical linkers are also possible. The cyclic backbone of the molecular framework of the present invention comprises sufficient disulfide bonds, or chemical equivalents thereof, to confer a knotted topology on the three-dimensional structure of the cyclic backbone.


In some embodiments, a cyclic backbone comprises a structure referred to herein as a “cystine knot”. A cystine knot occurs when a disulfide bond passes through a closed cyclic loop formed by two other disulfide bonds and the amino acids in the backbone. Such a cystine knot is referred to herein as a “cyclic cystine knot” or “CCK”. However, reference herein to a “cyclic cystine knot” or a “CCK” includes reference to structural equivalents thereof which provide similar constraints to the three-dimensional structure of the cyclic backbone. For example, appropriate turns and loops in the cyclic backbone may also be achieved by engineering suitable covalent bonds or other forms of molecular associations. All such modifications to the cyclic backbone which result in retention of the three-dimensional knotted topology conferred by the cyclic cystine knot are encompassed by the present invention. Furthermore, although a cyclic cystine knot is characterized by a knot formed by three disulfide bonds, the present invention extends to molecules comprising only two disulfide bonds. In such a case, the molecular framework may need to be further stabilized using other means or the molecular framework may retain suitable activity despite a change in three-dimensional structure caused by the absence of a third disulfide bond.


Cyclic backbones may comprise more than three disulfide bonds such as those occurring in a double or multiple cystine knot arrangement or in a single cystine knot arrangement supplemented by one or two additional disulfide bonds.


The term “cyclic cystine knot” and “CCK” and “cyclotide” are used interchangeably and encompass natural cystine knot peptides, as well as cystine knot peptides comprising modified amino acids, substituted loop sequences, grafted peptides, and other modifications. The terms “knot” and “cystine knot” are not to be limited by any mathematical or geometrical definition of the term “knot”. The knots contemplated by the present invention are referred to as such due to their similarity to a mathematical knot and/or by virtue of the intertwined features of the folded molecule.


The present invention provides, therefore, genes and expression systems encoding a molecular framework comprising a sequence of amino acids or analogues thereof forming a cyclic backbone and wherein said cyclic backbone comprises a cystine knot or its chemical or structural equivalent which confers a knotted topology on the three-dimensional structure of said cyclic backbone.


Accordingly, one aspect of the present invention contemplates an isolated nucleic acid molecule encoding a molecular framework comprising a sequence of amino acids forming a cyclic backbone wherein the cyclic backbone comprises sufficient disulfide bonds or chemical equivalents hereof to confer knotted topology on the molecular framework or part thereof wherein said cyclic backbone comprises the structure:—




embedded image



wherein C is cysteine; each of (X1 . . . Xa), (XI1 . . . XIb), (XII1 . . . XIIc), (XIII1 . . . XIIId), (XIV1 . . . XIVe), (XV1 . . . XVf) represents one or more amino acid residues, wherein each one or more amino acid residues within or between the cysteine residues may be the same or different; and wherein a, b, c, d, e and f represent the number of amino acid residues in each respective sequence. In some embodiments, a, b, c, d, e and f may range from 1 to about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20.


In certain preferred embodiments, the cyclic backbone of the present invention comprises the structure:




embedded image



wherein a is about 6, b is about 5, c is about 3, d is about 1 or 2, e is about 5 and f is about 8; or an analogue of said sequence.


The molecular framework of the present invention is also referred to herein as a “cyclotide”. A cyclotide is regarded as being equivalent to a molecular framework as herein described and, in its most preferred embodiment, comprises a cyclic cystine knot motif defined by a cyclic backbone, at least two but preferably at least three disulfide bonds and associated beta strands in a particular knotted topology. The knotted topology involves an embedded ring formed by at least two disulfide bonds and their connecting backbone segments being threaded by a third disulfide bond. As stated above, however, a disulfide bond may be replaced or substituted by another form of bonding such as a covalent bond.


Each amino acid has a carboxyl group and an amine group, and amino acids link to one another to form a chain by joining the amine group of one amino acid to the carboxyl group of the next. Thus, linear polypeptide chains generally have an end with an unbound carboxyl group, the C-terminus, and an end with an amine group, the N-terminus. The convention for writing polypeptide sequences is to put the N-terminus on the left and write the sequence from N- to C-terminus. Sequences with longer or non-linear (e.g., cyclized) polypeptide that do not have unbound termini can nonetheless be directionally oriented by reference to the direction of the N and C groups on internal amino acid residues. For example, the amino acid in an internal region that would have a carboxyl group if on a terminus may be referred to as the C-terminal end of the internal sequence. The N and C designations also are used to indicate directionality on a polypeptide strand. For example, a first region of a polypeptide sequence that is attached by its C-terminal residue to the N-terminal residue of a second region of the same polypeptide may be referred to as being in the N or N-terminal direction from the second region. Conversely, the second region is in the C or C-terminal direction from the first region.


As used herein, the term “adjacent” as used in reference to amino acids or peptide regions refers to residues or regions that are contiguous or are immediately next to each other, e.g., in a polypeptide chain, with no intervening residues.


The terms “peptide” and “polypeptide” are used interchangeably herein to refer to a chain comprising a plurality amino acid residues connected by peptide bond(s). “Residue” as used in reference to an amino acid refers to an individual amino acid in a polypeptide chain.


As used herein, the term “graft” or “grafted” as used in reference to a peptide sequence used to modify a framework molecule, refers to the integration of a heterologous sequence of amino acids (a “heterologous peptide”) into the polypeptide strand at one or more positions on a framework molecule. For example, one or more loops of a CCK molecule may be made to comprise a heterologous sequence of amino acids in addition to, or as a full or partial replacement for a normal or native loop sequence. Grafting of a peptide into a CCK framework molecule need not be done after the proteinaceous framework molecule has been produced. In certain preferred embodiments, a peptide sequence, e.g., a bioactive peptide, is grafted into a framework proteinaceous molecule by creation of a nucleic acid molecule comprising a nucleotide sequence that encodes the framework CCK molecule along with the grafted peptide amino acid sequence.


In addition to the grafts described above, the present invention encompasses a range of amino acid substitutions, additions and/or insertions to the amino acid sequence of the molecular framework. Substitutions encompass amino acid alterations in which an amino acid is replaced with a different naturally-occurring or a non-conventional amino acid residue. Such substitutions may be classified as “conservative”, in which case an amino acid residue contained in a polypeptide is replaced with another naturally-occurring amino acid of similar character either in relation to polarity, side chain functionality, or size, for example, Sercustom characterThrcustom characterProcustom characterHypcustom characterGlycustom characterAla, Valcustom characterIlecustom characterLeu, Hiscustom characterLyscustom characterArg, Asncustom characterGlncustom characterAspcustom characterGlu or Phecustom characterTrpcustom characterTyr. It is to be understood that some nonconventional amino acids may also be suitable replacements for the naturally occurring amino acids. For example, ornithine, homoarginine and dimethyllysine are related to His, Arg and Lys.


Substitutions encompassed by the present invention may also be “non-conservative”, in which an amino acid residue which is present in a polypeptide is substituted with an amino acid having different properties, such as a naturally-occurring amino acid from a different group (e.g. substituting a charged or hydrophobic amino acid with alanine), or alternatively, in which a naturally-occurring amino acid is substituted with a nonconventional amino acid.


Amino acid substitutions are typically of single residues, but may be of multiple residues, either clustered or dispersed. Amino acids of the cyclic peptide backbone are preferably conservative in order to maintain the three-dimensional structure in a form functionally similar to the cyclic peptide before derivatization. Substitutions of amino acid residues in the cyclic peptide to introduce or otherwise graft heterologous sequences onto the backbone need not be conservative.


Additions encompass the addition of one or more naturally occurring or non-conventional amino acid residues. Deletion encompasses the deletion of one or more amino acid residues.


The present invention also includes molecules in which one or more of the amino acids has undergone side chain modifications. Examples of side chain modifications contemplated by the present invention include modifications of amino groups such as by reductive alkylation by reaction with an aldehyde followed by reduction with NaBH4; amidination with methylacetimidate; acylation with acetic anhydride; carbamoylation of amino groups with cyanate; trinitrobenzylation of amino groups with 2,4,6-trinitrobenzene sulphonic acid (TNBS); acylation of amino groups with succinic anhydride and tetrahydrophthalic anhydride; and pyridoxylation oflysine with pyridoxal-5-phosphate followed by reduction with NaBH4.


The guanidine group of arginine residues may be modified by the formation of heterocyclic condensation products with reagents such as 2,3-butanedione, phenylglyoxal and glyoxal.


The carboxyl group may be modified by carbodiimide activation via O-acylisourea formation followed by subsequent derivitization, for example, to a corresponding amide.


Sulfhydryl groups may be modified by methods such as carboxymethylation with iodoacetic acid or iodoacetamide; performic acid oxidation to cysteic acid; formation of mixed disulfides with other thiol compounds; reaction with maleimide, maleic anhydride or other substituted maleimide; formation of mercurial derivatives using 4-chloromercuribenzoate, 4-chloromercuriphenylsulphonic acid, phenylmercury chloride, 2-chloromercuri-4-nitrophenol and other mercurials; carbamoylation with cyanate at alkaline pH. Any modification of cysteine residues preferably does not affect the ability of the peptide to form the necessary disulfide bonds. It is also possible to replace the sulfhydryl groups of cysteine with selenium or tellurium equivalents such that the peptide forms a diselenide or ditelluride bond in place of one or more of the disulfide bonds.


Tryptophan residues may be modified by, for example, oxidation with N-bromosuccinimide or alkylation of the indole ring with 2-hydroxy-5-nitrobenzyl bromide or sulphenyl halides. Tyrosine residues on the other hand, may be altered by nitration with tetranitromethane to form a 3-nitrotyrosine derivative. Modification of the imidazole ring of a histidine residue may be accomplished by alkylation with iodoacetic acid derivatives or N-carbethoxylation with diethylpyrocarbonate. Proline residues may be modified by, for example, hydroxylation in the 4-position. Other modifications include succinimide derivatives of aspartic acid.


A list of some amino acids having modified side chains and other unnatural amino acids is shown in Table 3, below.












TABLE 3





Non-conventional amino acid
Code
Non-conventional amino acid
Code







α-aminobutyric acid
Abu
L-N-methylalanine
Nmala


α-amino-α-methylbutyrate
Mgabu
L-N-methylarginine
Nmarg


aminocyclopropane-
Cpro
L-N-methylasparagine
Nmasn


carboxylate

L-N-methylaspartic acid
Nmasp


aminoisobutyric acid
Aib
L-N-methylcysteine
Nmcys


aminonorbornyl-
Norb
L-N-methylglutamine
Nmgln


carboxylate

L-N-methylglutamic acid
Nmglu


α-aspartic acid
Aaa


β-aspartic acid
Baa


cyclohexylalanine
Chexa
L-Nmethylhistidine
Nmhis


cyclopentylalanine
Cpen
L-N-methylisolleucine
Nmile


D-alanine
Dal
L-N-methylleucine
Nmleu


D-arginine
Darg
L-N-methyllysine
Nmlys


D-aspartic acid
Dasp
L-N-methylmethionine
Nmmet


D-cysteine
Dcys
L-N-methylnorleucine
Nmnle


D-glutamine
Dgln
L-N-methylnorvaline
Nmnva


D-glutamic acid
Dglu
L-N-methylornithine
Nmorn


D-histidine
Dhis
L-N-methylphenylalanine
Nmphe


D-isoleucine
Dile
L-N-methylproline
Nmpro


D-leucine
Dleu
L-N-methylserine
Nmser


D-lysine
Dlys
L-N-methylthreonine
Nmthr


D-methionine
Dmet
L-N-methyltryptophan
Nmtrp


D-ornithine
Dorn
L-N-methyltyrosine
Nmtyr


D-phenylalanine
Dphe
L-N-methylvaline
Nmval


D-proline
Dpro
L-N-methylethylglycine
Nmetg


D-serine
Dser
L-N-methyl-t-butylglycine
Nmtbug


D-threonine
Dthr
L-norleucine
Nle


D-tryptophan
Dtrp
L-norvaline
Nva


D-tyrosine
Dtyr
α-methyl-aminoisobutyrate
Maib


D-valine
Dval
α-methyl-γ-aminobutyrate
Mgabu


D-α-methylalanine
Dmala
α-methylcyclohexylalanine
Mchexa


D-α-methylarginine
Dmarg
α-methylcyclopentylalanine
Mcpen


D-α-methylasparagine
Dmasn
α-methyl-α-napthylalanine
Manap


D-α-methylaspartate
Dmasp
α-methylpenicillamine
Mpen


D-α-methylcysteine
Dmcys
N-(4-aminobutyl)glycine
Nglu


D-α-methylglutamine
Dmgln
N-(2-aminoethyl)glycine
Naeg


D-α-methylhistidine
Dmhis
N-(3-aminopropyl)glycine
Norn


D-α-methylisoleucine
Dmile
N-amino-α-methylbutyrate
Nmaabu


D-α-methylleucine
Dmleu
α-napthylalanine
Anap


D-α-methyllysine
Dmlys
N-benzylglycine
Nphe


D-α-methylmethionine
Dmmet
N-(2-carbamylethyl)glycine
Ngln


D-α-methylornithine
Dmorn
N-(carbamylmethyl)glycine
Nasn


D-α-methylphenylalanine
Dmphe
N-(2-carboxyethyl)glycine
Nglu


D-α-methylproline
Dmpro
N-(carboxymethyl)glycine
Nasp


D-α-methylserine
Dmser
N-cyclobutylglycine
Ncbut


D-α-methylthreonine
Dmthr
N-cycloheptylglycine
Nchep


D-α-methyltryptophan
Dmtrp
N-cyclohexylglycine
Nchex


D-α-methyltyrosine
Dmty
N-cyclodecylglycine
Ncdec


D-α-methylvaline
Dmval
N-cyclododeclglycine
Ncdod


D-N-methylalanine
Dnmala
N-cyclooctylglycine
Ncoct


D-N-methylarginine
Dnmarg
N-cyclopropylglycine
Ncpro


D-N-methylasparagine
Dnmasn
N-cycloundecylglycine
Ncund


D-N-methylasparatate
Dnmasp
N-(2,2-diphenylethyl)glycine
Nbhm


D-N-methylcysteine
Dnmcys
N-(3,3-diphenylpropyl)glycine
Nbhe


D-N-methylglutamine
Dnmgln
N-(3-guanidinopropyl)glycine
Narg


D-N-methylglutamate
Dnmglu
N-(1-hydroxyethy)glycine
Nthr


D-N-methylhistidine
Dnmhis
N-(hydroxyethy))glycine
Nser


D-N-methylisoleucine
Dnmile
N-(imidazolylethyl))glycine
Nhis


D-N-methylleucine
Dnmleu
N-(3-indolylyethyl)glycine
Nhtrp


D-N-methyllysine
Dnmlys
N-methyl-γ-aminobutyrate
Nmgabu


N-methylcyclohexylalanine
Nmchexa
D-N-methylmethionine
Dnmmet


D-N-methylornithine
Dnmorn
N-methylcyclopentylalanine
Nmcpen


N-methylglycine
Nala
D-N-methylphenylalanine
Dnmphe


N-methylaminoisobutyrate
Nmaib
D-N-methylproline
Dnmpro


N-(1-methylpropyl)glycine
Nile
D-N-methylserine
Dnmser


N-(2-methylpropyl)glycine
Nleu
D-N-methylthreonine
Dnmthr


D-N-methyltryptophan
Dnmtrp
N-(1-methylethyl)glycine
Nval


D-N-methyltyrosine
Dnmtyr
N-methyla-napthylalanine
Nmanap


D-N-methylvaline
Dnmval
N-methylpenicillamine
Nmpen


γ-aminobutyric acid
Gabu
N-(p-hydroxyphenyl)glycine
Nhtyr


L-t-butylglycine
Tbug
N-(thiomethyl)glycine
Ncys


L-ethylglycine
Etg
penicillamine
Pen


L-homophenylalanine
Hphe
L-α-methylalanine
Mala


L-α-methylarginine
Marg
L-α-methylasparagine
Masn


L-α-methylaspartate
Masp
L-α-methyl-t-butylglycine
Mtbug


L-α-methylcysteine
Mcys
L-methylethylglycine
Metg


L-α-methylglutamine
Mgln
L-α-methylglutamate
Mglu


L-α-methylhistidine
Mhis
L-α-methylhomophenylalanine
Mhphe


L-α-methylisoleucine
Mile
N-(2-methylthioethyl)glycine
Nmet


L-α-methylleucine
Mleu
L-α-methyllysine
Mlys


L-α-methylmethionine
Mmet
L-α-methylnorleucine
Mnle


L-α-methylnorvaline
Mnva
L-α-methylornithine
Morn


L-α-methylphenylalanine
Mphe
L-α-methylproline
Mpro


L-α-methylserine
Mser
L-α-methylthreonine
Mthr


L-α-methyltryptophan
Mtrp
L-α-methyltyrosine
Mtyr


L-α-methylvaline
Mval
L-N-methylhomophenylalanine
Nmhphe


N-(N-(2,2-diphenylethyl)
Nnbhm
N-(N-(3,3-diphenylpropyl)
Nnbhe


carbamylmethyl)glycine

carbamylmethyl)glycine


1-carboxy-1-(2,2-diphenyl-
Nmbc


ethylamino)cyclopropane









As used herein, the terms “isolated” or “substantially isolated” as used in reference to molecules, e.g., either nucleic or amino acid, refers to molecules that are removed from their natural environment, purified or separated, and are at least partially free, preferably 50% free, more preferably 75% free, and most preferably 90% free from other components with which they are naturally associated. An “isolated” molecule that is separated from components with which it is associated in nature need not be isolated from other materials, and may be, for example, combined with other components e.g., heterologous host cell components, reaction components and the like.


DETAILED DESCRIPTION OF THE INVENTION

The present invention provides cyclotides isolated from plants in the Fabaceae family of plants. In some embodiments, the present invention further provides isolated nucleic acids configured for expression in plants of the Fabaceae family and encoding a molecular framework comprising a sequence of amino acids or analogues thereof forming a cyclic backbone, wherein said cyclic backbone comprises sufficient disulfide bonds, or chemical equivalents thereof, to confer a knotted topology on the three-dimensional structure of said cyclic backbone. In still other embodiments, the present invention provides isolated nucleic acids configured for expression in plants of the Fabaceae family and encoding a molecular framework as described above and containing a heterologous grafted peptide. In preferred embodiments, the grafted peptide confers a bioactivity on said molecular framework molecule.


The Fabaceae (legume) plant family is the third largest family of plants on earth comprising 18,000 species, many of which, e.g., peas and beans, are centrally involved in human nutrition. The discovery of cyclotides in the Fabaceae family broadens interest in this family of molecules because it facilitates the possibility of expressing genetically modified cyclotide sequences in crop plants from the Fabaceae. In addition to their importance as crop plants, multiple members of the Fabaceae family of plants are amenable to transfection. Modification of these plants to express foreign or engineered cyclotides finds a number of applications, including conferring insect resistance traits on the host plants themselves. In some embodiments, the host plants may be used to manufacture cyclotides having, for example, pharmaceutical attributes. It is envisioned that expressed cyclotides may be purified from the host plants or, in some embodiments, plant materials having beneficial pharmaceutical attributes may be used directly, e.g., in foods or food supplements or in the preparation of topical treatments, etc.


The present invention provides a genetic system for the expression of cyclotides in the Fabaceae plant family. We provide herein nucleic acid sequences encoding cyclotides from the Fabaceae plant family and show that the corresponding peptide is ultra-stable and insecticidal like other cyclotides, but has an unexpected biosynthetic origin in that it is embedded within an albumin precursor sequence.


In some embodiments, the present invention comprises isolated nucleic acids configured to encode Fabaceae-derived cyclotides comprising grafted heterologous peptides. The heterologous amino acids inserted or substituted in the molecular framework have the capacity to confer a range of activities and biological properties to the molecule including modulating calcium channel-binding, which is useful in the treatment of pain or a stroke, C5a binding, useful as an anti-inflammatory agent, proteinase inhibitor activity in plants or animals, antibiotic activity, anti-HIV activity, anti-microbial activity, anti-fungal activity, anti-viral activity, anthelmintic activity, cytokine binding ability and blood clot inhibition and plant pathogen activity (e.g., insecticidal activity) amongst other properties. The molecule may be a modulator in the sense that it may facilitate the activity or inhibit the activity. Accordingly, the molecule may act as an agonist or antagonist. Furthermore, the heterologous amino acids may form a sequence which may be readily cleaved to form a linear molecule, or to activate a peptide that requires cleavage by a proteinase for activation.


Peptides having defined biological activity, including peptides containing about 30 or fewer amino acid residues, particularly suitable for grafting, are well known. At this time, tens of thousands of peptides of this kind have been described in the scientific literature and have been recorded in peptide databases. See, e.g., Peptide Atlas published on the worldwide web at peptideatlas.org, at or PepBank, maintained online by Massachusetts General Hospital, Harvard University, Cambridge, Mass., each incorporated by reference herein. In addition, screening of peptides of unknown sequence to identify peptides having defined biological activities, including random combinatorial libraries containing millions of peptides, is conventional in the art and requires no knowledge of what amino acid sequence or peptide structure would predictably result in the desired activity. See, for example, Cortese, et al., (1995) Curr. Opin. Biotech. 6:73-80, incorporated by reference herein, which discusses of the phage display method of screening random combinatorial peptide libraries. In some embodiments, the present invention comprises selecting an amino acid sequence of a peptide having a defined biological activity, preparing protein molecules having cyclic cystine knot backbones in which one or more of the loops contains the amino acid sequence of the peptide, and screening the prepared proteins using an assay for the defined biological activity so as to identify a CCK protein having the defined biological activity. In some embodiments, the peptide has a sequence of about 30 or fewer amino acids. In certain embodiments, peptides are grafted into one or more of loops 1, 2, 3, 4, 5, and/or 6. In certain preferred embodiments, peptides are grafted into one or more of loops 1, 2, 3, 5, and/or 6.


While some embodiments of CCK molecules contain loops comprising 1 to about 7 amino acids, it is known that cystine knot structures comprising six cysteines and three disulfide bonds can be formed with larger polypeptides. Larger polypeptides of this configuration have loop sizes from 1 up to 30 or more amino acid residues.


The molecular frameworks of the Fabaceae CCK molecules permit modifications to be made to the molecule while retaining the stable structural scaffold. Such modifications include, for example, different amino acid residues inserted or substituted anywhere in the molecule but preferably in one or more beta-turns and/or within a loop. The newly exposed amino acids, for example, may provide functional epitopes or activities not present in the molecular framework prior to modification. Alternatively, the newly exposed amino acids may enhance an activity already possessed by the molecular framework. A substitution or insertion may occur at a single location or at multiple locations. Furthermore, the molecular framework may be specifically selected to more readily facilitate substitution and/or insertion of amino acid sequences. Such modified forms of the molecular framework are proposed to have a range of useful properties including as therapeutic agents for animals and mammals (including humans) and plants. Therapeutic agents for plants include pest control agents. As stated above, the molecular framework has advantages in terms of increased stability relative to, for example, conventional peptide drugs. The increased stability includes resistance or less susceptibility to protease cleavage. Furthermore, the molecules may have a hydrophobic face which may benefit their interaction with membranes while still being highly water soluble.


Accordingly, another aspect of the present invention is directed to a Fabaceae molecular framework comprising a sequence of amino acids or analogues thereof forming a cyclic backbone and wherein said cyclic backbone comprises sufficient disulfide bonds or chemical equivalents thereof, to confer a knotted topology on the three-dimensional structure of said cyclic backbone and wherein at least one exposed amino acid residue such as on one or more beta turns and/or within one or more loops, is inserted or substituted relative to the naturally occurring amino acid sequence.


Even more particularly, the present invention contemplates a Fabaceae molecular framework comprising a sequence of amino acids or analogues thereof forming a cyclic backbone and wherein said cyclic backbone comprises a cystine knot or its chemical or structural equivalent which confers a knotted topology on the three-dimensional structure of said cyclic backbone and wherein at least one exposed amino acid residue such as on one or more beta turns and/or within one or more loops is inserted or substituted relative to the naturally occurring amino acid sequence.


More particularly, the present invention is directed to a Fabaceae molecular framework comprising a sequence of amino acids or analogues thereof forming a cyclic cystine knot motif defined by a cyclic backbone, at least three disulfide bonds and associated beta stands in a defined knotted topology and wherein at least one exposed amino acid residue such as on one or more beta turns or within one or more loops is inserted or substituted relative to the naturally occurring amino acid sequence.


It is contemplated that in some embodiments, a cyclic cystine knot is formed by expression of a linear precursor molecule comprising the cystine knot motif in a host cell that comprises a system of one or more enzymes for processing a precursor form of a cystine knot polypeptide to produce a cyclic cystine knot polypeptide. In other embodiments, a cystine knot polypeptide is cyclized in vitro. In some embodiments, in vitro processing is carried out enzymatically, e.g., using an isolated enzymatic processing system e.g., from a cyclotide-forming plant species, while in some embodiments, in vitro cyclizing is done by chemical treatment, e.g. in ammonium bicarbonate with triscarboxyethylphosphine (TCEP), as described, e.g., by Craik, et al., US Patent Publication 2003/0158096, which is incorporated by reference herein it its entirety for all purposes.


Although the inserted or substituted amino acid is preferably an exposed amino acid on a beta turn, the present invention contemplates an inserted or substituted amino acid anywhere on the molecule.


The inserted or substituted amino acid residues may be a single residue or may be a linear sequence of from about two residues to about 60 residues, preferably from about two to about 30 residues, and even more preferably, from about 2 residues to about 10 residues. The insertion or substitution may occur at a single location or at multiple locations. The latter includes the insertion of non-contiguous amino acid sequences. Furthermore, different amino acid molecules may be inserted/substituted at different sites on the molecule. This is particularly useful in the preparation of multivalent or multifunctional molecules.


One example of a class of larger cystine knotted polypeptides is the Vascular Endothelial Growth Factors (VEGFs), described in the reference by K. Suto, et al., (2005) J. Biol. Chem. 290:2126. For example, VEGF-A165 is composed of 165 residues (p 2126, col 2). Suto et al., provides a sequence comparison of two VEGF-related proteins called vammin (110 residues) and VR-1 (109 residues) to VEGF-A165 and PlGF (Placental Growth Factor). As shown in FIG. 2 of Suto et al., each of these cystine knot polypeptides contains loops of up to 33 amino acid residues.


Inclusion of loops of 30 or more amino acids is not limited to the VEGF polypeptides. See, e.g., Table 2, which comprises about 1500 naturally occurring polypeptides containing cystine knot motifs. Each of the polypeptides listed has been reported to contain a cystine knot comprising six cysteine residues and at least five loops, while circular molecules have a sixth loop. The polypeptides are identified by database identifiers listed in column 1. The table provides the complete list of polypeptides reciting the sizes of each of loops in its cystine knot motif, and shows the amino acid sequences of each of the loops in its cystine knot motif. The table of cystine knot polypeptide sequences provided herewith shows that cystine knot structures can readily accommodate 30 or more amino acids in one or several loops.


Identification of Cyclotides in C. ternatea.



Clitoria ternatea, an ornamental perennial climber also known as the Butterfly pea, is a member of plant family Fabaceae, originally from Africa but now also distributed among equatorial Asiatic countries and the Americas. Preparations of C. ternatea are utilized in a variety of indigenous medicines throughout these regions, with anecdotal evidence of their use in the traditional medicines of the Philippines, Cuba and Indo-China to promote uterine contractions and expedite childbirth (Fantz, P. R. (1991) Econ. Bot. 45, 511-520; Mukherjee, P. K., et al. (2008) J. Ethnopharmacol. 120, 291-301).


Initial screening of crude seed extracts of C. ternatea revealed the presence of proteins with masses in the range 2500-4000 Da, consistent with those of known cyclotides. Following preparative RP-HPLC of the crude extract, the putative cyclotides were detected in late-eluting fractions via MALDI-TOF MS (FIG. 2A), and the masses of 12 of these putative cyclotides are reported in Table 1. In accordance with established diagnostic methodology for cyclotides (Gruber, supra), purified peptides were lyophilized, reduced and carbamidomethylated, and re-analyzed via MALDI-TOF MS. Mass increases of 348 Da, were observed following this process (FIG. 2B), indicating the presence of three intramolecular disulfide bonds in the corresponding proteins. Thus, the 12 peptides complied with all three diagnostic criteria previously identified for cyclotides (Gruber, supra), of mass profile, hydrophobicity profile, and disulfide content.


Seven cyclotide sequences were also identified from C. ternatea leaf and flower of which one, Cter A, was common to seed. Cter M was tested for insecticidal activity and was determined to have insecticidal activity against the cotton budworm Helicoverpa armigera and anthelmintic activity against Haemonchus contortus. Cter M also binds to PE membranes, suggesting its activity is modulated by membrane disruption. Sequences of the leaf and flower cyclotides, along with the seed cyclotides, are shown in FIG. 9.


Tandem MS Enables the Differentiation of Cyclotides from Linear Peptides.


There are several examples of linear proteins, including knottins and also some defensins, which are of similar size to cyclotides, possess three disulfide bonds, and display hydrophobic properties. Therefore, we sought to extend the diagnostic criteria for the detection of cyclotides by including an additional step to distinguish between peptides with cyclic or linear backbones. This additional step is illustrated for the putative cyclotide from C. ternatea seed extract, Cter A, with a ‘native’ mass of 3267.3 Da that increases by 348 Da after reduction and carbamidomethylation and a further 18 Da after enzymatic digestion of the peptide backbone with endoproteinase Glu-C (FIG. 3). The determination of peptide sequence via tandem MS relies in part upon the ability of the N- and C-termini to retain charge. The absence of termini in cyclotides, brought about by their macrocyclic peptide backbone, therefore prevents their efficient fragmentation in tandem MS analyses, either as fully folded CCK-containing ‘native’ proteins or as reduced and alkylated cyclic proteins, as illustrated for Cter A in panels A and B of FIG. 3, respectively. Only after enzymatic cleavage of reduced (or reduced and alkylated) C. ternatea peptides into their linear forms were the various fragment ions detected during tandem MS analyses (FIG. 3C). Hence, we propose that the characteristic lack of fragmentation observed in tandem MS analyses of reduced and/or reduced and alkylated cyclotides is a suitable determinant of their cyclic nature, and should be added to previously proposed criteria (Gruber, supra) as an indicator for the presence of cyclotides in a given plant.


In combination, the newly defined criteria proposed here for the positive identification of cyclotides are late-eluting properties via RP-HPLC, a mass of 2500 to 4000 Da, an increase in mass of 348 Da following reduction and alkylation with iodoacetamide, and inefficient fragmentation in MS/MS analyses of ‘native’ or reduced and alkylated forms. Although yet to be described from plants, cyclic peptides with three intramolecular disulfide bonds not forming a cystine knot arrangement, similar to rhesus θ-defensin-1 (Tang, Y.-Q., et al., (1999) Science 286, 498-502), could also meet these criteria. However, judging from the size and hydrophobicity of described O-defensins, false positives are unlikely.


De Novo Sequencing of Cyclotides.


To illustrate the sequencing of the new cyclotides the step-by-step MS/MS analysis of Cter B is shown in FIG. 4. The linearized peptide resulting from endoproteinase Glu-C digestion of the reduced form of Cter B was analyzed via nanospray MS/MS. De novo sequencing yielded a tentative identification of SCVWIPCTVTALLGCSCKDKVCYLNGVPCAE (SEQ ID NO:1). As indicated in FIG. 4B, sequence ion coverage permitted definitive assignment of the sequence near the termini of the peptide, but presented incomplete evidence for sequence close to the middle of the peptide, a feature observed in the analyses of many full-length linearized cyclotides. Combined trypsin and endoproteinase Glu-C digestion of reduced Cter B produced peptide fragments with complementary molecular weights of 1882.6 Da and 1409.4 Da. Complete sequence coverage for both precursors was attained in tandem MS analyses (FIGS. 4C and 4D), verifying the initial sequence assignment for the full-length linearized cyclotide. Using this approach, 12 novel cyclotides from C. ternatea were sequenced (see Table 1 in Example 1). Amino acid analyses were conducted to confirm the MS/MS determined sequences and to discriminate between Ile and Leu for a representative set of cyclotides, including Cter A, Cter B and C, Cter D and E, Cter F, and Cter G and Cter H.


Cyclotides are classified mainly into two subfamilies, Möbius or bracelet, based upon the presence or absence of a cis-Pro amide bond in loop 5. Cyclotides belonging to the bracelet subfamily are the most widely represented in the literature, at approximately three-fold greater incidence than cyclotides belonging to the Möbius subfamily. Consistent with this prominence, the sequences discovered in the current study, all belong to the bracelet subfamily. However, several of them have unusual residues at key processing sites, making them of interest for understanding processing mechanisms of cyclotides.


An efficient way in which to describe and compare the features of cyclotides is by referring to the inter-cysteine loops, illustrated in FIG. 5 as an amino acid incidence plot for the 12 new sequences in sequence logo format (Crooks, G. E., et al., (2004), Genome Res. 14, 1188-1190). Most of the new cyclotides comprised combinations of known loops from previously characterized cyclotides, or novel loops with conservative amino acid substitutions. As a result, the majority of sequences displayed significant homology to known cyclotides. According to the sequence logo plot, the greatest variation in loop size and/or composition are in loops 3 and 6, consistent with data for all published cyclotide sequences as assessed using the ‘cyclotide loop view’ tool within Cybase (Kaas, Q., and Craik, D. J. (2010), Peptide Sci. 94, 584-591).


Biochemical Properties, of Novel Cyclotides.


Since the initial discovery of the insecticidal activity of cyclotides (Jennings, C., et al., (2001) Proc. Natl. Acad. Sci. USA 98, 10614-10619), several studies have demonstrated that this and other bioactivities are mediated through interactions with membranes (Barbeta, B. L., et al., (2008), Proc. Natl. Acad. Sci. USA 105:1221-1225). An important physicochemical feature of cyclotides, with regard to membrane interaction, is a surface-exposed patch of hydrophobic residues. This surface-exposure presumably results from the exclusion of hydrophobic amino acids from the core of cyclotides owing to the presence of the CCK motif. In addition to the importance of defined hydrophobic moieties in potentiating cyclotide-membrane interactions, clusters of charged residues have been demonstrated as determinants of hemolytic, insecticidal and anthelmintic activity. In particular, the hemolytic and anthelmintic properties of cyclotide variants correlate with these important structural features (Colgrave, M. L., et al., (2008) ChemBioChem 9, 1939-1945), with the most bioactive bracelet cyclotides displaying hydrophobic residues in loops 2 and 3, and positively charged residues in loops 5 and 6.


Among the novel Cter cyclotides identified here, Cter A has the largest net positive charge (2+) with basic residues clustered in loops 5 and 6, similar to the cycloviolacin peptides derived from Viola odorata that have been shown to possess potent anthelmintic activity (Colgrave, M. L., et al., (2008) ChemBioChem 9, 1939-1945; and Colgrave, M. L., et al., (2009), Acta Trop. 109, 163-166). The remaining peptides are clustered into groups with net positive 1+ (Cter G and Cter I), neutral (Cter B, Cter F, Cter H, Cter J and Cter K) and those with net negative charge −1 (Cter C, Cter E and Cter L). The bioactivities of cyclotides are further influenced by the manner in which they self-associate in membranes, which in turn is reliant upon the display of hydrophilic moieties on a ‘bioactive face’ spatially distinct from the hydrophobic patches (Huang, Y. H., et al., (2009) J. Biol. Chem. 284, 20699-20707, Huang, et al., (2010) J. Biol. Chem.; DOI: 10.1074/jbc.M109.089854). The proposed ‘bioactive face’ is centred around a glutamic acid residue, an absolutely conserved feature among previously reported cyclotides. Consistent with previous findings, this glutamic acid is conserved among all novel cyclotides described in this study.


Detection of N and D Peptide Isomers.


Mass spectrometric analyses of a majority of isolated C. ternatea cyclotides generated peptide ions with ambiguous isotope patterns. The isotopic distributions of full-length linearized Cter B, as well as fragment peptides produced from dual enzyme digests of Cter B are shown in FIG. 6. As illustrated in panel A, the measured intensity of the monoisotopic peak at m/z 1092.4 relative to the rest of the isotopic envelope for full-length linearized Cter B is less than the theoretical intensity (indicated by dashed lines). Panel B demonstrates that the experimental and calculated isotopic distributions for the triply charged precursor at m/z 628.5 corresponding to the sequence SCVWIPCTVTALLGCSCK (SEQ ID NO:2) match closely, whereas the experimental and calculated isotopic distributions for the doubly charged precursor at m/z 705.7 (panel C) corresponding to the sequence DKVCYLNGVPCAE (SEQ ID NO:3) are clearly different. These mass spectral data indicate that multiple full-length cyclotide precursors are present in the sample, and that the variable isotopic distributions observed among the precursor ions are associated with the cyclotide fragment corresponding to m/z 705.7.


Subsequent tandem MS analysis of the m/z 705.7 fragment was conducted to determine the point of variation in the peptide sequence. Panel D shows the tandem MS spectrum of the m/z 705.7 precursor, with diagnostic sequence ions indicated in bold. In panel E the b6 (DKVCYL (SEQ ID NO:132), m/z 722.2) and y6 (GVPCAE (SEQ ID NO:133), m/z 575.1) ions exhibit typical isotopic distributions for their size, with the monoisotopic peak appearing as the most intense and with isotopic patterns matching closely with the theoretical patterns. The distributions for b7 (DKVCYLN (SEQ ID NO:134), m/z 836.3) and y7 (NGVPCAE (SEQ ID NO:135), m/z 689.1) ions, however, are skewed such that the most intense peak within their respective isotopic envelopes is that which normally corresponds to the monoisotopic peak of an analyte bearing a single 13C atom. The fact that the peptide fragments in question are too small for this to be the case, along with the abrupt deviations in isotopic distribution from adjacent sequence ions, suggests the co-existence of peptides with an Asn or Asp at position 7 within the m/z 705.7 fragment, i.e., DKVCYLNGVPCAE (SEQ ID NO:3) and DKVCYLDGVPCAE (SEQ ID NO:136), corresponding to position 31 in the sequence of Cter B shown in Table 1. Of the C. ternatea cyclotides listed in Table 1, five pairs of sequences appear to be related through dual-isotope patterns of this nature, i.e. Cter B and C; Cter D and E; Cter G and H; Cter I and J; and Cter K and L.


In the initial report detailing the discovery of cyclotides from Viola odorata (Craik, D. J., et al., (1999) J. Mol. Biol. 294, 1327-1336), the reported cyclotides, named cycloviolacins, all possessed an Asn in loop 6 corresponding to the C-terminus of linear precursor proteins. Subsequent examination of V. odorata using modified HPLC conditions (Ireland, D. C., et al., (2006) Biochem. J. 400, 1-12) uncovered a range of novel cyclotides. The novel peptides included cycloviolacin O19 and cycloviolacin O20, whose sequences are highly homologous to those of previously reported cyclotides cycloviolacin 08 and cycloviolacin O3, respectively. Cycloviolacin O19 and cycloviolacin O20 possess a loop 6 Asp, in the place of Asn, and were not reported in the earlier study (Craik, D. J., et al., (1999) J. Mol. Biol. 294, 1327-1336). The study by Ireland et al. therefore provided the first evidence for the existence of Asn and Asp C-terminal cyclotide isoforms in V. odorata, indicating that highly homologous cyclotides differing by a C-terminal Asn or Asp, or other single amino acid substitutions co-elute during standard HPLC separations. Given that most cyclotide separations reported in the literature have relied on these standard HPLC conditions, it is likely that in these studies, cyclotides with C-terminal Asn and Asp co-eluted, thus eluding analysis.


MS analysis demonstrates that Asn and Asp variants can be identified in a mixture through careful scrutiny of MS data. Furthermore, this study suggests that cyclotides with C-terminal Asp might be more common than previously reported, being missed in earlier MS analyses. The possibility also exists that cyclotides differing by 1 Da but whose sequences are homologous such as those that would result from the differential incorporation of Gln or Glu, or those that differ at a range of positions may co-elute.


N and D Peptide Isomers Exist Naturally in Planta.


Of the more than 150 cyclotides characterized previously, only four pairs share sequences otherwise identical to each other apart from Asn and Asp variation in loop 6, i.e., kalata B1 and B4, kalata B6 and B10, cycloviolacin O8 and O19, and cycloviolacin O3 and O20 (Kaas, Q., and Craik, D. J. (2010), Peptide Sci. 94, 584-591). Therefore, the high incidence of Asn and Asp variants warranted further examination to rule out deamidation as a possible cause of the synonymous sequences. Deamidation of Asn residues during sample workup is a commonly observed artefact in proteomic analyses, catalysed by exposure of the sample to elevated temperatures and basic pH (Wright, H. T. (1991), Crit. Rev. Biochem. Mol. Biol. 26, 1-52), typically during enzymatic cleavage, and occurring most frequently at Asn residues immediately N-terminal to Gly, as would be the case in these cyclic proteins. However, the isotopic distributions of ‘native’ cyclotides extracted from fresh plant material at low pH and not heated before MS analysis suggest that Asn and Asp cyclotide variants described, e.g., Cter B and C; Cter D and E; Cter G and H; Cter I and J; and Cter K and L, co-exist naturally. The existence of Cter A and Cter F, which do not display ‘Asn or Asp variability’ and which were isolated from the same starting material and processed in parallel supports the natural co-existence of Asn and Asp C-terminal cyclotide isoforms.


A recent study of ESTs from the cyclotide-producing plant O. affinis reports high relative expression of a protein with close homology to asparaginase, whose biological function is the conversion of asparagine to aspartic acid (Qin, Q., et al., (2010) BMC Genomics 11, DOI: 10.1186/1471-2164-11-111). With respect to pairs of cyclotides isolated from O. affinis differing only at the nascent C-terminus, the fact that only kalata B1 and kalata B6 (C-terminal Asn) genes have been found despite peptide evidence for kalata B1 and B4, and kalata B6 and B10 (each pair identical except for C-terminal Asn or Asp), led Qin et al. to suggest the alternative possibility that the ‘Asp’ peptides are a product of post-translational processing occurring in planta (Qin 2010, supra). A similar situation exists for related V. odorata peptides cycloviolacin O8 (C-terminal Asn) and cycloviolacin O19 (C-terminal Asp), with only the gene encoding the former cyclotide having been characterized (Dutton, J. L., et al., (2004) J. Biol. Chem. 279, 46858-46867). However, it remains to be determined whether the observed ‘Asn or Asp’ variable peptide pairs from O. affinis and V. odorata are a product of enzymatic post-translational processing, and further, whether a similar enzyme is involved in the biosynthesis of some metabolites with C-terminal Asp described from C. ternatea in this study.


Variable Residues in the Ligation Site Imply Catalytic Promiscuity.


Since the discovery of the first cyclotide-encoding gene, it has been evident that amino acids participating in cyclization are located in loop 6 of fully-formed cyclotides. Recent studies exploring the structural characteristics of cyclotide precursor sequences involved in their cyclization (Gillon, A. D., et al., (2008) Plant J. 53, 505-515; Saska, I., et al., (2007) J. Biol. Chem. 282, 29721-29728) emphasize the importance of tripeptide motifs (typically Gly-Leu-Pro or Ser-Leu-Pro or Ala-Leu-Pro) demarcating the cyclotide domain, and the positioning of an Asn or Asp residue immediately prior to the C-terminal tripeptide. In addition, these studies suggest that an as yet unidentified asparaginyl endopeptidase (AEP) is responsible for the ligation of cyclotide proto-termini as the final step of cyclotide biosynthesis.


Among the cyclotides encoded by the genes provided herein, Cter G and Cter H, and Cter K and Cter L contain novel amino acid sequences at their respective predicted sites of in planta cyclization. In the case of Cter G and Cter H, the loop 6 sequences ‘YNNGLP’ (SEQ ID NO:137) and ‘YNDGLP’ (SEQ ID NO:117) present the unique motifs Asn-Asn-Gly and Asn-Asp-Gly, which are noteworthy because they present two possible cyclization sites. The position of the peptide bond formed during cyclization of linear cyclotide precursors, as corroborated by gene sequencing efforts, is frequently observed at an Asn-Gly or the Asp-Gly junction. By itself, this information would suggest that the cyclization site in Cter H is Asp-Gly; however, the demonstrated cyclic nature of cycloviolacin O25 (Ireland, D. C., et al., (2006) Biochem. J. 400, 1-12), which presents a loop 6 sequence ‘YFNDIF’ (SEQ ID NO:138), tenders the alternative possibility that the cyclization reaction takes place between Asn-Asp. In the case of Cter K and Cter L, the loop 6 sequences are ‘YNHEP’ (SEQ ID NO:139) and ‘YDHEP’ (SEQ ID NO:140) with presumed novel cyclization sites Asn-His or Asp-His. Although there are other examples of cyclotides with a positively charged residue following Asp in the cyclization site (for example ‘YHDKIP’ (SEQ ID NO:141) in circulin D and circulin E) (Gustafson, K. R., et al., (2000) J. Nat. Prod. 63, 176-178), this is the first example with an acidic residue in place of the typically small hydrophobic residue (Ala, Ile, Leu or Val) at this position (second residue of mature cyclotide in presumed gene sequence). The existence of mature cyclic peptides with unusual residues within the N-terminal tripeptide motif (e.g. HEP in Cter K and Cter L) suggests greater flexibility in cyclotide processing mechanisms within C. ternatea than observed in other cyclotide-producing species. A recent study in which a modified cyclotide gene was expressed in transgenic non-cyclotide-containing plant species reported that mechanisms central to the processing of fully-formed cyclotides are sensitive to changes in N-terminal sequence. In particular, Ala mutations at Gly1 or Leu2 in kalata B1 genes were found to disrupt the formation of cyclic products (Gillon, A. D., et al., (2008) Plant J. 53, 505-515).


Legumain, an AEP with transpeptidation (peptide ligation) activity, first described in jack beans (Carrington, D. M., et al., (1985) Nature 313, 64-67, Min, W., and Jones, D. H. (1994) Nat. Struct. Biol. 1, 502-504), is of potential significance to the processing of cyclotides. In particular, the demonstrated flexibility of a Fabaceae legumain that cleaves at almost all Asn-Xaa bonds (Abe, Y., et al., (1993) J. Biol. Chem. 268, 3525-3529) and to a lesser extent Asp-Xaa bonds (Halfon, S., et al., (1998) FEBS Lett. 438, 114-118) may prove to be relevant in the biosynthesis of cyclotides from C. ternatea. Among the Fabaceae cyclotides investigated in the current study, those with non-typical sequence in loop 6 including ‘YNHEP’ (SEQ ID NO:139) or ‘YDHEP’ (SEQ ID NO:140) in Cter K and Cter L, and ‘YNNGIP’ (SEQ ID NO:141) or ‘YNDGIP’ (SEQ ID NO:142) in Cter G and Cter H were all observed as fully cyclized gene products.


Besides C. ternatea cyclotides possessing novel loop 6 sequences, there are a number of ‘orphan’ cyclotides whose loop 6 sequences appear incompatible with the typical activity of AEPs previously implicated in cyclotide bioprocessing. Apart from cycloviolacin O25, whose loop 6 sequence indicates the lack of typical putative N-terminal amino acids Gly, Ser or Ala in putative precursors, Chassalia parvifolia cyclotides circulin D and circulin E are distinct from other known cyclotides in that they have positively charged proto-N-termini, whereas circulin F does not have an Asn or Asp in loop 6. Cyclization by AEP is one of the proposed biosynthetic mechanisms proposed as being central to the cyclization of SFTI-1 (Mulvenna, J. P., et al., (2005) J. Biol. Chem. 280, 32245-32253) in Helianthus annuus, however the gene sequence corresponding to amino acids surrounding the expressed protein sequence does not indicate the involvement of Gly-Leu-Pro tripeptide motifs regarded as essential in cyclotide precursor proteins (Gillon, A. D., et al., (2008) Plant J. 53, 505-515; Saska, I., et al., (2007) J. Biol. Chem. 282, 29721-29728). In addition, sequence alignments of cyclic trypsin inhibitors MCoTI-1 and MCoTI-II from Momordica cochinchinensis with related linear trypsin inhibitors (Hernandez, J.-F., et al., (2000) Biochemistry 39, 5722-5730 suggest that they exhibit C-terminal Gly as unprocessed precursor proteins. Therefore, it is tempting to speculate that cyclization strategies utilized by organisms in the production of cyclotides and other cyclic proteins vary between species, based in part upon the capabilities of available processing enzymes.


The amino acid sequence of cyclotide Cter M (FIG. 9), while bearing the classic hallmark of other cyclotides, including the spacing of the six conserved Cys residues and a CCK fold, as determined by NMR, has some sequence differences that suggest a greater flexibility in cyclotide processing than has hitherto been reported. Its conserved Asn residue at the C-terminus of the mature cyclotide domain suggests processing by AEP like other cyclotides but the residue immediately following this Asn in the Cter M precursor, His, has not been seen in any other cyclotide genes, which exclusively contain a small amino acid (usually Gly or Ala at this position).


Fabaceae Cyclotide Gene Organization


All cyclotides reported to date from other plant families are biosynthesized from precursor proteins that are encoded by dedicated genes. In contrast, the cyclotides of C. ternatea are expressed from genes having a markedly different configuration.


The gene encoding the Cter M cyclotide is shown in FIG. 10. In contrast to the configuration seen other plant families, the gene in C. ternatea encodes a precursor that comprises the cyclotide amino acid sequence along with an albumin subunit sequence. While not limiting the present invention to any particular model, the cyclotide gene encoding Cter Mappears to have hijacked an albumin gene, encoding the cyclotide in place of subunit b of the albumin. Pea albumin 1 subunit b (PA1b) is a 37-amino acid protein isolated from pea seeds (Pisum sativum), that has been shown to act as a potent insecticidal agent (Da Silva, P., et al., (2010) J Biol Chem 285, 32689-32694). See also Nguyen, et al. J. Biol. Chem. 286(27):24275-87 (2011), incorporated herein by reference for all purposes. PA1b is characterized as a knottin owing to the three braced disulfide bonds. In an analogous fashion to the cyclotide kalata B1 (Simonsen, S. M., et al., (2008) J Biol Chem 283, 9805-9813), the three-dimensional structure of PA1b has been demonstrated to be extremely tolerant to modifications (Da Silva, supra). Furthermore, both receptor-binding and insecticidal activities of PA1b were dependent on a cluster of hydrophobic residues located on a single face of the molecule (Da Silva, supra). These data show striking parallels with recent studies highlighting the importance of the hydrophobic patch of kalata B1 in modulating insecticidal and membrane binding interactions (Simonsen, supra, Huang, Y. H., et al., (2009) J Biol Chem 284, 20699-20707).


The current study shows that fully folded cyclotides are produced naturally in a member of the Fabaceae plant family, demonstrating both the presence and capabilities of necessary post-translational modification infrastructure involved in their biosynthesis. Although the sequences of novel cyclotides described in this study are mostly conservative permutations of previously identified proteins, the sequence variability displayed at putative cyclization sites in a number of C. ternatea cyclotides suggests that alternative biosynthetic cyclization mechanisms may be responsible. In particular, cyclotides described in this study possessing novel putative N-termini are suggestive of significantly different, or additional specialized capabilities with respect to enzymes supporting their cyclization. Numerous species within the Fabaceae are known to possess legumain, an AEP which was initially discovered as the enzyme responsible for peptide ligation in the post-translational processing of the lectin concanavalin A from Canavalia ensiformis (Jackbean) seeds (Carrington, D. M., et al., (1985) Nature 313, 64-67) If a homologous enzyme exists in C. ternatea, its presence could explain the existence of cyclotides with unusual sequence at their putative cyclization sites characterized described in the current study, as legumain activity has been reported across a wide range of Asn-Xaa bonds (Abe, Y., et al., (1993) J Biol Chem 268, 3525-3529).


These considerations, coupled with the importance of Fabaceous crops to nutrition, industry and agriculture, give Fabaceae species special relevance in future cyclotide-focused transgenic studies. Cyclotides have been previously exploited as ultra-stable scaffolds for the presentation of bioactive epitopes (Gao, Y., et al., (2010) Bioorg Med Chem 18, 1331-1336; Gunasekera, S., et al., (2008) J Med Chem 51, 7697-7704; Thongyoo, P., et al., (2009) J Med Chem 52, 6197-6200). Fabaceae plants represent novel vectors for biotechnological production of a broader range of designer cyclic proteins than previously considered possible. The demonstrated capacity of C. ternatea to produce fully formed cyclotides suggests that cyclotides with optimized resistance traits and/or possessing other traits of pharmaceutical, economic or agricultural significance may be readily expressed in a functional form within Fabaceae species. Due to the previously demonstrated efficacy of naturally occurring cyclotides as insecticidal (Barbeta, B. L., et al. (2008) Proc. Nat'l. Acad. Sci. USA 105, 1221-1225, Jennings, C., et al., (2001) Proc. Nat'l. Acad. Sci. USA 98, 10614-10619) and nematocidal (Colgrave, M. L., et al., (2008) Biochemistry 47, 5581-5589, Colgrave, M. L., et al., (2008) Chembiochem 9, 1939-1945, Colgrave, M. L., et al., (2009) Acta Trop 109, 163-166, and Colgrave, M. L., et al., (2010) Antimicrob Agents Chemother 54, 2160-6) agents, it is believed that the natural role of cyclotides is as plant defence agents, making them excellent candidates for incorporation in transgenic crops to provide resistance against important pests.


Cyclotides are known to possess potent in vitro anthelmintic activity against human, canine and ovine nematode parasites. Root-knot nematodes, which are estimated to cause more than $100 billion of crop losses worldwide (Koenning, S. R., et al., (1999) J Nematol 31, 587-618, Opperman, C. H., et al., (2008) Proc Natl Acad Sci USA 105, 14802-14807) represent obvious targets in this regard, however the efficacy of cyclotides against them remains untested. Cyclotides are differentially expressed among plant tissues, presumably in order to counter the selective pressures specific to their respective microenvironments (Trabi, M. & Craik, D. J. (2004) Plant Cell 16, 2204-2216). Cyclotide Vhr-1 from Viola hederacea is expressed exclusively in the root tissue of Viola hederaceae.


The present invention contemplates linear molecules of from about 20 amino acids to about 100 amino acids and more preferably from about 25 amino acids to about 50 amino acids such as about 30 amino acids which are used as substrates for cyclization reactions. The resulting cyclized molecules having the same or functionally similar structure as the cyclic framework as herein described.


As stated above, the present invention extends to a range of derivatives, homologues and analogues of the molecular framework. A derivative includes parts, fragments, portions and linear forms. One particularly useful linear form is referred to herein as “uncycles” which are acyclic permutations of the cyclic molecular framework. Circular permutation involves the synthesis or expression of proteins having amino- and carboxy-termini permuted from their native locality. In relation to the naturally occurring cyclic molecular frameworks of the present invention, such molecules do not have native amino and carboxy termini. However, cyclic permutation permits a range of different linear molecules to be prepared with different amino and carboxy termini. An uncycle may have increased activity relative to its cyclic form or no activity or may exhibit antagonist activity. An uncycle exhibiting no activity may nevertheless be useful, for example, in the generation of antibodies.


By way of example only, particularly preferred CCK molecules comprise six cysteine residues and, hence, have six loops in the backbone which can be opened to form six possible topologically distinct acyclic permutants. Similarly, each of the 6 linear topologies may also be cyclized. This aspect of the present invention provides, therefore, for the cyclization of any linear topology into a CCK framework.


The uncycles of the present invention may be useful as antagonists of the cyclic molecular framework or may themselves exhibit useful activity.


Still another aspect of the present invention is directed to antibodies to the molecular framework of the present invention. Such antibodies may be monoclonal or polyclonal. Polyclonal antibodies are particularly preferred. Antibodies may be made using standard techniques.


The cyclic molecular frameworks according to the present invention are useful as therapeutic agents in animals and as anti-pathogenic agents in plants. Accordingly, the present invention provides a method for the treatment or prophylaxis of conditions or diseases in mammals, preferably humans, including the step of administering a molecular framework as hereinbefore described either without modification or having heterologous amino acids grafted thereon.


In particular, molecular frameworks may be selected or engineered for use in the treatment of neurological disorders such as acute and chronic pain, stroke, traumatic brain injury, migraine, epilepsy, Parkinson's disease, Alzheimer's disease, multiple sclerosis, schizophrenia and depression as well as cystic fibrosis and/or other respiratory diseases. The molecular framework may also be selected to treat plants against pathogen infestation and mammals including humans from viral or microbial infection.


The present invention also provides a composition comprising cyclic molecular framework molecules as hereinbefore described and a pharmaceutically acceptable carrier and/or diluent. Preferably the composition is in the form of a pharmaceutical composition.


There is also provided the use of a cyclic molecular framework in the manufacture of a medicament for the treatment or a prophylaxis of diseases or other conditions in mammals, preferably in humans.


In some embodiments, a transgenic plant is produced comprising cells transformed with at least one gene encoding the CterM or CterM-like gene described above, such that a cyclotide is expressed in at least one of its tissues of organs. The present invention encompasses transgenic plants produced in this way to express CterM or CterM-like peptides (without or without heterologous grafted peptides) in any of Fabaceae and/or non-Fabaceae plants of agricultural and biotechnological significance. These plants can be obtained by conventional techniques of plant transgenesis as are presently well known and which have been rigourously tested in these many plant species (see, e.g., Dunwell, J. M. (2000). J. Exp. Biol. 51, 487-496; and Eapen, S. (2008) Biotechnol. Adv. 26, 162-168).


Genetic elements typically or optionally included for expression of heterologous proteins in plants are known in the art. For example, binary vectors, for plant transformation are generally configured to allow propagation in multiple host cell types, may typically contain an origin of replication, a selectable marker gene cassette with appropriate promoter, multiple cloning sites in which the gene of interest and/or reporter gene can be inserted, and T-DNA borders (e.g., as reviewed by Komari, T., et al., (2006) Binary Vectors and super-binary vectors. pp. 15-42. In: Agrobacterium Protocols. Ed, Kan Wang. Methods in Molecular Biology Volume 343). The vector backbone may also include a bacterial selectable marker gene unit, plasmid mobilization functions and plasmid replication functions, as well other factors relevant to plasmid mobilization and replication in, e.g., Agrobacterium. Examples include pCAMBIA series (see, e.g., the cambia.org site on the world wide web) and pPZP series (Hajdukiewicz, et al., (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol. Biol. 25, 989-994.). In some embodiments, binary vectors are used in conjunction with helper plasmids that provide one or more functions, e.g., for replication.


Methods of transformation of plant cells are known in the art. Commonly used methods typically comprise Agrobaterium-mediated transformation. See e.g., Eapen S, et al., (1987) Cultivar dependence of transformation rates in mothbean after co-cultivation of protoplasts with Agrobacterium tumefaciens. Theor Appl Genet. 75: 207-10; Krishnamurthy K V, et al., (2000) Agrobacterium mediated transformation of chickpea (Cicer arietinum L.) embryo axes. Plant Cell Rep 19: 235-40; and Sharma K K, et al., (2006) Agrobacterium-mediated production of transgenic pigeonpea (Cajanus cajan L Millsp) expressing synthetic Bt cryIAb gene. In vitro Cell Dev Biol Plant 42: 165-73. In Agrobacterium-mediated transformation, embryonic axes and cotyledonary nodes are most commonly used as explants, although shoot apices, leaf, callus, seed, stem segments or other plant tissues are also used. Other transformation techniques that find use with the present invention include but are not limited to particle gun bombardment (e.g., Kamble S, et al., (2003) A protocol for efficient biolistic transformation of mothbean (Vigna aconitifolia L. Marechal). Plant Mol Biol Report 21: 457a-j; Indurker S, et al., (2007) Plant Cell Rep 26: 755-63), electroporation of intact axillary buds (Chowrira G M, et al., (1996) Mol Biotechnol 5:85-96) and electroporation-PEG mediated transformation using protoplasts (Kohler F, et al., (1987a) Plant Cell Rep 6: 313-7 and Kohler F, et al., (1987b) Plant Sci Lett 53: 87-91.). Techniques used may vary according to the transgenic plant species to be generated. Plant regeneration is generally by de novo organogenesis, although somatic embryogenesis or proliferation of shoot meristems from areas surrounding a shoot bud are also options.


Transformation of plants may be assessed by a number of different methods. For example, plant tissues may be assessed for the presence of the gene of interest, or an RNA or protein produced therefrom, by standard hybridization, antibody, or other functional tests that are standard in the art. Further, selectable markers may be used to confirm transformation. For example selectable markers may include neomycin phosphotransferase (nptII) gene (Valvekens et al., (1988) Proc. Natl. Acad. Sci. USA 85: 5536-5540) and/or Phosphomannose isomerase (Boscariol et al., (2003) Plant Cell Rep 22, 122-128), which confer resistance to antibiotics (kanamycin, paromomycin), and eliminate natural plant toxicity to mannose, respectively. The selection of a particular selectable selectable marker for use is typically based upon plant species to be transformed and downstream applications for which the transformed cells or tissues will be used (e.g., toxicity studies).


Numerous diverse plant species have been genetically transformed with foreign DNA, using several different gene insertive techniques. In some embodiments edible plants may be selected for expression of cyclotides such that the cyclotide (e.g., a cyclotide having nutrient or therapeutic function or activity) may be delivered to a subject in an edible material. In such embodiments, the host plant selected for genetic transformation preferably has edible tissue in which the cyclotide is expressed, such as the fruit, leaves, stems, sees, or roots, such that the tissue may be consumed by a human or an animal for whom the cyclotide is intended. For example, the Fabaceae family of plants comprises soy plants (e.g., Glycine max), which contains edible seeds and tissues, and from which numerous edible materials may be produced. A cyclotide may also be produced in a non-edible plant and may be isolated and used or administered in standard fashion such as may be used for any agricultural, pharmaceutical or nutrient substance or chemical.


As will be readily appreciated by those skilled in the art, the route of administration and the nature of the pharmaceutically acceptable carrier will depend on the nature of the condition and the mammal to be treated. It is believed that the choice of a particular carrier or delivery system, and route of administration could be readily determined by a person skilled in the art. In the preparation of any formulation containing the peptide actives care should be taken to ensure that the activity of the framework is not destroyed in the process and that the framework is able to reach its site of action without being destroyed. In some circumstances it may be necessary to protect the framework by means known in the art, such as, for example, micro encapsulation. Similarly the route of administration chosen should be such that the peptide reaches its site of action. In view of the improved stability and/or bioavailability of the cyclic frameworks relative to their “linear” counterparts, a wider range of formulation types and routes of administration is available.


The pharmaceutical forms suitable for injectable use include sterile injectable solutions or dispersions, and sterile powders for the extemporaneous preparation of sterile injectable solutions. They should be stable under the conditions of manufacture and storage and may be preserved against the contaminating action of microorganisms such as bacteria or fungi. The solvent or dispersion medium for the injectable solution or dispersion may contain any of the conventional solvent or carrier systems for peptide actives, and may contain, for example, water, ethanol, polyol (for example, glycerol, propylene glycol and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of the action of microorganisms can be brought about where necessary by the inclusion of various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal and the like. In many cases, it will be preferable to include agents to adjust osmolality, for example, sugars or sodium chloride. Preferably, the formulation for injection will be isotonic with blood. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin. Pharmaceutical forms suitable for injectable use may be delivered by any appropriate route including intravenous, intramuscular, intracerebral, intrathecal injection or infusion.


Sterile injectable solutions are prepared by incorporating the active compounds in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and the freeze-drying technique which yield a powder of the active ingredient plus any additional desired ingredient from previously sterile-filtered solution thereof.


When the active ingredient is suitably protected, it may be orally administered, for example, with an inert diluent or with an assimilable edible carrier, or it may be enclosed in hard or soft shell gelatin capsule, or it may be compressed into tablets, or it may be incorporated directly with the food of the diet. For oral therapeutic administration, the active compound may be incorporated; with excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like. Such compositions and preparations preferably contain at least 1% by weight of active compound. The percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 5 to about 80% of the weight of the unit. The amount of active compound in such therapeutically useful compositions is such that a suitable dosage will be obtained.


The tablets, troches, pills, capsules and the like may also contain the components as listed hereafter. A binder such as gum, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; and a sweetening agent such a sucrose, lactose or saccharin may be added or a flavouring agent such as peppermint, oil of wintergreen, or cherry flavouring. When the dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier. Various other materials may be present as coatings or to otherwise modify the physical form of the dosage unit. For instance, tablets, pills, or capsules may be coated with shellac, sugar or both. A syrup or elixir may contain the active compound, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye and flavouring such as cherry or orange flavour. Of course, any material used in preparing any dosage unit form should be pharmaceutically pure and substantially non-toxic in the amounts employed. In addition, the active compound(s) may be incorporated into sustained-release preparations and formulations.


The present invention also extends to any other forms suitable for administration, for example, topical application such as creams, lotions and gels, or compositions suitable for inhalation or intranasal delivery, for example solutions or dry powders.


Parenteral dosage forms are preferred, including those suitable for intravenous, intrathecal, or intracerebral delivery.


Pharmaceutically acceptable carriers and/or diluents include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, use thereof in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.


It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the mammalian subjects to be treated; each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the novel dosage unit forms of the invention are dictated by and directly dependent on (a) the unique characteristics of the active material and the particular therapeutic effect to be achieved, and (b) the limitations inherent in the art of compounding such an active material for the treatment of disease in living subjects having a diseased condition in which bodily health is impaired as herein disclosed in detail.


The principal active ingredient is compounded for convenient and effective administration in effective amounts with a suitable pharmaceutically acceptable carrier in dosage unit form. A unit dosage form can, for example, contain the principal active compound in amounts ranging from 0.25 μg to about 2000 mg. Expressed in proportions, the active compound is generally present in from about 0.25 μg to about 2000 mg/mL of carrier. In the case of compositions containing supplementary active ingredients, the dosages are determined by reference to the usual dose and manner of administration of the said ingredients.


The cyclic molecular frameworks of the present invention may also have useful application as anti-pathogen agents in plants. Examples of pathogens include insects, spiders, viruses, fungi and other microorganisms causing deleterious effects. In particular, molecular frameworks may be engineered for use in conferring protection from pathogen (including insect) infestation of plants; for example, protection from insect attack in cotton. Such an activity may be engineered by the introduction of appropriate amino acid residues into the molecular framework, as described above, and their use in topical applications such as, e.g. in sprays.


Accordingly, the present invention provides a method for conferring pathogen protection to a plant, including the step of administering an engineered framework as hereinbefore described. Reference to administering includes reference to the topical application in liquid, aerosol, droplet, powdered or particulate form.


EXPERIMENTAL EXAMPLES

The following examples serve to illustrate certain preferred embodiments and aspects of the present invention and are not to be construed as limiting the scope thereof.


The abbreviations used are: kB1, kalata B1; RP-HPLC, reversed-phase high performance liquid chromatography; MALDI-TOF, matrix-assisted laser desorption ionization time-of-flight; CCK, cyclic cystine knot; SFTI-1, sunflower trypsin inhibitor-1; AEP, asparaginyl endopeptidase; SPE, solid phase extraction; CHCA, α-Cyano-4-hydroxycinnamic acid; CE, collision energy.


Example 1
Isolation and Characterization from C. ternatea Seeds

Seed Extraction.


Seed material (˜0.20 g) from C. ternatea (Milgarra variety as supplied by Heritage Seeds, Rocklea, Australia) was ground in a mortar and pestle prior to solvent extraction with 100 mL of 50% (v/v) acetonitrile, 2% (v/v) formic acid. Crude extract was centrifuged for 4 min at 4,000×g, and the supernatant passed through a 0.45 micron syringe filter prior to lyophilization, yielding 430 mg material.


Solid Phase Extraction (SPE).


Crude plant extracts were redissolved in 1% (v/v) formic acid and underwent an SPE clean up step prior to further analysis. Waters C18 SPE cartridges of 100 mg to 10 g resin capacity were activated with 10 bed volumes of methanol and subsequently equilibrated with 10 bed volumes of 1% (v/v) formic acid. Following application of crude plant extracts, the cartridges were washed with a further 10 bed volumes of 1% (v/v) formic acid. Interfering substances were eluted from the cartridges in 10% (v/v) acetonitrile, and cyclotides collected in 20% to 80% (v/v) acetonitrile elution steps as separate fractions and lyophilized.


HPLC Purification.


Separation of cyclotides from crude C. ternatea extracts or SPE fractions was carried out using preparative or semi-preparative HPLC. For preparative HPLC, samples were reconstituted in 10% (v/v) acetonitrile, 1% (v/v) trifluoroacetic acid and introduced to a Phenomenex C18 RP-HPLC column (Torrance, Calif., USA) (250×21.2 mm, 15 μm, 300 Å). Using a Waters 600E HPLC unit (Milford, Mass., USA), a linear 1% min−1 acetonitrile gradient was delivered to the column at a flow rate of 8 mL min−1 and the eluent was monitored using a dual wavelength UV detector set to 214 and 280 nm, and fractions were collected. In semi-preparative HPLC separations, a Phenomenex C18 RP-HPLC column (250×10 mm, 10 μm, 300 Å) was utilized with a flow rate of 3 mL min−1. Selected cyclotides were purified to >95% purity through repetitive RP-HPLC and duplicate samples submitted for amino acid analysis.


MALDI-TOF MS.


MALDI-TOF analyses were conducted using an Applied Biosystems 4700 TOF-TOF Proteomics Analyser (Foster City, Calif., USA). Samples were prepared through 1:1 dilution with matrix consisting of 5 mg mL−1 CHCA in 50% (v/v) acetonitrile, 1% (v/v) formic acid prior to spotting on a stainless steel MALDI target. MALDI-TOF spectra were acquired in reflector positive operating mode with source voltage set at 20 kV and Gridl voltage at 12 kV, mass range 1000-5000 Da, focus mass 1500 Da, collecting 1500 shots using a random laser pattern and with a laser intensity of 3500. External calibration was performed by spotting CHCA matrix 1:1 with Applied Biosystems Sequazyme Peptide Mass Standards Kit calibration mixture diluted 1:400 as described previously (Saska, I., et al., (2008) J. Chromatogr. B 872, 107-114).


Enzymatic Digestion.


Prior to tandem MS analyses, cyclotides were cleaved to produce linearized fragments following reduction and alkylation to prevent re-oxidation. Lyophilized samples were reconstituted in 100 mM NH4HCO3 (pH 8) and a 10 μL portion was reduced by addition of 10 μL of 10 mM dithiothreitol and incubation at 60° C. for 30 min in a nitrogenous atmosphere. Incubation with a further 10 μL of 100 mM iodoacetamide followed for 30 min at RT. Samples were split into three ˜7 μL fractions for digestion by endoproteinase Glu-C (Sigma P2922), TPCK-treated bovine trypsin (Sigma T1426) or a combination of both enzymes. In the case of the single-enzyme digests, a sample of ˜7 μL received 5 μL of 40 ng μL−1 enzyme and 5 μL of 100 mM NH4HCO3. For the double-enzyme digest, a sample of ˜7 μL was mixed with 5 μL of 40 ng μL−1 of each enzyme. All three digests were incubated at 37° C. for 3 h and then quenched with formic acid. All samples were retained at 4° C. until further analysis.


Nanospray on QSTAR Pulsar.


Reduced and enzymatically digested samples were processed using C18 ziptips (Millipore) to remove salts and elicit a solvent exchange from aqueous solution to 80% (v/v) acetonitrile, 1% (v/v) formic acid. Samples (3 μL) were introduced to nanospray tips (Proxeon ES380) and 900 V was applied to the tip to induce nanoelectrospray ionization on a QSTAR Pulsar I QqTOF mass spectrometer (Applied Biosystems). The collision energy (CE) was varied from 10 to 60 V. Both TOF and product ion mass spectra were acquired and manually assigned using Analyst QS 1.1 Software.


Cter cyclotide peptides from seeds are aligned in Table 1, below.
















TABLE 1





SEQ



Exp.
Theor.




ID


Exp.
mass
mass
Error



NO:
Peptide
Amino acid sequencea
m/z
(Da)
(Da)
Δ(ppm)
Subfamily






















13
Cter A
GVIPCGESCVFIPC-ISTVIGCSCKNKVCYRN
1090.07
3267.19
3267.49
−91.8
Bracelet





8
Cter B
G-VPCAESCVWIPCTVTALLGCSCKDKVCYLN
1084.58
3250.75
3250.45
92.6
Bracelet





9
Cter C
G-VPCAESCVWIPCTVTALLGCSCKDKVCYLD
1084.93
3251.76
3251.43
99.2
Bracelet





11
Cter D
G-IPCAESCVWIPCTVTALLGCSCKDKVCYLN
1089.26
3264.76
3264.46
91.0
Bracelet





10
Cter E
G-IPCAESCVWIPCTVTALLGCSCKDKVCYLD
1089.61
3265.79
3265.45
105.2
Bracelet





19
Cter F
G-IPCGESCVFIPC-ISSVVGCSCKSKVCYLD
1536.48
3070.94
3071.34
−132.7
Bracelet





15
Cter G
G-LPCGESCVFIPC-ITTVVGCSCKNKVCYNN
1043.15
3126.42
3126.36
19.0
Bracelet





16
Cter H
G-LPCGESCVFIPC-ITTVVGCSCKNKVCYND
1043.48
3127.43
3127.34
26.8
Bracelet





22
Cter I
GTVPCGESCVFIPC-ITGIAGCSCKNKVCYIN
1052.33
3153.96
3154.39
−135.7
Bracelet





23
Cter J
GTVPCGESCVFIPC-ITGIAGCSCKNKVCYID
1052.67
3154.99
3155.58
−122.2
Bracelet





17
Cter K
H-EPCGESCVFIPC-ITTVVGCSCKNKVCY-N
1037.14
3108.39
3108.31
24.4
Bracelet





18
Cter L
H-EPCGESCVFIPC-ITTVVGCSCKNKVCY-D
1037.47
3109.39
3109.30
31.3
Bracelet






aIle and Leu were determined by amino acid analysis where sufficient material was available, or assigned based upon homology with published cyclotide sequences.







Example 2
Isolation, Characterization and Synthesis of Cyclotides from C. ternatea Leaves

Leaf Extraction.


Leaf material (˜3.5 g) from C. ternatea plants (grown in St Lucia, Brisbane, Australia) was ground in a mortar and pestle prior to solvent extraction with 20 mL of 50% (v/v) acetonitrile, 2% (v/v) formic acid. Crude extract was centrifuged for 4 min at 4,000×g, and the supernatant passed through a 0.45 micron syringe filter prior to lyophilization.


Mass Spectrometry.


As described for the seed extracts, above, the aqueous leaf extract of was treated by reduction to break disulfide bonds, alkylation to block reactive cysteine residues, and digestion with endoproteinase Glu-C to linearize any cyclic peptides present in the extract. MALDI-TOF analyses were conducted using an Applied Biosystems 4700 TOF-TOF Proteomics Analyser (Foster City, Calif., USA) and UltrafleXtreme TOF-TOF instrument (Bruker, Bremen, Germany) as previously described (Poth, A. G., et al., (2011) ACS Chem Biol.). Linearized cyclotide-containing crude leaf extract was analyzed on a QStar® Elite hybrid LC-MS/MS system (Applied Biosystems/MDS SCIEX, Foster City, USA) equipped with a nano-electrospray ionization source. The collection of MS/MS spectra were searched against a custom-built database of cyclotides using the ERA methodology (Colgrave, et al., (2010), Biopolymers 94:592-601) using ProteinPilot. All MS/MS data were manually verified.


LC-MS/MS analyses showed a dominant peak at 20.9 min of m/z 1147.53 corresponding to a mass of 3439.60 Da for a linearized alkylated peptide (mass of native peptide 3073.60 Da). Examination of the full product ion MS/MS spectrum (FIG. 2) revealed the sequence of the peptide to be TCTLGTCYVPDCSCSWPICMKNGLPTCGE (SEQ ID NO:143) where the methionine was oxidised. The sequence was database (BLAST) searched and deduced to be a novel cyclotide. We previously reported the identification of 12 cyclotides in seed extracts from C. ternatea (Poth, et al., 2011, supra), all of which belong to the Bracelet cyclotide sub-family. This is the first report of a cyclotide belonging to the Möbius sub-family from Fabaceous plants. Using similar methods an additional six peptide sequences (including Cter A previously identified in C. ternatea seeds) were deduced and their sequences are summarized along with the original 12 sequences in FIG. 9.


NMR Spectroscopy.


Spectra were recorded at 600 and 900 MHz (Bruker Avance NMR spectrometers) on a sample containing 1 mM Cter M in 10% D2O/90% H2O. The two-dimensional spectra including, TOCSY, COSY and NOESY, were recorded as previously described Rosengren, K. J., et al., (2003) J. Biol. Chem. 278, 8606-8616. Distance restraints were obtained from a NOESY spectrum recorded with a 200 ms mixing time at 290 K. A family of structures that are consistent with the experimental restraints was calculated using the programs CYANA (Guntert, P. (2004) Methods Mol Biol 278, 353-378) and CNS (Brunger, A. T. (2007) Nat Protoc 2, 2728-2733). A set of 50 structures was calculated and the 20 lowest energy structures selected for further analysis. Structures were analyzed using the programs PROCHECK_NMR (Laskowski, R. A., et al., (1996) J. Biomol. NMR 8, 477-486) and PROMOTIF (Hutchinson, E. G. & Thornton, J. M. (1996) Protein Sci. 5, 212-220. MolMol (Koradi, R., et al., (1996) J. Mol. Graph. 14, 29-32) and PyMol were used to display the structural ensembles and surfaces of the peptides, respectively.


Example 3
Gene Discovery and Verification

One of the difficulties encountered when de novo analysing peptide MS/MS spectra is the inability to distinguish the isobaric residues Ile and Leu. Amino acid analysis can yield the amino acid composition, but when both residues are present in a given sequence it is not possible to determine their location. With this constraint in mind and with the aim of exploring biosynthesis of cyclotides within the Fabaceae we proceeded with gene sequence determination.


Total RNA was extracted from 97 mg leaf tissue of C. ternatea using TRIzol® LS reagent (Invitrogen). RNA was DNAse-treated (Ambion), and complementary DNA was generated using random hexamers and Superscript III reverse transcriptase (Invitrogen). A degenerate primer (Ct-For1A, 5′-CCiACNTGYGGNGARACNTG-3′ SEQ ID NO:144) and an oligo-dT primer (5′-GCCCGGG T20-3′ SEQ ID NO:145) were initially used to amplify products from cDNA. Resulting PCR products were cloned into pGEM-T Easy Vector System (Promega) and independently amplified clones were sequenced. Rapid amplification of cDNA ends (RACE) was performed using the FirstChoice® RLM-RACE kit (Applied Biosystems) according to manufacturer's instructions. First strand cDNA synthesis was performed on leaf-derived RNA. Sequence-specific primers (Cter M-RACE-Rev1,5′-GGAAACACCAACCAAAATGGATGT-3′ SEQ ID NO:146; Cter M-RACE-Rev2,5′-TCACTGTTTTTGCATTAGCTGCAA-3′ SEQ ID NO:147) were used for first and second round PCR amplifications respectively. PCR products were cloned and sequenced. Primers (Cter M-SpecFor, 5′-TCCTTATTTTCATCAACTATGGCTTA-3′ SEQ ID NO:148; Cter M-SpecRev, 5′-TCATACATGATCACTTTTAGTTGG-3′ SEQ ID NO:149) were designed near the ends of the overlapping gene sequences, and used to amplify full-length transcript from leaf-derived cDNA. Total Total RNA was isolated from leaf, and used to generate cDNA. A degenerate primer was designed based upon the highly conserved PTCGETC motif (SEQ ID NO:13), and used in combination with oligo-dT to isolate partial transcripts from cDNA. Analysis of PCR products revealed a single 402 bp band. Following cloning, sequence analysis of independently amplified clones revealed that partial cyclotide sequence was embedded within a precursor protein with a strikingly different (atypical) gene architecture compared to all previously determined cyclotide gene sequences.


In all cyclotide genes elucidated to date, mature cyclotide domains are followed by a small C-terminal region (CTR) tail of 3-11 amino acids comprising a small amino acids (Gly or Ala), a strictly conserved Leu in the second position which has been postulated to play a critical role in docking to a specific binding pocket of asparaginyl endoprotease during peptide excision and ligation reactions (Koradi, R., et al., (1996) J. Mol. Graph. 14, 29-32). In the case of the C. ternatea-derived sequence, the sequence of the mature peptide is flanked on the C-terminus by a 74 amino acid tail, in which the Gly and the ‘critical’ Leu notably absent. BLAST searching of this C-terminal tail region revealed that it possessed high sequence homology to the C-terminal portion of albumin-1 proteins from a variety of Fabaceae species.


Following 5′ RACE amplification and alignment to previous sequences, a 514 bp consensus sequence was obtained. To confirm that this sequence represented a single mRNA expressed in C. ternatea leaf, primers were designed within the 5′ and 3′ untranslated regions, and a single 418 bp PCR product was amplified. Sequence analysis revealed this product was as predicted, and encoding a predicted protein of 127 amino acids (FIG. 10). The full protein sequence of the novel Fabaceae cyclotide precursor was aligned to the homologous albumin proteins identified in the initial BLAST search FIG. 18).


In the precursor protein encoding the prototypic cyclotide, kalata B1, the mature peptide sequence is flanked by 69 amino acids at the N-terminus and seven amino acids at the C-terminus, with each of the six cysteines in the precursor located within the mature kB1 sequence. In contrast, the Cter M precursor has a typical endoplasmic reticulum (ER) signal sequence of 24 amino acids, but the predicted signal peptide cleavage site immediately precedes the N-terminus of the mature cyclotide (FIGS. 11 and 19). In addition to the six cysteines present within the cyclotide domain, four cysteines are present within the albumin-like a-chain. Examples of nucleic acid encoding ER signal peptide and the corresponding peptides of Fabaceae include but are not limited to the following:












Fabaceae albumin-1 ER signal sequences:
















Clitoria ternatea (JF501210):



Nucleotide sequence


ATGGCTTACGTTAGACTTACTTCTCTTGCCGTTCTCTTCTTCCTTGCTGCTTCCGTTAT


GAAGACAGAAGGA (SEQ ID NO: 127)


Amino acid sequence


MAYVRLTSLAVLFFLAASVMKTEG (SEQ ID NO: 128)






Phaseolus vulgaris (HM240265.1):



Nucleotide sequence


ATGGGTTATGTTAGGGTTGCTCCTTTGGCTCTCTTCTTGCTTGCCACTTCCATGATGTTTTC


GATGAAGAAGATAGAAGCT (SEQ ID NO: 150)


Amino acid sequence


MGYVRVAPLALFLLATSMMFSMKKIEA (SEQ ID NO: 151)






Phaseolus vulgaris (GW898230.1):



Nucleotide sequence


ATGGGTTATGTTAGGGTTGCTCCTTTGGCTCTCTTCTTGCTTGCCACTTCCATAATGTTTCC


GATGAAGAAGACAGAGGCA (SEQ ID NO: 152)


Amino acid sequence


MGYVRVAPLALFLLATSIMFPMKKTEA (SEQ ID NO: 153)






Pisum sativum (AJ276882.1):



Nucleotide sequence


ATGGCTTCCGTTAAACTCGCTTCTTTGATCGTCTTGTTTGCCACATTAGGTATGTTCCTGAC


AAAAAACGTAGGGGCA (SEQ ID NO: 154)


Amino acid sequence


MASVKLASLIVLFATLGMFLTKNVGA (SEQ ID NO: 155)






Medicago truncatula (BT053249.1):



Nucleotide sequence


ATGACTTATGTTAAGCTCATTACTTTGGCTCTATTCCTGGTTACCACACTCTTAATGTTTCA


GACAAAGAATGTTGAAGCA (SEQ ID NO:156)


Amino acid sequence


MTYVKLITLALFLVTTLLMFQTKNVEA (SEQ ID NO: 157)






Medicago truncatula (BG584516.1):



Nucleotide sequence


ATGGCTTATGTTAAGCTTGCTTCTTTTGCTGTCTTCTTGCTTGCTGCATTCGTAATGTTTCC


GATGAAAAAAGTAGAAGGA (SEQ ID NO: 158)


Amino acid sequence


MAYVKLASFAVFLLAAFVMFPMKKVEG (SEQ ID NO:159)






Glycine max (D17396.1):



Nucleotide sequence


ATGGCTGTCTTCTTGCTTGCCACTTCCACCATAATGTTCCCAACGAAGATAGAAGCA


(SEQ ID NO: 160)


Amino acid sequence


MAVFLLATSTIMFPTKIEA (SEQ ID NO: 161)










Synthesis


Cter M was synthesized using solid phase peptide synthesis and folded using conditions earlier established for other cyclotides (Daly, N. L., et al., (1999) Biochemistry 38, 10606-10614) including the use of 50% isopropanol in buffer. The synthetic peptide was identical to the native peptide by MS and HPLC (FIG. 22) and was noted to have relatively low solubility in water. The addition of acetonitrile greatly improved the solubility and the spectra of Cter M were thus recorded in the presence of acetonitrile. The NMR spectra of the native and synthetic Cter M peptides were recorded and found to be identical. The three-dimensional structure of Cter M was calculated with 398 distance restraints and 11 angle restraints using a simulated annealing protocol in CNS. The resulting family of structures had good structural and energetic statistics, as shown in Table 4, below.









TABLE 4





NMR and refinement statistics for Cter M.


















NMR distance & dihedral constraints




Distance constraints



Total NOE
398



Intra-residue
84



Sequential (|i − j| = 1)
149



Medium-range (|i − j| < 4)
51



Long-range (|i − j > 5)
114



Total dihedral angle restraints
11



Structure Statistics



Violations (mean and s.d.)



Distance constraints (Å)
0.02 ± 0.002



Dihedral angle constraints (°)
0.6 ± 0.13



Max. dihedral angle violation (°)
3



Max. distance constraint violation (Å)
0.3



Deviations from idealized geometry



Bond lengths (Å)
0.003 ± 0.0002



Bond angles (°)
0.59 ± 0.03 



Impropers (°)
0.49 ± 0.03 



Average pairwise r.m.s.d.** (Å)



Backbone
0.3 ± 0.08



Heavy
0.67 ± 0.18 



Ramachandran statistics



% in most favoured region
71.4



% in additionally allowed region
27.3



% in generously allowed region
1.4







**Pairwise r.m.s.d. was calculated among 20 refined structures.






The structure of Cter M is extremely stable evidenced by its resistance to heat denaturation. Spectra were recorded before and after heating the peptide at 95° C. for 5 minutes and no changes were observed in the spectra as shown in FIG. 14a. An ensemble and ribbon representation of the three dimensional structure is shown in FIG. 14 along with a comparison with PA1b, the pea albumin whose precursor shares high sequence homology with the Cter gene. While variation in the loop regions of the two peptides is apparent, the eight-membered ring formed between loops 1 and 4 and the inter-connecting disulfide bonds (cysteine knot) shows striking similarities as evidenced by the superimposition in FIG. 14d.


Analysis of the structures of Cter M with PROMOTIF identified a type I β-turn between residues 9-12, a type II β-turn between residues 16-19 and a type VIal β-turn between residues 22-25. A β-hairpin is recognized between residues 20-27, as shown in FIG. 14c. This β-hairpin is invariably present in inhibitor cystine knot proteins (Pallaghy, P. K., et al., (1994) Protein Sci. 3, 1833-1839; Craik, D. J., et al., (2001) Toxicon 39, 43-60).


Example 4
Haemolytic Activity Assays

Serially diluted peptide solutions were incubated with washed human red blood cells. Following incubation, the supernatant was transferred before the UV absorbance was measured. The amount of haemolysis was calculated as the percentage of maximum lysis (1% Triton X-100 control) after adjusting for minimum lysis (PBS control). Synthetic melittin was used for comparison. The haemolytic dose necessary to lyse 50% of the RBCs (HD50) was calculated using the regression constant from the linear portion of the haemolytic titration curve (Graphpad Prism software). Results are presented in FIG. 15. The HD50 was determined to be 1.4 μM for melittin, 7.8 μM for kB1 and >100 μM for Cter M, showing Cter M to be mildly haemolytic.


Example 5
Larval Migration Assays

Larval Migration Assays.


The effect of kB1 and Cter M on the motility of L3-stage larvae of Haemonchus contortus was assessed using a previously described method (Colgrave, et al., 2010, Antimicrob. Agents Ch. 54:2160-2166). The larvae were incubated in PBS containing a range of peptide concentrations for 24 h in the dark in a 96-well plate format. The motility of the worms was assessed wherein sinusoidal motion was indicative of health and loss of motility or the degree of motility was indicative of poor health. Nematodes that had been incubated with cyclotides were compared to control (no-peptide) wells.


The results are shown in FIG. 16. Incubation with the cyclotides resulted in decreased motility of the nematodes as evidenced in the images. The control nematodes exhibited sinusoidal movement indicative of health (appeared extended in image on left, A), whereas the nematodes that had been treated with high concentrations of the peptides were coiled and showed very little movement or only a slight twitching (image on right, B).


Example 6
Insecticidal Assay


H. armigera larvae were obtained from the Queensland Department of Employment, Economic Development & Innovation. A feeding trial was conducted for 48 h with larvae maintained at 25° C. throughout the experiment. Larvae were given diets consisting of wheat germ, yeast, and soy flour. The test diets contained the peptide Cter M or kalata B1 (used as a positive control (Jennings, C., et al., (2001) Proc Nat'l Acad Sci USA 98, 10614-10619) and the control diet did not have any added peptide. Larvae were weighed at 0, 24 and 48 h. Following this, the larvae were photographed. Statistical differences were analyzed using a paired t-test or ANOVA test. Results are presented in FIG. 17.


Example 7
Expression of a Cyclotide-Encoding Gene in a Fabaceae Crop Plant

One aspect of this invention is the construction of transgenic plants to express either the entire cDNA encoding a cyclotide, such as Cter M (peptide sequence GLPTCGETCTLGTCYVPDCSCSWPICMKN (SEQ ID NO:25) and the PA1a albumin domain, or part thereof. Transgenic plant species may include many belonging to Fabaceae family, including soybeans (Glycine max), bean (Phaseolus vulgaris), pea (Pisum sativum), broadbean (Vicia faba), chickpea (Cicer arietinum), pigeonpea (Cajanus cajan), lupin (Lupinus spp), lentil (Lens culinaris) and cowpea (Vigna unguiculata). All of these species have been demonstrated to be amenable to genetic transformation and transgenesis (Eapen, (2008), Biotechnol Adv, 26, 162-168).


Expression cassettes are initially generated for transformation into soybean (Glycine max) using a modified pMON expression vector (Rogers, S. G., et al., (1987) Methods Enzymol. 153, 253-277). The coding sequence of the Cter M encoding gene with or without the PAIa albumin domain is fused with eGFP and cloned into the pMON530 binary vector under the control of the cauliflower mosaic virus 35S promoter or tissue specific promoters (see below). Transformation is performed as described above, and transformants are selected using 50 mg L21 kanamycin. The GFP fluorescence of transgenic plants is observed using a Zeiss confocal laser scanning microscope.


A range of promoters are utilised for assessment of CterM-GFP expression, including but not limited to CMV35S (Ealing, P. M., et al., (1994) Transgenic Res., 3, 344-354), polyubiquitin promoter (Gmubi) from soybean (Glycine max) (Hernandez-Garcia, C. M., et al., (2009) Plant Cell Rep., 28, 837-849), and monocot tissue-specific promoter from sorghum γ-kafirin seed storage protein gene (Defreitas, F. A., et al., (1994) Mol. Gen. Genet., 245, 177-186). Expression cassettes are then introduced in the soybean plant genome using Agrobacterium-mediated transformation (Eapen, S. (2008) Biotechnol Adv, 26, 162-168) (Krishnamurthy, K. V., et al., (2000) Plant Cell Rep., 19, 235-240); (Sharma, K. K., et al., (2006) In Vitro Cell. Dev. Pl., 42, 165-173). Assessment of recombinant polypeptide in various tissues and sub-cellular compartments is via fluorescence studies and proteomic analysis of tissues for presence of cyclotides. These techniques have been used successfully for many transgenic plants including cowpea, chickpea, peanut and other members of the Fabaceae family (Collinge, D. B., et al., (2010) Ann. Rev. Phytopathol. 48, 269-291).


The nucleotide sequences of the embodiments can be used to isolate corresponding sequences from other organisms, particularly other plants. In this manner, methods such as PCR, hybridization, and the like can be used to identify such sequences based on their sequence homology to the sequences set forth herein. Sequences isolated based on their sequence homology to the nucleic acid sequence in FIG. 10, or to nucleic acids encoding the polypeptides of SEQ ID NOs 1-12 and 14-26 as set forth herein or to fragments thereof are encompassed by the embodiments.


All publications and patents mentioned in the above specification are herein incorporated by reference herein in their entireties, for all purposes. Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention that are obvious to those skilled in the relevant fields are intended to be within the scope of the following claims.























TABLE 2







Loop 1
Loop 2
Loop 3
Loop 4
Loop 5
Loop 6
# 3D








name
class
length
length
length
length
length
length
structures
Loop 1
Loop 2
Loop 3
Loop 4
Loop 5
Loop 6





























TACA1_TACTR
Horseshoe_crab
6
11
0
4
11

0
QLQGFN
VVRSYGLPTIP

RGLT
RSYFPGSTY
















GR



TACA2_TACTR
Horseshoe_crab
6
11
0
4
11

1
QLQGFN
VVRSYGLPTIP

RGLT
RSYFPGSTY
















GR



TACB1_TACTR
Horseshoe_crab
6
7
0
4
11

1
LFRGAR
RVYSGRS

FGYY
RRDFPGSIF
















GT



TACB2_TACTR
Horseshoe_crab
6
7
0
4
11

1
LFRGAR
RVYSGRS

FGYY
RRDFPGSIF
















GT



A0ZSG4_FUGRU
agouti
6
6
0
5
10

0
LPLGGS
KSPGTE

DFCAF
QCRLFRTV
















CY



A0ZSG5_FUGRU
agouti
6
5
0
5
10

0
SQLTQS
VPQFG

HPQAL
HCRFFNAIC
















F



A0ZSG6_FUGRU
agouti
6
6
0
5
10

0
IPHQQS
LGYPLP

DPCDT
YCRFFNAIC
















Y



A0ZSG7_FUGRU
agouti
6
5
0
5
10

0
SRLMES
SPYTP

DPCAS
HCRLFNTIC
















N



A1YL76_9PRIM
agouti
6
6
0
5
10

0
VATRGS
KPPAPA

HPCAS
QCRFFRSAC
















S



A2ALT3_MOUSE
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

DPCAS
QCRFFGSAC
















T



A4GVF2_CANLU
agouti
6
6
0
5
10

0
VATRNS
KSPAPA

DPCAS
QCRFFRSAC
















T



A5JUA3_9GALL
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



A5JUA4_TRATE
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



A5JUA5_TRASA
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



A5JUA6_SYRRE
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



A5JUA7_ROLRO
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



A5JUA8_PERPE
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



A5JUA9_POLMA
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



A5JUB0_PAVMU
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



A5JUB1_9GALL
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



A5JUB2_POLEM
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



A5JUB3_PHACC
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



A5JUB4_PAVCR
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



A5JUB6_MELGA
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



A5JUB7_9GALL
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



A5JUB9_LOPNY
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



A5JUC0_LAGLG
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



A5JUC1_LOPIM
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



A5JUC2_LOPED
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



A5JUC3_LOPDI
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



A5JUC4_GALSO
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



A5JUC5_FRAPO
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



A5JUC6_9GALL
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



A5JUC7_CATWA
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



A5JUC8_CROMA
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



A5JUC9_COTJA
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



A5JUD0_COTCO
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



A5JUD1_CROCS
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



A5JUD4_ALECH
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



A5JUD5_AFRCO
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



A5JUD6_ARGAR
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



A5JUD7_ALERU
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



A7YMS3_PERMA
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

DPCAS
QCRFFRSVC
















S



A7YMS6_PERPL
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

DPCAS
QCRFFRSVC
















S



A7YMS8_PERPL
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

DPCAS
QCRFFRSVC
















S



A9EDH6_COTJA
agouti
6
6
0
5
10

0
VPNFKT
KPHLNS

NYCAL
KCRIFQTIC
















Q



A9EDJ0_COTJA
agouti
6
6
0
5
10

0
VPNFKT
KPHLNS

NYCAL
KCRIFQTIC
















Q



A9JPS5_CAPHI
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

DPCAF
QCRFFRSAC
















S



AGRP_BOVIN
agouti
6
6
0
5
10

0
VRLHES
LGHQVP

DPCAT
YCRFFNAFC
















Y



AGRP_HUMAN
agouti
6
6
0
5
10

2
VRLHES
LGQQVP

DPCAT
YCRFFNAFC
















Y



AGRP_MOUSE
agouti
6
6
0
5
10

0
VRLHES
LGQQVP

DPCAT
YCRFFNAFC
















Y



AGRP_PIG
agouti
6
6
0
5
10

0
VRLHES
LGHQVP

DPCAT
YCRFFNAFC
















Y



ASIP_BOVIN
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

DPCAF
QCRFFRSAC
















S



ASIP_CALGE
agouti
6
6
0
5
10

0
VSTRGS
KPPAPA

HPCAS
QCRFFRSAC
















S



ASIP_CALGO
agouti
6
6
0
5
10

0
VSTRGS
KPPAPA

HPCAS
QCRFFRSAC
















S



ASIP_CALJA
agouti
6
6
0
5
10

0
VSTRGS
KPPAPA

HPCAS
QCRFFRSAC
















S



ASIP_CANFA
agouti
6
6
0
5
10

0
VATRNS
KSPAPA

DPCAS
QCRFFRSAC
















T



ASIP_CEBPY
agouti
6
6
0
5
10

0
VSTRGS
KPPAPA

HPCAS
QCRFFRSAC
















S



ASIP_CERAE
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

DPCAS
QCRFFRSAC
















S



ASIP_CERMI
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

DPCAS
QCRFFRSAC
















S



ASIP_COLPO
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

DPCAS
QCRFFRSAC
















S



ASIP_ERYPA
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

DPCAS
QCRFFRSAC
















S



ASIP_FELCA
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

DPCAS
QCRFFRSAC
















S



ASIP_GORGO
agouti
6
6
0
5
10

0
VATRNS
KPPAPA

DPCAS
QCRFFRSAC
















S



ASIP_HORSE
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

DPCAS
QCRFFRSAC
















S



ASIP_HUMAN
agouti
6
6
0
5
10

2
VATRNS
KPPAPA

DPCAS
QCRFFRSAC
















S



ASIP_LEOCY
agouti
6
6
0
5
10

0
VSTRGS
KPPAPA

HPCAS
QCRFFRSAC
















S



ASIP_LEORO
agouti
6
6
0
5
10

0
VSTRGS
KPPAPA

HPCAS
QCRFFRSAC
















S



ASIP_MACAR
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

DPCAS
QCRFFRSAC
















S



ASIP_MACAS
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

DPCAS
QCRFFRSAC
















S



ASIP_MACCY
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

DPCAS
QCRFFRSAC
















S



ASIP_MACFA
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

DPCAS
QCRFFRSAC
















S



ASIP_MACFU
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

DPCAS
QCRFFRSAC
















S



ASIP_MACHE
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

DPCAF
QCRFFRSAC
















S



ASIP_MACMR
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

DPCAS
QCRFFRSAC
















S



ASIP_MACMU
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

DPCAS
QCRFFRSAC
















S



ASIP_MACNE
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

DPCAS
QCRFFRSAC
















S



ASIP_MACNG
agouti
6
6
0
5
10

0
VATRDS
KSPAPA

DPCAS
QCRFFRSAC
















S



ASIP_MACNR
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

DPCAS
QCRFFRSAC
















S



ASIP_MACRA
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

DPCAS
QCRFFRSAC
















S



ASIP_MACSI
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

DPCAS
QCRFFRSAC
















S



ASIP_MACSL
agouti
6
6
0
5
10

0
VTTRDS
KPPAPA

DPCAS
QCRFFRSAC
















S



ASIP_MACSY
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

DPCAS
QCRFFRSAC
















S



ASIP_MOUSE
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

DPCAS
QCRFFGSAC
















T



ASIP_PANPA
agouti
6
6
0
5
10

0
VATRNS
KPPAPA

DPCAS
QCRFFRSAC
















S



ASIP_PANTR
agouti
6
6
0
5
10

0
VATRNS
KPPAPA

DPCAS
QCRFFRSAC
















S



ASIP_PAPAN
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

DPCAS
QCRFFRSAC
















S



ASIP_PIG
agouti
6
6
0
5
10

0
VANRDS
KPPALA

DPCAF
QCRFFRSAC
















S



ASIP_PONPY
agouti
6
6
0
5
10

0
VATRNS
KPPAPA

DPCAS
QCRFFRSAC
















S



ASIP_RAT
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

NPCAS
QCRFFGSAC
















T



ASIP_SEMEN
agouti
6
6
0
5
10

0
VATRYS
KPPAPA

DPCAS
QCRFFRSAC
















S



ASIP_TRAAU
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

DPCAS
QCRFFRSAC
















S



ASIP_TRACR
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

DPCAS
QCRFFRSAC
















S



ASIP_TRAFR
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

DPCAS
QCRFFRSAC
















S



ASIP_TRAOB
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

DPCAS
QCRFFRSAC
















S



ASIP_VULVU
agouti
6
6
0
5
10

0
VATRNS
KSPAPA

DPCAS
QCRFFRSAC
















T



B0B577_RABIT
agouti
6
6
0
5
10

0
VATRDS
KPPAPV

DPCAS
QCRFFRSVC
















T



BOZDU0_COTJA
agouti
6
6
0
5
10

0
VPNFKT
KPHLNS

NYCAL
KCRIFQTIC
















Q



B0ZDU2_CHICK
agouti
6
6
0
5
10

0
VPNFKT
KPHLNS

NYCAL
KCRIFQTIC
















Q



B0ZDU3_CHICK
agouti
6
6
0
5
10

0
VPNFKT
KPHLNS

NYCAL
KCRIFQTIC
















Q



B0ZDU4_CHICK
agouti
6
6
0
5
10

0
VPNFKT
KPHLNS

NYCAL
KCRIFQTIC
















Q



Q3UU47_MOUSE
agouti
6
6
0
5
10

0
VRLHES
LGQQVP

DPCAT
YCRFFNAFC
















Y



Q4JNX9_CAPHI
agouti
6
6
0
5
10

0
VATRDS
KPPAPA

DPCAF
QCRFFRSAC
















S



Q4SEW0_TETNG
agouti
6
6
0
5
10

0
IPHQQS
LGYPLP

DPCDT
YCRFFNAIC
















Y



Q4SP72_TETNG
agouti
6
5
0
5
10

0
SRLKDS
SPYMP

DPCAS
HCRLFNTIC
















N



Q5CC33_CARAU
agouti
6
6
0
5
10

0
VPLWGS
KTPSAA

DQCAF
HCRLFKTV
















CY



Q5CC34_CARAU
agouti
6
6
0
5
10

0
VPLWGS
KTPSAA

DQCAF
HCRLFKTV
















CY



Q5CC35_CARAU
agouti
6
6
0
5
10

0
VPLWGS
KTPSAA

DQCAF
HCRLFKTV
















CY



Q5IRA5_CANFA
agouti
6
6
0
5
10

0
VATRNS
KSPAPA

DPCAS
QCRFFRSAC
















T



Q68GX9_CANLU
agouti
6
6
0
5
10

0
VATRNS
KSPAPA

DPCAS
QCRFFRSAC
















T



Q68GY0_CANLA
agouti
6
6
0
5
10

0
VATRNS
KSPAPA

DPCAS
QCRFFRSAC
















T



Q6J648_SHEEP
agouti
6
6
0
5
10

0
VRLHES
LGHQVP

DPCAT
YCRFFNAFC
















Y



Q70Q61_CARAU
agouti
6
6
0
5
10

0
IPHQQS
LGHHLP

NPCDT
YCRFFKAFC
















Y



Q70Q62_CARAU
agouti
6
6
0
5
10

0
IPHQQS
LGHHLP

NPCDT
YCRFFKAFC
















Y



Q90WY7_COTJA
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



Q9GLM5_PIG
agouti
6
6
0
5
10

0
VRLHES
LGHQVP

DPCAT
YCRFFNAFC
















Y



Q9PWG2_CHICK
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



Q9QXJ3_RAT
agouti
6
6
0
5
9

0
VRLHES
LGQQVP

DLCAT
YCRFFKTC
















Y



Q9W7R0_CHICK
agouti
6
6
0
5
10

0
VRLLES
LGHQIP

DPCAT
YCRFFNAFC
















Y



IAAI_AMAHP
alpha_amylase
6
6
0
4
7

3
IPKWNR
GPKMDGVP

EPYT
TSDYYGN



ADO1_AGRDO
bug
6
6
0
4
6

1
LPRGSK
LGENKQ

KGTT
MFYANR



IOB1_ISYOB
bug
6
6
0
4
6

0
LPRGSK
LGENKQ

EKTT
MFYANR



PTU1_PEITU
bug
6
6
0
5
6

1
IAPGAP
FGTDKP

NPRAW
SSYANK



A11GB
conoserver_frame-
6
8
0
3
3

0
QRANFV
DAFHHAAV

EGV
VLV




workVIVII















ABVIA
conoserver_frame-
6
5
0
3
6

0
SPPGSY
FGPAA

SNF
STLSDV




workVIVII















ABVIB
conoserver_frame-
6
5
0
3
6

0
TPPGGA
GGHAH

SQS
DILAST




workVIVII















ABVIC
conoserver_frame-
6
5
0
3
6

0
TPPGGA
GGHAH

SQS
NILAST




workVIVII















ABVID
conoserver_frame-
6
5
0
3
6

0
TPRHGV
FYSYF

SKA
NPSSKR




workVIVII















ABVIE
conoserver_frame-
6
5
0
3
4

0
TPPEVG
LFAYE

SKI
WRPR




workVIVII















ABVIF
conoserver_frame-
6
5
0
3
6

0
TPPGGY
YHPDP

SQV
NFPRKH




workVIVII















ABVIF mutant 1
conoserver_frame-
6
5
0
3
6

0
TPPGGY
YHPDP

SQY
NFPRKH




workVIVII















ABVIG
conoserver_frame-
6
5
0
3
6

0
TAPGGA
YAAYT

SNA
NLNTKK




workVIVII















ABVIG mutant 1
conoserver_frame-
6
5
0
3
6

0
TAPGGA
YADNT

SNA
NLNTKK




workVIVII















ABVIH
conoserver_frame-
6
5
0
3
6

0
TPAGDA
DATTK

IPF
NLATKK




workVIVII















ABVII
conoserver_frame-
6
5
0
3
6

0
TPAGDA
DATTE

ILF
NLATKK




workVIVII















ABVIJ
conoserver_frame-
6
5
0
3
6

0
TPAGDA
DATTE

ILF
NLATKE




workVIVII















ABVIK
conoserver_frame-
6
5
0
3
6

0
TPAGGA
DATTE

ILF
NLATKK




workVIVII















ABVIL
conoserver_frame-
6
5
0
3
6

0
TPGGEA
DATTN

FLT
NLATNK




workVIVII















ABVIM
conoserver_frame-
6
5
0
3
4

0
LGSGEL
VRDTS

SMS
TNNI




workVIVII















ABVIN
conoserver_frame-
6
5
0
3
4

0
LGSREQ
VRDTS

SMS
TNNI




workVIVII















ABVIO
conoserver_frame-
6
5
0
3
4

0
LGSREL
VRDTS

SMS
TNNI




workVIVII















AVIA
conoserver_frame-
6
6
0
3
3

0
SNAGAF
GIHPGL

SEI
IVW




workVIVII















Ai6.1
conoserver_frame-
6
6
0
3
4

0
KQSGEM
NLLDQN

EGY
IVLV




workVIVII















Ai6.2
conoserver_frame-
6
6
0
3
4

0
TQSGEL
DVIDPD

NNF
IIFF




workVIVII















Ai6.3
conoserver_frame-
6
5
0
3
3

0
YDGGTS
NTGNQ

SGW
IFL




workVIVII















Am2766
conoserver_frame-
6
6
0
3
3

1
KQAGES
DIFSQN

VGT
AFI




workVIVII















Ar6.1
conoserver_frame-
6
6
0
3
3

0
LEKGVL
DPSAGN

SGE
VLV




workVIVII















Ar6.10
conoserver_frame-
6
4
0
4
7

0
ADLGEE
YTRF

PGLR
KDLQVPT




workVIVII















Ar6.11
conoserver_frame-
6
4
0
4
8

0
GEQGEG
ATRP

AGLS
VGSRPGGL




workVIVII















Ar6.12
conoserver_frame-
6
4
0
4
6

0
GNLGES
SAHR

PGLM
MGEASI




workVIVII















Ar6.13
conoserver_frame-
6
6
0
3
8

0
SNFGSD
IPATHD

SGE
FGFEDMGL




workVIVII















Ar6.14
conoserver_frame-
6
5
0
3
6

0
TPVGGY
SRHHH

SNH
IKSIGR




workVIVII















Ar6.15
conoserver_frame-
6
5
0
3
6

0
TPVGGY
FDHHH

SNH
IKSIGR




workVIVII















Ar6.16
conoserver_frame-
6
5
0
3
6

0
TPVGGY
SRHYH

SNH
IKSIGR




workVIVII















Ar6.17
conoserver_frame-
6
5
0
3
6

0
TPVGGS
SRHYH

SLY
NKNIGQ




workVIVII















Ar6.18
conoserver_frame-
6
5
0
3
6

0
SPNGGS
SRHYH

SLW
NKDSGV




workVIVII















Ar6.19
conoserver_frame-
6
6
0
3
8

0
TVDSDF
DPDNHD

SGR
IDEGGSGV




workVIVII















Ar6.2
conoserver_frame-
6
8
0
3
3

0
VDGGTF
GFPKIGGP

SGW
IFV




workVIVII















Ar6.20
conoserver_frame-
3
6
0
8
3

0
EES
EEEEKT

GEXDGEPV
ARF




workVIVII















Ar6.21
conoserver_frame-
3
6
0
8
3

0
EEY
EDEEKT

GLEDGEPV
ATT




workVIVII















Ar6.22
conoserver_frame-
3
6
0
8
3

0
EEY
EEEEKT

GEEDGEPV
AEF




workVIVII















Ar6.24
conoserver_frame-
3
6
0
8
3

0
EEY
EDEEKT

GEEDGEPV
ARF




workVIVII















Ar6.25
conoserver_frame-
3
6
0
8
3

0
EES
EEEEKH

HENNGVYT
LRY




workVIVII















Ar6.26
conoserver_frame-
3
6
0
7
3

0
EEN
EEEEKH

NTNNGPS
APQ




workVIVII















Ar6.27
conoserver_frame-
3
6
0
7
3

0
EES
EDEEKH

NTNNGPS
APQ




workVIVII















Ar6.28
conoserver_frame-
3
6
0
8
3

0
EES
EEEEKT

GLENGQPF
SRI




workVIVII















Ar6.3
conoserver_frame-
6
9
0
3
3

0
RALGEY
GLPYVHNSR

SQL
GFI




workVIVII















Ar6.4
conoserver_frame-
6
6
0
2
4

0
LPPLSL
TMADDE

HD
ILFL




workVIVII















Ar6.5
conoserver_frame-
6
6
0
2
4

0
LPPLSL
TMDDDE

DD
ILFL




workVIVII















Ar6.6
conoserver_frame-
6
6
0
2
4

0
LPPLSL
TMDDDE

DD
XLFL




workVIVII















Ar6.7
conoserver_frame-
6
6
0
2
4

0
LPPLHW
NMVDDE

HF
VLLA




workVIVII















Ar6.8
conoserver_frame-
6
6
0
2
4

0
LPPLSL
NMADDD

ND
VLFL




workVIVII















Ar6.9
conoserver_frame-
6
4
0
4
7

0
ADLGEE
HTRF

PGLR
EDLQVPT




workVIVII















AsVIIA
conoserver_frame-
6
5
0
3
10

0
KQKGEG
SLDVE

SSS
KPGGPLFDF




workVIVII











D



At6.1
conoserver_frame-
6
5
0
3
5

0
TPPGTY
VGPST

SDV
SMSNV




workVIVII















At6.2
conoserver_frame-
6
5
0
3
6

0
TPPSGY
YHPYY

SRA
NLTRKR




workVIVII















At6.3
conoserver_frame-
6
5
0
3
6

0
THAYEA
DATTN

YMT
NLPTRK




workVIVII















At6.4
conoserver_frame-
6
5
0
3
6

0
TSPDGA
NTPPQ

SKY
ISISTT




workVIVII















At6.5
conoserver_frame-
6
5
0
3
6

0
THPGGA
AGHHH

SQS
NTAANS




workVIVII















At6.6
conoserver_frame-
6
5
0
3
6

0
TPPGGA
YYHSQ

GDF
QRYINS




workVIVII















At6.7
conoserver_frame-
6
5
0
3
6

0
TPPEGA
NHPSH

EDF
DRGRNR




workVIVII















At6.8
conoserver_frame-
6
5
0
3
6

0
TPPEGY
TYHRD

DLY
NKTTNV




workVIVII















Au6.1
conoserver_frame-
6
6
0
3
3

0
KAENEL
NIFIQN

DGT
LLI




workVIVII















Au6.2
conoserver_frame-
6
6
0
2
4

0
LEFGEL
NFFFPT

GY
VLLV




workVIVII















Au6.3
conoserver_frame-
6
8
0
3
3

0
EPPGNF
GMIKIGPP

SGW
FFA




workVIVII















BVIA
conoserver_frame-
6
6
0
3
3

0
SAPGAF
LIRPGL

SEF
FFA




workVIVII















BeB42
conoserver_frame-
6
5
0
3
6

0
NDPGGS
TRHYH

QLY
NKQESV




workVIVII















BeB54
conoserver_frame-
6
5
0
3
4

0
KGWSVY
SWDWE

SGE
TRYY




workVIVII















Bromosleeper
conoserver_frame-
3
6
0
7
3

0
EET
NVTFKT

GPPGDWQ
VEA



peptide
workVIVII















C6.1
conoserver_frame-
6
6
0
3
3

0
SNAGAF
GIHPGL

SEL
LGW




workVIVII















C6.2
conoserver_frame-
6
6
0
3
4

0
KGKGAS
RRTSYD

TGS
RSGR




workVIVII















C6.3
conoserver_frame-
6
6
0
3
4

0
KGKGAS
RRTSYG

TGS
RSGR




workVIVII















C6.4
conoserver_frame-
6
6
0
3
4

0
KSTGAS
RRTPYD

TGS
RSGR




workVIVII















C6.5
conoserver_frame-
6
6
0
3
4

0
QGRGAS
RKTMYN

SGS
RSGR




workVIVII















C6.6
conoserver_frame-
6
6
0
3
4

0
QGRGAS
RKTSYD

TGS
RSGR




workVIVII















C6.7
conoserver_frame-
6
6
0
3
4

0
KSTGAS
RRTSYD

TGS
DRGR




workVIVII















C6.8
conoserver_frame-
6
6
0
3
4

0
QGRGAS
RRTSYD

TGS
RSGR




workVIVII















CVIA
conoserver_frame-
6
6
0
3
4

0
KSTGAS
RRTSYD

TGS
RSGR




workVIVII















CVIB
conoserver_frame-
6
6
0
3
4

0
KGKGAS
RKTMYD

RGS
RSGR




workVIVII















CVIC
conoserver_frame-
6
6
0
3
5

0
KGKGQS
SKLMYD

TGS
SRRGK




workVIVII















CVID
conoserver_frame-
6
6
0
3
8

0
KSKGAK
SKLMYD

SGS
SGTVGR




workVIVII















CVIE
conoserver_frame-
6
6
0
3
3

0
SNAGAF
GIHPGL

SEL
LVW




workVIVII















Ca6.1
conoserver_frame-
6
6
0
3
3

0
VDPGEF
GPGFGD

TGF
LLV




workVIVII















CaFr179
conoserver_frame-
3
6
0
7
3

0
EED
EDEEKH

NTNNGPS
ARL




workVIVII















CaHr91
conoserver_frame-
6
6
0
4
8

0
REQSQG
TNTSPP

SGLR
SGQSQGGV




workVIVII















Cn6.1
conoserver_frame-
6
6
0
3
3

0
YNAGTF
GIRPGL

SEF
FLW




workVIVII















CnVIA
conoserver_frame-
6
6
0
3
4

0
YSTGTF
GINGGL

SNL
LFFV




workVIVII















CnVIIA
conoserver_frame-
6
6
0
3
6

0
KGKGAP
TRLMYD

HGS
SSSKGR




workVIVII















Co6.1
conoserver_frame-
6
5
0
3
6

0
TPPGSH
TGHSD

SDF
STMSDV




workVIVII















Co6.2
conoserver_frame-
6
5
0
3
6

0
TPRNGV
FYSYF

SRA
NPSTKR




workVIVII















Co6.3
conoserver_frame-
6
5
0
3
6

0
TSPGGA
YSAST

SKA
NLTTKR




workVIVII















Co6.4
conoserver_frame-
6
5
0
3
6

0
MHPEGG
RFSYE

SKI
YTPSFT




workVIVII















Co6.5
conoserver_frame-
6
5
0
3
6

0
TPAGKA
DATAT

VLF
NLVTNK




workVIVII















Co6.6
conoserver_frame-
6
5
0
3
6

0
TDPGGA
GNPGH

SKF
ITTSST




workVIVII















Co6.7
conoserver_frame-
6
5
0
3
5

0
RLPGDL
AGDAS

EHS
NIVHT




workVIVII















Conotoxin-1
conoserver_frame-
6
5
0
3
8

0
DEEGTG
SSDSE

SGR
TPEGLFEF




workVIVII















Conotoxin-10
conoserver_frame-
6
4
0
4
9

0
GGQGEG
YTQP

PGLR
RGGGTGGG




workVIVII











A



Conotoxin-12
conoserver_frame-
6
4
0
4
9

0
GGQGKG
YTQP

PGLR
RGGGTGGG




workVIVII











V



Conotoxin-15
conoserver_frame-
6
5
0
2
4

0
RPSGSP
GVTSI

GR
SRGK




workVIVII















Conotoxin-2
conoserver_frame-
6
4
0
4
9

0
GGQGEG
YTQP

PGLR
RGGGTGGG




workVIVII











V



Conotoxin-2/7
conoserver_frame-
6
9
0
3
3

0
IADDMP
GFGLFGGPL

SGW
LFV




workVIVII















Conotoxin-3
conoserver_frame-
6
5
0
2
6

0
ESYGKP
GIYND

NA
DPAKKT




workVIVII















Conotoxin-5
conoserver_frame-
6
7
0
3
3

0
REGGEF
GTLYEER

SGW
FFV




workVIVII















Conotoxin-6
conoserver_frame-
6
7
0
3
3

0
REGGEF
GTLYEER

SGW
FFV




workVIVII















Conotoxin-8
conoserver_frame-
6
4
0
4
9

0
GGQGEG
YTQP

PGLR
RGGGTGGG




workVIVII











S



Conotoxin-9
conoserver_frame-
6
6
0
3
3

0
SSGGTF
GIHPGL

SEF
FLW




workVIVII















Cv conotoxin
conoserver_frame-
6
8
0
3
3

0
IAVGQL
VFWNIGRP

SGL
VFA




workVIVII















Da6.1
conoserver_frame-
6
6
0
4
4

0
RKEHQL
DLIFQN

RGWY
LLRP




workVIVII















Da6.2
conoserver_frame-
6
6
0
4
4

0
SEEGQL
DPLSQN

RGWH
VLVS




workVIVII















Da6.3
conoserver_frame-
6
6
0
2
4

0
LGGGEV
DIFFPQ

GY
ILLF




workVIVII















Da6.4
conoserver_frame-
6
6
0
3
4

0
AQSSEL
DALDSD

SGV
MVFF




workVIVII















Da6.5
conoserver_frame-
6
5
0
3
3

0
YDGGTG
DSGNQ

SGW
IFV




workVIVII















Da6.6
conoserver_frame-
6
9
0
4
4

0
QEKWDY
PVPFLGSRY

DGFI
PSFF




workVIVII















Da6.7
conoserver_frame-
6
9
0
4
4

0
QGEWEF
IVPVLGFVY

PWLI
GPFV




workVIVII















De7a
conoserver_frame-
6
7
0
3
4

0
IPGGEN
DVFRPYR

SGY
ILLL




workVIVII















DeVIIA
conoserver_frame-
6
7
0
3
4

0
KPKNNL
AITEMAE

SGF
LIYR




workVIVII















Di6.1
conoserver_frame-
6
6
0
2
4

0
LGFGEA
LMLYSD

SY
VGAV




workVIVII















Di6.2
conoserver_frame-
6
6
0
3
4

0
YLLVHF
GINGGL

SNL
LFFV




workVIVII















Di6.3
conoserver_frame-
6
5
0
3
6

0
NEAQEH
TQNPD

SES
NKFVGR




workVIVII















E6.1
conoserver_frame-
6
6
0
3
4

0
KPKGRK
FPHQKD

NKT
TRSK




workVIVII















E6.2
conoserver_frame-
6
5
0
2
6

0
TPHGGS
GLVST

GR
SVPRNK




workVIVII















EVIA
conoserver_frame-
6
9
0
3
3

2
IKXYGF
SLPILKNGL

SGA
VGV




workVIVII















EVIB
conoserver_frame-
6
6
0
3
4

0
YPPGTF
GIKPGL

SEL
LPAV




workVIVII















Eb6.1
conoserver_frame-
6
5
0
3
6

0
THSGGA
NSHDQ

NAF
DTATRT




workVIVII















Eb6.10
conoserver_frame-
6
5
0
3
6

0
TRSGGA
NSHTQ

DDF
DTATRT




workVIVII















Eb6.11
conoserver_frame-
6
5
0
3
6

0
TRSGGA
NSHTQ

NAF
DTATRT




workVIVII















Eb6.12
conoserver_frame-
6
5
0
3
6

0
TRSGGA
NSHTQ

DDF
STATST




workVIVII















Eb6.13
conoserver_frame-
6
5
0
3
6

0
TQTNGA
YHRDT

SKS
NLTINR




workVIVII















Eb6.2
conoserver_frame-
6
5
0
3
6

0
AHSGGA
NSHDQ

NAF
DTATRT




workVIVII















Eb6.3
conoserver_frame-
6
5
0
3
6

0
THSGGA
NSHDQ

NAF
DTATRA




workVIVII















Eb6.4
conoserver_frame-
6
5
0
3
6

0
THSGGA
NSHDQ

NTF
DTATRT




workVIVII















Eb6.5
conoserver_frame-
6
5
0
3
6

0
TRSGGA
NSHDQ

NAF
DTATRT




workVIVII















Eb6.6
conoserver_frame-
6
5
0
3
6

0
THSGGA
NSHNQ

NAF
DTATRT




workVIVII















Eb6.8
conoserver_frame-
6
5
0
3
6

0
THSGGA
NSHTQ

DDF
STATST




workVIVII















Eb6.9
conoserver_frame-
6
5
0
3
6

0
TRSGGA
NSHTQ

DDF
STATST




workVIVII















Ep6.1
conoserver_frame-
6
6
0
2
4

0
LGFGEA
LMLYSD

SY
VALV




workVIVII















G6.1
conoserver_frame-
6
8
0
3
3

0
EPPGDF
GFFKIGPP

SGW
FLW




workVIVII















GVIA
conoserver_frame-
6
6
0
2
6

3
KSPGSS
SPTSYN

RS
NPYTKR




workVIVII















GVIIA
conoserver_frame-
6
6
0
2
6

0
KSPGTP
SRGMRD

TS
LLYSNK




workVIVII















GVIIB
conoserver_frame-
6
6
0
2
6

0
KSPGTP
SRGMRD

TS
LSYSNK




workVIVII















Ge6.1
conoserver_frame-
6
8
0
3
3

0
LDPGYF
GTPFLGAY

GGI
LIV




workVIVII















Gla(1)-TxVI
conoserver_frame-
6
5
0
3
3

0
KDGLTT
LAPSE

SED
EGS




workVIVII















Gla(2)-TxVI/A
conoserver_frame-
6
5
0
3
3

0
SDDWQY
ESPTD

SWD
DW




workVIVII















Gla(2)-TxVI/B
conoserver_frame-
6
5
0
3
3

0
SDDWQY
ESPTD

SWD
DW




workVIVII















Gla(3)-TxVI
conoserver_frame-
6
5
0
3
4

0
PDYTEP
SHAHE

SWN
YNGH




workVIVII















Gm6.1
conoserver_frame-
6
8
0
3
3

0
RLGAES
DVISQN

QGT
VFF




workVIVII















Gm6.2
conoserver_frame-
6
6
0
3
3

0
KQADES
NVFSLD

TGL
LGF




workVIVII















Gm6.3
conoserver_frame-
6
6
0
3
3

0
VPYEGP
NWLTQN

DEL
VFF




workVIVII















Gm6.4
conoserver_frame-
6
5
0
3
3

0
YDGGTG
DSGNQ

SGW
IFA




workVIVII















Gm6.5
conoserver_frame-
6
9
0
4
4

0
QALWDY
PVPLLSSGD

YGLI
GPFV




workVIVII















GmVIA
conoserver_frame-
6
6
0
4
3

0
RKEGQL
DPIFQN

RGWN
VLF




workVIVII















Im6.1
conoserver_frame-
4
5
0
5
8

0
DPYY
NDGKV

PEYPT
GDSTGKLI




workVIVII















J6.1
conoserver_frame-
6
5
0
3
6

0
TRPGGA
YYDSH

RHV
HEVFNT




workVIVII















J6.2
conoserver_frame-
6
5
0
3
6

0
TPPGGA
NIHPH

EEF
DMANNR




workVIVII















King-Kong 1
conoserver_frame-
6
6
0
3
4

0
IEQFDP
EMIRHT

VGV
FLMA




workVIVII















King-Kong 2
conoserver_frame-
6
6
0
3
4

0
APFLHP
TFFFPN

NSY
VQFI




workVIVII















LVVICa
conoserver_frame-
6
5
0
3
6

0
TPRNGF
RYHSD

SNF
HTWAIM




workVIVII















LeD51
conoserver_frame-
6
5
0
3
3

0
KDGLTT
LAPSE

SGN
EQN




workVIVII















LiC42
conoserver_frame-
6
4
0
4
8

0
GHSGAG
YTRP

PGLH
SGGHAGGL




workVIVII















LiC53
conoserver_frame-
6
5
0
3
4

0
TAPSGY
DYPEE

EVE
GRHY




workVIVII















LiCr173
conoserver_frame-
3
6
0
8
3

0
NEY
EERDRN

GKANGEPR
ARM




workVIVII















LiCr95
conoserver_frame-
6
6
0
3
8

0
DPPGDS
SRWYNH

SKL
TSRNSGPT




workVIVII















Lp6.1
conoserver_frame-
6
9
0
3
3

0
VELGEI
ATGFFLDEE

TGS
HVF




workVIVII















LI7b
conoserver_frame-
6
5
0
3
3

0
TDWLGS
SSPSE

YDN
ETY




workVIVII















LtVIA
conoserver_frame-
6
4
0
4
7

0
AYISEP
DILP

PGLK
NEDFVPI




workVIVII















LtVIB
conoserver_frame-
6
5
0
3
6

0
SSPDES
TYHYN

QLY
NKEENV




workVIVII















LtVIC
conoserver_frame-
6
5
0
2
6

0
KVAGSP
GLVSE

GT
NVLRNR




workVIVII















LtVID
conoserver_frame-
6
6
0
3
8

0
TDEGGD
DPGNHN

RGS
LVLQHKAV




workVIVII















LtVIE
conoserver_frame-
6
6
0
3
8

0
TDEGGD
DPGNHN

RGS
LVLQHKAV




workVIVII















LtVIIA
conoserver_frame-
6
5
0
3
4

0
LGWSNY
TSHSI

SGE
ILSY




workVIVII















Lv6.1
conoserver_frame-
6
6
0
3
4

0
PNTGEL
DWEQN

YTY
FIVV




workVIVII















LvVIA 1
conoserver_frame-
6
5
0
4
6

0
SPAGEV
TSKSP

TGFL
SHIGGM




workVIVII















LvVIA 2
conoserver_frame-
6
5
0
4
6

0
SPAGEV
TSKSP

TGFL
THIGGM




workVIVII















LvVIA 3
conoserver_frame-
6
5
0
4
6

0
SPGGEV
TSKSP

TGFL
SHIGGM




workVIVII















LvVIB 1
conoserver_frame-
6
5
0
4
6

0
SPGGEV
TRHSP

TGFL
NHIGGM




workVIVII















LvVIB 2
conoserver_frame-
6
5
0
4
6

0
SPGGEV
TRHSP

TGFL
NHIGGM




workVIVII















LvVICb
conoserver_frame-
6
5
0
3
6

0
TPRNGF
RYHSH

SNF
HTWAIM




workVIVII















LvVID
conoserver_frame-
6
5
0
3
6

0
TPRNGA
GYHSH

SNF
HTWANV




workVIVII















M1
conoserver_frame-
6
5
0
3
6

0
TPSGGA
YVAST

SNA
NLNSNK




workVIVII















M12
conoserver_frame-
6
5
0
3
6

0
TPRHGV
FYSYF

SKA
NPSSKR




workVIVII















M15
conoserver_frame-
6
5
0
3
6

0
TPPGGS
GGHAH

SKS
NIMAST




workVIVII















M19
conoserver_frame-
6
5
0
3
4

0
LGSGEQ
VRDTS

SMS
TNNI




workVIVII















M23
conoserver_frame-
6
5
0
3
6

0
SPPGSY
FGPAA

SNF
STMSDV




workVIVII















M25
conoserver_frame-
6
5
0
3
4

0
TPPEGG
LSSYE

SKI
WRPR




workVIVII















M26
conoserver_frame-
6
5
0
3
6

0
TPAGDA
DATTN

ILF
NLATKK




workVIVII















M6.1
conoserver_frame-
6
6
0
3
3

0
KQADEP
DVFSLE

TGI
LGF




workVIVII















M6.2
conoserver_frame-
6
6
0
3
4

0
YNAGTF
GIKPGL

SAI
LSFV




workVIVII















MVIA
conoserver_frame-
6
6
0
3
3

0
YNAGTF
GIRPGL

SEF
FLW




workVIVII















MVIB
conoserver_frame-
6
6
0
3
3

0
YNAGSF
GIHPGL

SEF
ILW




workVIVII















MVIC
conoserver_frame-
6
6
0
3
4

0
YPPGTF
GIKPGL

SAI
LSFV




workVIVII















MVID
conoserver_frame-
6
6
0
3
4

0
YNAGTF
GIKPGL

SAI
LSFV




workVIVII















MVIIA
conoserver_frame-
6
6
0
3
4

5
KGKGAK
SRLMYD

TGS
RSGK




workVIVII















MVIIB
conoserver_frame-
6
6
0
3
4

0
KGKGAS
HRTSYD

TGS
NRGK




workVIVII















MVIIC
conoserver_frame-
6
6
0
3
5

2
KGKGAP
RKTMYD

SGS
GRRGK




workVIVII















MVIID
conoserver_frame-
6
6
0
3
4

0
QGRGAS
RKTMYN

SGS
NRGR




workVIVII















MaI51
conoserver_frame-
6
5
0
3
3

0
EDVWMP
TSNWE

SLD
EMY




workVIVII















MaIr137
conoserver_frame-
6
8
0
3
3

0
EPPGDF
GFFKIGPP

SGW
FLW




workVIVII















MaIr193
conoserver_frame-
6
8
0
3
3

0
RPPGMV
GFPKPGPY

SGW
FAV




workVIVII















MaIr332
conoserver_frame-
6
6
0
3
4

0
LDGGEI
GILFPS

SGW
IVLV




workVIVII















MaIr34
conoserver_frame-
6
9
0
3
3

0
LEADYY
VLPFVGNGM

SGI
VFV




workVIVII















MaIr94
conoserver_frame-
6
8
0
3
10

0
LESGSL
FAGYGHSS

SGA
LDYGGLGV




workVIVII











GA



MgJ42
conoserver_frame-
6
5
0
3
6

0
NNRGGG
SQHPH

SGT
NKTFGV




workVIVII















MgJr112
conoserver_frame-
6
5
0
4
4

0
DPKWTI
NNDAE

FPYS
ENSN




workVIVII















MgJr93
conoserver_frame-
6
5
0
3
6

0
NNRGGG
SQHPH

SGT
NKIFGV




workVIVII















MgJr94
conoserver_frame-
6
5
0
3
7

0
KGKGAG
DYSHE

SRQ
TGRIFQT




workVIVII















MiEr92
conoserver_frame-
6
6
0
4
8

0
KHQNDS
AEEGEE

SDLR
MTSGAGAI




workVIVII















MiEr93
conoserver_frame-
6
5
0
3
6

0
NDRGGG
SQHPH

GGT
NKLIGV




workVIVII















MiEr95
conoserver_frame-
6
5
0
4
8

0
REKGQG
TNTAL

PGLE
EGQSQGGL




workVIVII















MiK41
conoserver_frame-
6
5
0
3
6

0
RSSGRY
RSPYD

RRY
RRITDA




workVIVII















MiK42
conoserver_frame-
6
6
0
2
9

0
DAPNAP
EKFDND

DA
MLREKQQPI




workVIVII















MI6.1
conoserver_frame-
6
5
0
3
6

0
TPPGSD
NGHSD

SNV
STMSYV




workVIVII















MI6.2
conoserver_frame-
6
5
0
3
6

0
TPRNGY
YYRYF

SRA
NLTIKR




workVIVII















MI6.3
conoserver_frame-
6
5
0
3
6

0
TPSGGA
YYDYF

SMT
NFNSKS




workVIVII















MI6.4
conoserver_frame-
6
6
0
2
8

0
ADGGDL
DPSSDN

SE
IDEGGSGV




workVIVII















Mr6.1
conoserver_frame-
6
6
0
3
4

0
LDAGEM
DLFNSK

SGW
IILF




workVIVII















Mr6.2
conoserver_frame-
6
6
0
3
4

0
PNTGEL
DVVEQN

YTY
FIVV




workVIVII















Mr6.3
conoserver_frame-
6
6
0
3
4

0
PNTGEL
DVVEQN

YTY
FIVV




workVIVII















MrVIA
conoserver_frame-
6
9
0
4
4

0
RKKWEY
IVPIIGFIY

PGLI
GPFV




workVIVII















MrVIB
conoserver_frame-
6
9
0
4
4

1
SKKWEY
IVPILGFVY

PGLI
GPFV




workVIVII















NgVIA
conoserver_frame-
6
6
0
3
4

0
FSPGTF
GIKPGL

SVR
FSLF




workVIVII















Om6.1
conoserver_frame-
6
6
0
4
4

0
VPHEGP
NWLTQN

SGYN
IIFF




workVIVII















Om6.2
conoserver_frame-
6
6
0
3
3

0
LAEHET
NIFTQN

EGV
IFI




workVIVII















Om6.3
conoserver_frame-
6
6
0
3
4

0
IPHFDP
DPIRHT

FGL
LLIA




workVIVII















Om6.4
conoserver_frame-
6
6
0
2
4

0
LGFGEA
LILYSD

GY
VGAI




workVIVII















Om6.5
conoserver_frame-
6
8
0
3
3

0
EPPGNF
GMIKIGPP

SGW
FFA




workVIVII















Om6.6
conoserver_frame-
6
9
0
4
4

0
QRRWDF
PGSLVGVIT

GGLI
FLFF




workVIVII















P2a
conoserver_frame-
6
6
0
3
4

0
KTPGRK
FPHQKD

GRA
IITI




workVIVII















P2b
conoserver_frame-
6
6
0
3
4

0
KKSGRK
FPHQKD

GRA
IITI




workVIVII















P2c
conoserver_frame-
6
6
0
3
4

0
KKTGRK
FPHQKD

GRA
IITI




workVIVII















P6.1
conoserver_frame-
6
6
0
3
4

0
YPPGTF
GIKPGL

SEL
LPAV




workVIVII















PVIA
conoserver_frame-
6
6
0
3
4

0
YAPGTF
GIKPGL

SEF
LPGV




workVIVII















PVIIA
conoserver_frame-
6
6
0
3
5

2
RIPNQK
FQHLDD

SRK
NRFNK




workVIVII















Pn6.1
conoserver_frame-
6
6
0
3
4

0
VKYLDP
DMLRHT

FGL
VLIA




workVIVII















Pn6.10
conoserver_frame-
3
6
0
8
3

0
EES
EDEEKH

HENNGVYT
LRY




workVIVII















Pn6.11
conoserver_frame-
3
6
0
8
3

0
EEY
EDEEKT

GLEDGEPV
ATT




workVIVII















Pn6.12
conoserver_frame-
6
5
0
3
3

0
FESWVA
ESPKR

SHV
LFV




workVIVII















Pn6.13
conoserver_frame-
6
6
0
3
3

0
IAESEP
NIITQN

DGK
LFF




workVIVII















Pn6.14
conoserver_frame-
6
9
0
4
4

0
QRRWDF
PGALVGVIT

GGLI
LGVM




workVIVII















Pn6.2
conoserver_frame-
6
6
0
2
4

0
LGFGEV
NFFFPN

SY
VALV




workVIVII















Pn6.3
conoserver_frame-
6
6
0
3
4

0
IPQFDP
DMVRHT

KGL
VLIA




workVIVII















Pn6.5
conoserver_frame-
6
6
0
3
3

0
KAESEA
NIITQN

DGK
LFF




workVIVII















Pn6.6
conoserver_frame-
6
5
0
3
3

0
FESWVA
ESPKR

SHV
LFV




workVIVII















Pn6.7
conoserver_frame-
6
9
0
3
3

0
LEVDYF
GIPFVNNGL

SGN
VFV




workVIVII















Pn6.8
conoserver_frame-
6
5
0
3
3

0
SDQWKS
SYPHE

RWS
NRY




workVIVII















Pn6.9
conoserver_frame-
6
5
0
3
3

0
DDWLAA
TTPSQ

TEV
DGF




workVIVII















PnVIA
conoserver_frame-
6
9
0
3
3

0
LEVDYF
GIPFANNGL

SGN
VFV




workVIVII















PnVIB
conoserver_frame-
6
8
0
3
3

0
EPPGNF
GMIKIGPP

SGW
FFA




workVIVII















PnVIIA
conoserver_frame-
6
5
0
3
4

0
TSWFGR
TVNSE

SNS
DQTY




workVIVII















Pu6.1
conoserver_frame-
6
6
0
3
3

0
VEDGDF
GPGYEE

SGF
LYV




workVIVII















PuIA
conoserver_frame-
6
9
0
3
3

0
RPVGQY
GIPYEHNWR

SQL
AII




workVIVII















PuIIA
conoserver_frame-
6
5
0
3
6

0
NTPTQY
TLHRH

SLY
HKTIHA




workVIVII















Qc6.1
conoserver_frame-
6
9
0
3
3

0
AAAGEA
VIPIIGNVF

KGY
LFV




workVIVII















Qc6.2
conoserver_frame-
6
8
0
3
3

0
QDSGVV
GFPKPEPH

SGW
LFV




workVIVII















QcVIA
conoserver_frame-
2
3
0
4
4

0
PW
GFT

LPNY
QGLT




workVIVII















RVIA
conoserver_frame-
6
6
0
2
6

0
KPPGSP
RVSSYN

SS
KSYNKK




workVIVII















RVIIA
conoserver_frame-
6
5
0
3
4

0
TYWLGP
EVDDT

SAS
ESKF




workVIVII















S6.1
conoserver_frame-
6
6
0
3
4

0
KAAGKS
SRIAYN

TGS
RSGK




workVIVII















S6.10
conoserver_frame-
6
5
0
3
6

0
TPDDGA
AEPVQ

STF
NPVTNM




workVIVII















S6.11
conoserver_frame-
6
5
0
3
4

0
RTWNAP
SFTSQ

FGK
AHHR




workVIVII















S6.2
conoserver_frame-
6
5
0
2
4

0
RSSGSP
GVTGI

GR
YRGK




workVIVII















S6.6
conoserver_frame-
6
6
0
3
5

0
KGKGAP
RKTMYD

SGS
GRRGK




workVIVII















S6.7
conoserver_frame-
6
6
0
2
8

0
MEAGSY
GSTTRI

GY
AYSASKNV




workVIVII















S6.8
conoserver_frame-
6
6
0
3
3

0
SNAGGF
GIHPGL

SEI
LVW




workVIVII















SO3
conoserver_frame-
6
6
0
3
4

1
KAAGKP
SRIAYN

TGS
RSGK




workVIVII















SO4
conoserver_frame-
6
7
0
2
6

0
IEAGNY
GPTVMKI

GF
SPYSKI




workVIVII















SO5
conoserver_frame-
6
6
0
2
6

0
MEAGSY
GSTTRI

GY
AYFGKK




workVIVII















SVIA
conoserver_frame-
6
5
0
2
4

0
RSSGSP
GVTSI

GR
YRGK




workVIVII















SVIA mutant 1
conoserver_frame-
6
5
0
2
4

0
RPSGSP
GVTSI

GR
YRGK




workVIVII















SVIB
conoserver_frame-
6
6
0
3
5

1
KLKGQS
RKTSYD

SGS
GRSGK




workVIVII















SVIE
conoserver_frame-
6
6
0
3
3

0
SSGGTF
GIHPGL

SEF
FLW




workVIVII















SmVIA
conoserver_frame-
6
6
0
3
3

0
SSGGTF
GIRPGL

SEF
FLW




workVIVII















SrVIIA
conoserver_frame-
6
7
0
3
9

0
LQFGST
FLGDDDI

SGE
FYSGGTFGI




workVIVII















St6.1
conoserver_frame-
6
6
0
3
4

0
YPPGTF
GIKPGL

SEL
LPAV




workVIVII















St6.2
conoserver_frame-
6
6
0
3
4

0
YSTGTF
GINGGL

SNL
LFFV




workVIVII















St6.3
conoserver_frame-
6
6
0
2
6

0
MKAGSY
VATTRI

GY
AYFGKI




workVIVII















TVIA
conoserver_frame-
6
6
0
2
6

0
LSPGSS
SPTSYN

RS
NPYSRK




workVIVII















TVIIA
conoserver_frame-
6
3
0
4
4

1
SGRDSR
PPV

MGLM
SRGK




workVIVII















TeA53
conoserver_frame-
6
5
0
3
4

0
MLWFGR
TKDSE

SNS
DRTY




workVIVII















Textile convulsant
conoserver_frame-
2
3
0
4
4

0
PY
VVY

PPAY
EASG



peptide
workVIVII















Ts6.1
conoserver_frame-
6
5
0
4
3

0
WPQYWF
GLQRG

PGTT
FFL




workVIVII















Ts6.2
conoserver_frame-
6
5
0
3
4

0
SGWSVY
TSDPE

SGE
SSYY




workVIVII















Ts6.3
conoserver_frame-
6
5
0
3
3

0
TPWLGG
TSPEE

PGN
ETY




workVIVII















Ts6.4
conoserver_frame-
3
6
0
8
3

0
NEY
DDRNKE

GRTNGHPR
ANV




workVIVII















Ts6.5
conoserver_frame-
3
6
0
8
3

0
NEH
EDRNKE

GRTNGHPR
ANV




workVIVII















Ts6.6
conoserver_frame-
3
6
0
8
3

0
NEY
DDRNKE

GRTNGHPR
ANV




workVIVII















Ts6.7
conoserver_frame-
3
6
0
8
3

0
DEY
EDLNKN

GLSNGEPV
ATA




workVIVII















Tx6.1
conoserver_frame-
6
6
0
4
4

0
RKEHQL
DLIFQN

RGWY
VVLS




workVIVII















Tx6.2
conoserver_frame-
6
6
0
3
4

0
APFLHL
TFFFPN

NGY
VQFI




workVIVII















Tx6.3
conoserver_frame-
6
5
0
3
4

0
YDSGTS
NTGNQ

SGW
IFVS




workVIVII















Tx6.4
conoserver_frame-
6
8
0
3
3

0
EPPGNF
GMIKIGPP

SGW
FFA




workVIVII















TxIA/TxVIA
conoserver_frame-
6
6
0
3
4

2
KQSGEM
NLLDQN

DGY
IVLV




workVIVII















TxIB/TxVIB
conoserver_frame-
6
6
0
3
4

0
KQSGEM
NVLDQN

DGY
IVFV




workVIVII















TxMEKL-011
conoserver_frame-
6
5
0
3
3

0
KDGLTT
LAPSE

SGN
EQN




workVIVII















TxMEKL-
conoserver_frame-
6
5
0
3
5

0
TSWLAT
TDASQ

TGV
YKRAY



022/TxMEKL-021
workVIVII















TxMEKL-
conoserver_frame-
6
5
0
3
4

0
MAWFGL
SKDSE

SNS
DVTR



0511/TxMEKL-
workVIVII















0512
















TxMEKL-053
conoserver_frame-
6
5
0
3
4

0
GIWFSR
TKDSE

SNS
DQTY



precursor
workVIVII















TxMEKL-P2
conoserver_frame-
6
5
0
4
6

0
RGYDAP
SSGAP

DWWT
SARTNR




workVIVII















TxMKLT1-0111
conoserver_frame-
6
6
0
3
4

0
KQSGEM
NLLDQN

DGY
IVFV




workVIVII















TxMKLT1-0141
conoserver_frame-
6
6
0
2
4

0
LDAGEI
DFFFPT

GY
ILLF




workVIVII















TxMKLT1-015
conoserver_frame-
6
6
0
3
4

0
IEQFDP
DMIRHT

VGV
FLMA




workVIVII















TxMKLT1-0211
conoserver_frame-
6
5
0
3
3

0
YDGGTS
DSGIQ

SGW
IFV




workVIVII















TxMKLT1-031
conoserver_frame-
6
9
0
4
4

0
QEKWDF
PAPFFGSRY

FGLF
TLFF




workVIVII















TxO1
conoserver_frame-
6
6
0
2
4

0
LDAGEV
DIFFPT

GY
ILLF




workVIVII















TxO2
conoserver_frame-
6
5
0
3
3

0
YDSGTS
NTGNQ

SGW
IFV




workVIVII















TxO3
conoserver_frame-
6
5
0
3
3

0
YDGGTS
DSGIQ

SGW
IFV




workVIVII















TxO4
conoserver_frame-
6
8
0
3
3

0
EPPGNF
GMIKIGPP

SGW
FFA




workVIVII















TxO5
conoserver_frame-
6
6
0
3
4

0
VPYEGP
NWLTQN

DAT
VVFW




workVIVII















TxO6
conoserver_frame-
6
9
0
4
4

0
QEKWDY
PVPFLGSRY

DGLF
TLFF




workVIVII















TxVII
conoserver_frame-
6
6
0
3
3

1
KQADEP
DVFSLD

TGI
LGV




workVIVII















TxVIIA
conoserver_frame-
6
5
0
3
4

0
GGYSTY
EVDSE

SDN
VRSY




workVIVII















Vc6.3
conoserver_frame-
6
8
0
2
4

0
YGFGEA
LVLYTD

GY
VLAV




workVIVII















Vc6.4
conoserver_frame-
6
8
0
3
3

0
EPPGNF
GMIKVGPP

SGW
FFA




workVIVII















Vc6.6
conoserver_frame-
6
5
0
3
3

0
YDGGTG
DSGNQ

SGW
IFV




workVIVII















VcVIA
conoserver_frame-
6
6
0
2
4

0
LSGGEV
DFLFPK

NY
ILLF




workVIVII















VcVIB
conoserver_frame-
6
6
0
4
3

0
HEEGQL
DPFLQN

LGWN
VFV




workVIVII















VcVIC
conoserver_frame-
6
6
0
3
4

0
IPFLHP
TFFFPD

NSI
AQFI




workVIVII















VeG52
conoserver_frame-
6
5
0
3
4

0
RLWSNG
RKHKE

SNH
KGIY




workVIVII















ViKr35
conoserver_frame-
6
5
0
4
8

0
RRRGQG
TQSTP

DGLR
DGQRQGG




workVIVII











M



ViKr92
conoserver_frame-
6
8
0
3
3

0
LDPGYF
GTPFLGAY

GGI
LIV




workVIVII















Vn6.1
conoserver_frame-
6
5
0
3
4

0
SGWSVY
TQHSE

SGE
TGNY




workVIVII















Vn6.10
conoserver_frame-
6
8
0
3
3

0
RPGGMI
GFPKPGPY

SGW
FVV




workVIVII















Vn6.11
conoserver_frame-
6
8
0
3
3

0
EAGGRF
GFPKIGEP

SGW
FFV




workVIVII















Vn6.12
conoserver_frame-
6
10
0
3
3

0
IEDKKY
GILPFANSGV

SYL
IFV




workVIVII















Vn6.13
conoserver_frame-
6
6
0
3
3

0
RQPGEF
FPVVAK

GGT
LVI




workVIVII















Vn6.14
conoserver_frame-
6
5
0
3
4

0
LASGET
WRDTS

SFS
TNNV




workVIVII















Vn6.15
conoserver_frame-
6
5
0
3
4

0
LGSGET
WLDSS

SFS
TNNV




workVIVII















Vn6.16
conoserver_frame-
6
4
0
4
8

0
SGSGYG
KNTP

AGLT
RGPRQGPl




workVIVII















Vn6.17
conoserver_frame-
6
4
0
4
8

0
SGSGYG
KNTP

DGLT
RGPHQGPI




workVIVII















Vn6.18
conoserver_frame-
4
4
0
4
8

0
STAG
KNVP

EGLV
TGPSQGPV




workVIVII















Vn6.19
conoserver_frame-
3
7
0
8
3

0
EEY
EDRDKKT

GLENGEPF
ATL




workVIVII















Vn6.2
conoserver_frame-
6
5
0
3
4

0
SGWSVM
TQHSD

SGE
TGSY




workVIVII















Vn6.20
conoserver_frame-
3
6
0
8
3

0
KEY
EDRDKT

GLENGQPD
ANL




workVIVII















Vn6.21
conoserver_frame-
3
6
0
8
3

0
YEY
KEQNKT

GISNGRPI
VGG




workVIVII















Vn6.22
conoserver_frame-
3
6
0
8
3

0
EEY
KEQNKT

GLTNGRPR
VGV




workVIVII















Vn6.3
conoserver_frame-
6
5
0
3
4

0
RGWSNG
TTNSD

SNN
DGTF




workVIVII















Vn6.4
conoserver_frame-
6
5
0
3
3

0
TGWLDG
TSPAE

TAV
DAT




workVIVII















Vn6.5
conoserver_frame-
6
5
0
3
6

0
RTWYAP
NFPSQ

SEV
SSKTGR




workVIVII















Vn6.6
conoserver_frame-
6
7
0
4
3

0
VGLSSY
GPWNNPP

SWYT
DYY




workVIVII















Vn6.7
conoserver_frame-
6
7
0
4
3

0
VGWSSY
GPWNNPP

SWYT
DYY




workVIVII















Vn6.8
conoserver_frame-
6
8
0
3
3

0
VAGGHF
GFPKIGGP

SGW
FFV




workVIVII















Vn6.9
conoserver_frame-
6
8
0
3
3

0
AAGGQF
GFPKIGGP

SGW
LGV




workVIVII















VxVIA
conoserver_frame-
6
5
0
3
6

0
NNRGGG
SQHPH

SGT
NKTFGV




workVIVII















VxVIB
conoserver_frame-
6
6
0
3
8

0
TDDSQF
DPNDHD

SGE
IDEGGRGV




workVIVII















conotoxin-GS
conoserver_frame-
6
3
0
4
7

1
SGRGSR
PPQ

MGLR
GRGNPQK




workVIVII















ArXIA
conoserver_frame-
6
5
0
3
5

0
SRRGHR
IRDSQ

GGM
CQGNR




workXI















Au11.6
conoserver_frame-
6
5
0
3
5

0
SWPGQE
EHDSD

GSF
CVGRR




workXI















BeTX
conoserver_frame-
6
5
0
3
4

0
RAEGTY
ENDSQ

LNE
CWGG




workXI















Bt11.1
conoserver_frame-
6
5
0
3
5

0
LSLGQR
ERHSN

GYL
CFYDK




workXI















Bt11.4
conoserver_frame-
6
5
0
3
5

0
LSLGQR
GRHSN

GYL
CFYDK




workXI















Cp1.1
conoserver_frame-
6
5
0
3
4

0
FPPGVY
TRHLP

RGR
CSGW




workXI















Em11.10
conoserver_frame-
6
5
0
3
3

0
FPPGIY
TPYLP

WGI
CGT




workXI















Ep11.1
conoserver_frame-
6
5
0
3
5

0
SGIGQG
GQDSN

GDM
CYGQI




workXI















Ep11.12
conoserver_frame-
6
5
0
3
4

0
LSEGSP
SMSGS

HKS
CRST




workXI















Fi11.11
conoserver_frame-
6
5
0
3
4

0
HHEGLP
TSGDG

GME
CGGV




workXI















Fi11.1a
conoserver_frame-
6
5
0
1
5

0
GKDGRA
DYHAD

N
CLGGI




workXI















Fi11.6
conoserver_frame-
6
5
0
1
5

0
KKDRKP
SYHAD

N
CLSGI




workXI















Fi11.8
conoserver_frame-
6
5
0
1
5

0
KADEEP
EYHAD

N
CLSGI




workXI















Im11.1
conoserver_frame-
6
5
0
3
4

0
LRDGQS
GYDSD

RYS
CWGY




workXI















Im11.2
conoserver_frame-
6
5
0
3
4

0
RLEGSS
RRSYQ

HKS
CIRE




workXI















Im11.3
conoserver_frame-
6
5
0
3
4

0
TSEGYS
SSDSN

KNV
CWNV




workXI















L11.5
conoserver_frame-
6
5
0
3
5

0
SGSGEG
DYHSE

GER
CIESM




workXI















M11.1a
conoserver_frame-
6
5
0
1
5

0
GKDGRQ
RNHAD

N
CPIGT




workXI















M11.2
conoserver_frame-
6
5
0
3
5

0
SNKGQQ
GDDSD

WHL
CVNNK




workXI















M11.5
conoserver_frame-
6
5
0
1
5

0
GKDGRK
GYHAD

N
CLSGI




workXI















Mi11.1
conoserver_frame-
6
5
0
3
4

0
FPPGTF
SRYLP

SGR
CSGW




workXI















R11.1
conoserver_frame-
6
5
0
1
5

0
GKDGRK
GYHAD

N
CLSGI




workXI















R11.10
conoserver_frame-
6
5
0
1
5

0
GKDGRK
GYHAD

N
CLSGI




workXI















R11.11
conoserver_frame-
6
5
0
1
5

0
GKDGRA
DYHAD

N
CLGGI




workXI















R11.12
conoserver_frame-
6
5
0
1
5

0
GKDRRK
GYHAD

N
CLSGI




workXI















R11.13
conoserver_frame-
6
5
0
1
5

0
GKDGRK
GYHAD

N
CLSGI




workXI















R11.15
conoserver_frame-
6
5
0
1
5

0
GKDGRK
GYHAD

N
CLSGI




workXI















R11.16
conoserver_frame-
6
5
0
1
5

0
GKDGRK
GYHTH

N
CLSGI




workXI















R11.17
conoserver_frame-
6
5
0
1
5

0
KANGKP
SYHAD

N
CLSGI




workXI















R11.18
conoserver_frame-
6
5
0
1
5

0
GKDGRQ
RNHAD

N
CPFGT




workXI















R11.2
conoserver_frame-
6
5
0
1
5

0
GKDGRQ
RNHAD

N
CPIGT




workXI















R11.3
conoserver_frame-
6
5
0
3
5

0
WVGRVH
TYHKD

PSV
CFKGR




workXI















R11.5
conoserver_frame-
6
5
0
1
5

0
GKDGRQ
RNHAD

N
CPIGT




workXI















R11.7
conoserver_frame-
6
5
0
1
5

0
KADEKP
EYHSD

N
CLSGI




workXI















RXIA
conoserver_frame-
6
5
0
1
5

1
KADEKP
EYHAD

N
CLSGl




workXI















RXIB
conoserver_frame-
6
5
0
1
5

0
KANGKP
SYHAD

N
CLSGI




workXI















RXIC
conoserver_frame-
6
5
0
1
5

0
KADEKP
KYHAD

N
CLGGI




workXI















RXID
conoserver_frame-
6
5
0
1
5

0
KKDRKP
SYHAD

N
CLSGI




workXI















RXIE
conoserver_frame-
6
5
0
3
5

0
KTNKMS
SLHEE

RFR
CFHGK




workXI















RgXIA
conoserver_frame-
6
5
0
5
8

0
QAYGES
SAWR

DPNAV
CQYPEDAV




workXI















S11.2a
conoserver_frame-
6
5
0
1
5

0
KKDRKP
SYQAD

N
CPIGT




workXI















S11.3
conoserver_frame-
6
5
0
3
4

0
VPPSRY
TRHRP

RGT
CSGL




workXI















SrXIA
conoserver_frame-
6
5
0
3
4

0
RTEGMS
EENQQ

WRS
CRGE




workXI















Sx11.2
conoserver_frame-
6
5
0
3
4

0
RAEGTY
ENDSQ

LNE
CWGG




workXI















TxXI
conoserver_frame-
6
5
0
3
4

0
IPEGSS
SSSGS

HKS
CRWT




workXI















ViTx
conoserver_frame-
6
5
0
3
3

0
FPPGIY
TPYLP

WGI
CGT




workXI















Vx11.1
conoserver_frame-
6
5
0
3
3

0
FPPGIY
TPYLP

WGI
CDT




workXI















Vx11.2
conoserver_frame-
6
5
0
3
3

0
FPPGIY
TPYLP

WGI
CDT




workXI















AVR9_CLAFU
fungi1
3
5
3
2
6

0
NSS
TRAFD
LGQ
GR
DFHKLQ



U499_ASPCL
fungi1
3
5
3
2
6

0
GQL
FNNKD
GGP
PK
NTKEGV



U499_ASPTN
fungi1
3
5
3
2
4

0
GQV
TGKND
SGE
NK
VNFV



U499_NEOFI
fungi1
3
5
3
2
6

0
GQV
LNKTG
GGK
PK
DMRSLT



A6RPC6_BOTFB
fungi2
6
6
0
4
12

0
IAKGEV
HQTGET

DGFK
ALAHGGKA
















DVGF



A6SKI6_BOTFB
fungi2
6
6
0
4
4

0
LPQGES
MMQHDK

HGLM
NSGE



A7EBW4_SCLS1
fungi2
6
6
0
4
12

0
IKNGEV
HLTGES

DGFK
ALAHGGKA
















NVGY



B0CWT3_LACBS
fungi2
6
7
0
4
9

0
LGRDHD
DPDGREL

RGLI
APFGPFGGS



B0DJS7_LACBS
fungi2
6
5
0
3
10

0
VTKGKI
SKDSD

KKV
FPVPFGNGG
















V



B0DQK7_LACBS
fungi2
6
5
0
3
12

0
FIALTP
AADKD

SGL
KISLSAVGL
















GLR



B0DQL1_LACBS
fungi2
6
5
0
3
16

0
LMDGSY
MSNSD

SEL
VVFESSPLS
















RTVFVDW



B0DQL3_LACBS
fungi2
6
5
0
3
11

0
YVRGDY
QTDSD

GRI
YPFAPEMV
















YGF



B0DU64_LACBS
fungi2
6
5
0
3
11

0
FGLGSP
SFNSN

SGY
LIIPPTIVLG
















F



B0DVV7_LACBS
fungi2
6
5
0
3
11

0
FALGTL
SFDSN

SGH
NSIPLIFVLG
















F



U499_CHAGB
fungi2
6
5
0
4
8

0
HSILTS
RVDTD

AGLK
GIFDEDAL



U499_NEUCR
fungi2
6
5
0
4
8

0
RAILTT
RVTSD

SGMK
VSADGESV



A0MK33
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
QGE
PFPLADHLNSTNH
VPTDLSPVSLLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNTN
EYERVILKNYQDM













YHAFY

IPKAC
VVEG




A0MK34
grow_factors
28
3
31
31
1

0
RRHPLYVDFSDV
NGE
PFPLSDHLNSTNH
VPTELSPISLLYLDE
G












GWNEWIVAPPG

AIVQTLVNSVNSN
YEKVVLKNYQDM













YHAFY

IPRAC
VVEG




A0MK35
grow_factors
28
3
31
31
1

0
RRHALYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSN
ETDRVVLKNYQEM













YQAYY

IPKAC
VVEG




A0MK36
grow_factors
28
3
31
31
1

0
KRHVLYVDFSDV
HGE
PFPLPDHLNATNH
VPTELSPISLLYLDE
G












GWNEWIVAPPG

AVVQTLVNSVNS
FEKVTLKNYQDM













YDAFY

NIPKAC
VVDG




A0MK37
grow_factors
28
3
31
31
1

0
RRHTLYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNN
EYDKVVLKNYQE













YQAYY

NIPKAC
MVVEG




A0SLB5
grow_factors
28
3
32
31
1

0
RRHPLYVDFSDV
HGE
PFPLAEHLNTTNH
VPTELSAISMLYLD
G












HWNDWIVAPAG

AIVQTLVNSVNPA
EYEKVVLKNYQD













YQAYY

LVPKAC
MVVEG




A0SLB6
grow_factors
28
3
32
31
1

0
QRHRLFVSFRDV
DGE
PFPLGERLNGTNH
APTKLSGISMLYFD
G












GWEDWIIAPMG

AIIQTLVNSIDSRA
NNENVVLRQYED













YQAYY

VPKVC
MVVEA




A1KXV9
grow_factors
28
3
31
31
1

0
KRHALYVDFSDV
HGE
PFPLADHLNSTNH
VPTDLSPISLLYLD
G












GWNEWIVAPPG

AIVQTLVNSVNSN
EYEKVILKNYQDM













YHAFY

IPRAC
VVEG




A1XP54
grow_factors
30
3
6
33
1

0
QVREILVDIFQEY
AGC
NDESLE
VSTESYNITMQIMK
E












PEEVEYIFKPSCV


IKPHISQHIMDMSF













PLMR


QQHSH




A2A2V4
grow_factors
30
3
6
33
1

1
HPIETLVDIFQEY
GGC
NDEGLE
VPTEESNITMQIMR
E












PDEIEYIFKPSCV


IKPHQGQHIGEMSF













PLMR


LQHNK




A2AII0
grow_factors
28
3
32
31
1

0
SRKPLHVNFKEL
EGV
DFPLRSHLEPTNH
VPTKLTPISILYIDA
G












GWDDWIIAPLEY

AIIQTLMNSMDPG
GNNVVYKQYEDM













EAYH

STPPSC
VVES




A2ARK2
grow_factors
28
3
32
31
1

0
SRKALHVNFKD
EGL
EFPLRSHLEPTNH
VPTRLSPISILFIDSA
G












MGWDDWIIAPLE

AVIQTLMNSMDP
NNVVYKQYEDMV













YEAFH

ESTPPTC
VES




A2AUJ3
grow_factors
28
3
32
31
1

0
KKHELYVSFRDL
EGE
AFPLNSYMNATN
APTQLNAISVLYFD
G












GWQDWIIAPEGY

HAIVQTLVHFINP
DSSNVILKKYRNM













AAYY

DTVPKPC
VVRA




A4UY01
grow_factors
28
3
31
31
1

0
RRHALYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNN
EHDKVVLKNYQE













YQAYY

NIPKAC
MVVEG




A4VCG6
grow_factors
30
3
6
33
1

0
RPREMLVEIQQE
AGC
NDEMME
TPTVTYNITLEIKRL
Q












YPDDTEHIFIPSC


KPLRHQGDIFMSFA













WLTR


EHSE




A5GFN1
grow_factors
28
3
32
31
1

0
KKHELYVSFRDL
EGE
AFPLNSYMNATN
APTQLNAISVLYFD
G












GWQDWIIAPEGY

HAIVQTLVHFINP
DSSNVILKKYRNM













AAYY

ETVPKPC
VVRA




A5GFN2
grow_factors
28
3
32
31
1

0
KKHELYVSFRDL
EGE
AFPLNSYMNATN
APTQLNAISVLYFD
G












GWQDWIIAPEGY

HAIVQTLVHFINP
DSSNVILKKYRNM













AAYY

ETVPKPC
VVRA




A5HMF8
grow_factors
28
3
31
31
1

0
RRHALYVDFSDV
HGD
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSS
EYDKVVLKNYQE













YQAFY

IPKAC
MVVEG




A5HMF9
grow_factors
28
3
31
31
1

0
RRHALYVDFSDV
HGD
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSS
EYDKVVLKNYQE













YQAFY

IPKAC
MVVEG




A5JL80
grow_factors
30
3
6
33
1

0
QPRELLVDILQE
AGC
NDEMLQ
TPTETYNITMEIKRI
E












YPEEVEHIFIPSC


KPQRQQNDIFMSFT













WLKR


EHSA




A5PJI9
grow_factors
28
3
31
31
1

0
KRHPLYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSK
ENEKVVLKNYQD













YHAFY

IPKAC
MVVEG




A6N998
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
HGD
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSS
EYDKVVLKNYQE













YQAFY

IPKAC
MVVEG




A7L634
grow_factors
28
3
31
31
1

0
KRHPLYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSK
ENEKVVLKNYQD













YHAFY

IPKAC
MVVEG




A7LCK8
grow_factors
28
3
32
31
1

0
KKHELYVSFRDL
EGE
AFPLNSYMNATN
APTQLNAISVLYFD
G












GWQDWIIAPEGY

HAIVQTLVHFIDP
DSSNVILKKYRNM













AAYY

DTVPKPC
VVRA




A7LJT9
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
HGD
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSS
EYDKVVLKNYQE













YQAFY

IPKAC
MVVEG




A7RQJ0
grow_factors
28
3
32
31
1

0
QRQALHVSFRKL
SGE
SFPLNANMNATN
APTELSPISVLYFD
G












RWQDWVIAPEG

HAIVQTLVHLMN
QDNNVVLKKYNK













YSAFY

PKTVPKPC
MVVKA




A7SAY4
grow_factors
28
3
31
31
1

0
QRHPLYVDFTDV
TGV
PYPIAKHLNATNH
IPTTLNPISILSLNEF
G












GWNDWIVAPPG

AIVQTIMNTVDSN
DKVVLKNYKDMVI













YHAFY

VPNAC
EG




A7SZ10
grow_factors
28
3
32
32
1

0
RRKRMYVDFRL
EGE
KYPIDNYLRPTNH
TPNELSPISILYTED
G












LGWSDWIIAPQG

ATVQTIVNSLDPSI
GSNNVVYKNYKD













YDAYL

APKAC
MVVER




A8E7N9
grow_factors
28
3
32
31
1

0
SKKPLHVNFREL
EGM
DFPLRSHLEPTNH
VPSKLSPISILYIDA
G












GWDDWVIAPLD

AIIQTLMNSMNPS
GNNVVYKQYEDM













YEAYH

NMPPSC
VVES




A8K571
grow_factors
28
3
32
31
1

0
KKHELYVSFRDL
EGE
AFPLNSYMNATN
APTQLNAISVLYFD
G












GWQDWIIAPEGY

HAIVQTLVHFINP
DSSNVILKKYRNM













AAYY

ETVPKPC
VVRA




A8K694
grow_factors
28
3
32
31
1

0
KKHELYVSFRDL
DGE
SFPLNAHMNATN
APTKLNAISVLYFD
G












GWQDWIIAPEGY

HAIVQTLVHLMFP
DSSNVILKKYRNM













AAFY

DHVPKPC
VVRS




A8S3P5
grow_factors
28
3
32
31
1

0
KKHELYVSFRDL
EGE
AFPLNSYMNATN
APTQLNAISVLYFD
G












GWQDWIIAPEGY

HAIVQTLVHFINP
DSSNVILKKYRNM













AAYY

ETVPKPC
VVRA




A8VTF8
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
HGD
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSS
EYDKVALKNYQE













YQAFY

IPKAC
MVVEG




A9ULK0
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
HGD
PFPLADHLNSTNH
VPTDLSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSS
EYDKVVLKNYQE













YQAFY

IPKAC
MVVEG




B0BMQ3
grow_factors
30
3
6
33
1

0
QVREILVDIFQEY
AGC
NDESLE
VPTESYNITMQIMK
E












PDEVEYIFKPSCV


IKPHISQHIMDMSF













PLMR


QQHSQ




B0CM38
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
HGD
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNOWIVAPPG

AIVQTLVNSVNSS
EYDKVVLKNYQE













YQAFY

IPKAC
MVVEG




B0CM78
grow_factors
28
3
32
31
1

0
SRKALHVNFKD
EGL
EFPLRSHLEPTNH
VPTRLSPISILFIDSA
G












MGWDDWIIAPLE

AVIQTLMNSMDP
NNVVYKQYEDMV













YEAFH

ESTPPTC
VES




B0FN90
grow_factors
30
3
6
33
1

0
RPIETLVDIFQEY
GGC
NDESLE
VPTEEFNITMQIMR
E












PDEIEFIFKPSCVP


IKPHQNQHIGEMSF













LMR


LQHNK




B0KWL9
grow_factors
28
3
32
31
1

1
SRKALHVNFKD
EGL
EFPLRSHLEPTNH
VPTRLSPISILFIDSA
G












MGWDDWIIAPLE

AVIQTLMNSMDP
NNVVYKQYEDMV













YEAFH

ESTPPTC
VES




B0VXV3
grow_factors
30
3
6
34
1

0
QTREMLVSILDE
GGC
TDESLM
TATGKRSVGREIM
E












HPDEVAHLFRPS


RVDPRKETSKIQV













CVTVLR


MQFTEHTK




B0VXV4
grow_factors
30
3
6
34
1

0
QTREMLVSILDE
GGC
TDESLM
TATGKRSVGREIM
E












HPDEVAHLFRPS


RVDPRKETSKIEV













CVTVLR


MQFTEHTE




B0WCI2
grow_factors
28
3
32
31
1

0
QRRPLYVDFSDV
QGD
QFPIADHLNTTNH
VPTQLSSISMLYLN
G












GWSDWIVAPPG

AIVQTLVNSISPSY
EQNKVVLKNYQD













YEAFY

APKAC
MTVVG




B1AKZ9
grow_factors
28
3
32
31
1

0
KKHELYVSFRDL
EGE
AFPLNSYMNATN
APTQLNAISVLYFD
G












GWQDWIIAPEGY

HAIVQTLVHFINP
DSSNVILKKYRNM













AAYY

ETVPKPC
VVRA




B1MTM2
grow_factors
28
3
32
31
1

0
SRKALHVNFKD
EGL
EFPLRSHLEPTNH
VPTRLSPISILFIDSA
G












MGWDDWIIAPLE

AVIQTLMNSMDP
NNVVYKQYEDMV













YEAFH

ESTPPTC
VES




B1P8C3
grow_factors
28
3
31
31
1

0
RRHPLYVDFSDV
HGD
PFPLADHMNSTN
VPTELSAISMLYLD
G












GWNDWIVAPPG

HAIVQTLVNSVN
ENEKVVLKNYQD













YHAFY

ANIPKAC
MVVEG




B2C4J5
grow_factors
30
3
6
33
1

0
RPIETLVDIFQEY
AGC
NDESLE
VPTEEFNITMQIMR
E












PDEIEYIFKPSCV


IKPHQGQHIGEMSF













PLMR


LQHNK




B2C4J6
grow_factors
30
3
6
33
1

0
RPIETLVDIFQEY
AGC
NDESLE
VPTEEFNITMQIMR
E












PDEIEYIFKPSCV


IKPHQGQHIGEMSF













PLMR


LQHNK




B2KI82
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
HGD
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSS
EYDKVVLKNYQE













YQAFY

IPKAC
MVVEG




B2KIC7
grow_factors
28
3
32
31
1

0
SRKALHVNFKD
EGL
EFPLRSHLEPTNH
VPTRLSPISILFIDSA
G












MGWDDWIIAPLE

AVIQTLMNSMDP
NNVVYKQYEDMV













YEAFH

ESTPPTC
VES




B2KL65
grow_factors
28
3
32
31
1

0
RKHELYVSFQDL
DGE
SFPLNAHMNATN
APTKLNAISVLYFD
G












GWQDWIIAPKGY

HAIVQTLVHLMN
DNSNVILKKYRNM













AANY

PEYVPKPC
VVRA




B2KL66
grow_factors
28
3
32
31
1

0
RKHELYVSFQDL
DGE
SFPLNAHMNATN
APTKLNAISVLYFD
G












GWQDWIIAPKGY

HAIVQTLVHLMN
DNSNVILKKYRNM













AANY

PEYVPKPC
VVRA




B2RRV6
grow_factors
28
3
32
31
1

0
KKHELYVSFQDL
DGE
SFPLNAHMNATN
APTKLNAISVLYFD
G












GWQDWIIAPKGY

HAIVQTLVHLMN
DNSNVILKKYRNM













AANY

PEYVPKPC
VVRA




B2ZPJ8
grow_factors
28
3
32
31
1

0
KKHELYVSFRDL
EGE
AFPLNSYMNATN
APTQLNAISVLYFD
G












GWQDWIIAPEGY

HAIVQTLVHFINP
DSSNVILKKYRNM













AAYY

ETVPKPC
VVRA




B3DI86
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
QGE
PFPLADHLNSTNH
VPTDLSPVSLLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSN
EYERVILKNYQDM













YHAFY

IPRAC
VVEG




B3DJ43
grow_factors
28
3
32
31
1

0
SKKPLHVNFREL
EGM
DFPLRSHLEPTNH
VPSKLSPISILYIDA
G












GWDDWVIAPLD

AIIQTLMNSMNPS
GNNVVYKQYEDM













YEAYH

NMPPSC
VVES




B3FNR0
grow_factors
28
3
32
31
1

0
RRHELYVDFSDV
RGE
PFPLAEHLNTTNH
VPTELSAISMLYLD
G












HWNDWIVAPAG

AIVQTLVNSVNPA
EYEKVVLKNYQD













YQAYY

LVPKAC
MVVEG




B3NA13
grow_factors
28
3
32
31
1

0
RRHSLYVDFSDV
HGK
PFPLADHFNSTNH
VPTQLDSVAMLYL
G












GWDDWIVAPLG

AVVQTLVNNMNP
NDQSTVVLKNYQE













YDAYY

GKVPKAC
MTVVG




B3RF16
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
HGD
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSS
EYDKVVLKNYQE













YQAFY

IPKAC
MVVEG




B3RF47
grow_factors
28
3
32
31
1

0
SRKALHVNFKD
EGL
EFPLRSHLEPTNH
VPTRLSPISILFIDSA
G












MGWDDWIIAPLE

AVIQTLMNSMDP
NNVVYKQYEDMV













YEAFH

ESTPPTC
VES




B3Y026
grow_factors
28
3
32
31
1

0
RRKELNVDFKAV
DGS
HWPYDDHMNVT
VPTELSSLSLLYTD
G












GWNDWIFAPPG

NHAIVQDLVNSID
EHGTVVLKVYQD













YNAYY

PRAAPKPC
MVVEG




B4DUF7
grow_factors
28
3
32
31
1

0
RKHELYVSFQDL
DGE
SFPLNAHMNATN
APTKLNAISVLYFD
G












GWQDWIIAPKGY

HAIVQTLVHLMN
DNSNVILKKYRNM













AANY

PEYVPKPC
VVRA




B4JAU3
grow_factors
28
3
32
31
1

0
RRHSLYVDFQDV
HGK
PFPLADHLNSTNH
VPTQLEGISMLYLN
G












GWSDWIVAPPG

AVVQTLVNNLNP
DQRTVVLKNYPD













YDAFY

GKVPKAC
MTVVG




B4KGU4
grow_factors
28
3
32
31
1

0
RRHSLYVDFQDV
HGK
PFPLADHLNSTNH
VPTQLEGISMLYLN
G












GWSDWIVAPPG

AVVQTLVNNINP
DQRTVVLKNYQD













YDAYY

GKVPKAC
MTVVG




B4LUE0
grow_factors
28
3
32
31
1

0
RRHSLYVDFQDV
HGK
QFPLADHLNSTNH
VPTQLEGISMLYLN
G












GWSDWIVAPPG

AVVQTLVNNLNP
DQRTVVLKNYQD













YDAYY

GKVPKAC
MTVVG




B4MU02
grow_factors
28
3
32
31
1

0
RRHSLYVDFADV
HGK
PFPLADHLNSTNH
VPTQLEGISMLYLN
G












GWSDWIVAPPG

AVVQTLVNNIDP
DQSTVVLKNYQD













YDAF

GKVPKAC
MTVVG




B4NWQ1
grow_factors
28
3
32
31
1

0
RRHSLYVDFSDV
HGK
PFPLADHFNSTNH
VPTQLDSVAMLYL
G












GWDDWIVAPLG

AVVQTLVNNMNP
NDQSTVVLKNYQE













YDAYY

GKVPKAC
MTVVG




B4Q848
grow_factors
28
3
32
31
1

0
RRHSLYVDFSDV
HGK
PFPLADHFNSTNH
VPTQLDSVAMLYL
G












GWDDWIVAPLG

AVVQTLVNNMNP
NDQSTWLKNYQE













YDAYY

GKVPKAC
MTVVG




B4YYD6
grow_factors
30
3
6
33
1

0
RPIETLVDIFQEY
GGC
NDEGLE
VPTEEFNITMQIMR
E












PDEIEYIFKPSCV


IKPHQGQHIGEMSF













PLMR


LQHNK




B5BNX6
grow_factors
28
3
32
31
1

0
SKKPLHVNFKD
EGL
EFPLRSHLEPTNH
VPTRLSPISILYTDS
G












MGWDDWIIAPLE

AVIQTLMNSMDP
ANNVVYKQYEDM













YEAYH

ETTPPTC
VVES




B5BU86
grow_factors
30
3
6
33
1

1
HPIETLVDIFQEY
GGC
NDEGLE
VPTEESNITMQIMR
E












PDEIEYIFKPSCV


IKPHQGQHIGEMSF













PLMR


LQHNK




B5DEK7
grow_factors
30
3
6
33
1

0
RPIETLVDIFQYP
AGC
NDEALE
VPTSESNVTMQIM
E












DEIEYIFKPSCVP


RIKPHQSQHIGEMS













LMR


FLQHSR




B5FW32
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
HGD
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSS
EYDKVVLKNYQE













YQAF

IPKAC
MVVEG




B5FW51
grow_factors
28
3
32
31
1

0
SRKALHVNFKD
EGL
EFPLRSHLEPTNH
VPTRLSPISILFIDSA
G












MGWDDWIIAPLE

AVIQTLMNSMDP
NNVVYKQYEDMV













YEAFH

ESTPPTC
VES




B5X135
grow_factors
28
3
31
31
1

0
RRHALYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNTN
EHDKVVLKNYQE













YQAYY

IPKAC
MVVEG




B6DXF1
grow_factors
30
3
6
33
1

0
RALERLVDIVSV
TGC
GDENLH
VPVETVNVTMQLL
E












YPSEVEHMFSPS


KIRSGDRPSYVELT













CVSLLR


FSQHVR




B6LU94
grow_factors
28
3
32
31
1

0
KRRKLYIRFKDV
SGE
PFPLNEHLNGTNH
APTKWSSISMLYFD
G












GWDDWIIAPQGY

AVIQTLVNSLTPD
NNGDVVLRQYED













MAYH

SVPPAC
MVVDG




B6LUA7
grow_factors
28
3
32
31
1

0
KRRKLYIRFKDV
SGE
PFPLNEHLNGTNH
APTKWSSISMLYFD
G












GWDDWIIAPQGY

AVIQTLVNSLTPD
NNGDVVLRQYED













MAYH

SVPPAC
MVVDG




B6NUD9
grow_factors
28
3
32
31
1

0
MRRSLQVSFHDL
AGA
SFPLRSHLEPTNH
VPTKLSPISILYIDG
G












GWDDWIIAPTNY

AIVQTLVNSMNPR
KDTVVYKKYDDM













DAHY

AVEKVC
VADQ




B6NVZ7
grow_factors
28
3
32
31
1

0
RRHSLYVDFSDV
HGE
PFPLADHLNSTNH
VPTDLSPISMLYLN
G












GWNDWIVAPPG

AIVQTLVNSVNPL
ENDQVVLKNYQD













YQAYY

AVPKAC
MVVEG




B8NVZ8
grow_factors
28
3
32
31
1

0
RRLHLYVDFREV
AGD
PFPLNEKLNGTNH
APTALSAISMLYFD
G












GWQDWIIAPPGY

AIIQTLVNTVAPA
ESGNVVLRQYEDM













HAYY

AVPRPC
VVEG




B6P6C2
grow_factors
28
3
32
31
1

0
MRRSLQVSFHDL
AGA
SFPLRSHLEPTNH
VPTKLSPISILYIDG
G












GWDDWIIAPTNY

AIVQTLVNSMNPR
KDTVVYKKYDDM













DAHY

AVEKVC
VADQ




B6SCR4
grow_factors
28
3
32
31
1

0
QRHPLYVDFSEV
KGE
PFHIADHLNTTNH
VPTTLDAISMLFM
G












GWNDWIVAPPG

AIVQTLMNSVNP
NEHSKVVLKNYQD













YQGFY

NNVPPAC
MVVDG




B6SCR5
grow_factors
28
3
32
31
1

0
QRHPLYVDFSEV
KGE
PFPIADHLNTTNH
VPTTLDAISMLFM
G












GWNDWIVAPPG

AIVQTLMNSVNP
NEHSKVVLKNYQD













YQGFY

NNVPPAC
MVVDG




B6VAE7
grow_factors
30
3
6
36
1

0
KPRETWRIGDEY
GGC
NDESLE
VPTEEANITMEVM
D












PSLISQRFSPPCVS


SVSVSSTGSNPGM













VMR


QNMQFVEHLR




B6VAE8
grow_factors
30
3
6
36
1

0
KPRETWRISDEY
GGC
NDESLE
VPTEEANITMEVM
D












PSLTSQRFSPPCV


SVSVSSTDSNPGM













SVMR


QNMQFVEHLH




B6ZHB6
grow_factors
28
3
32
31
1

0
HRRRLHVNFKE
DGA
DFPIRSHLEPTNH
VPTRLSPISILYIDS
G












MGWDDWIIAPLE

AIIQTLINSMDPES
ANNWYKQYEDMV













YDAYH

TPPTC
VES




B7NZI8
grow_factors
28
3
32
31
1

0
SRKALHVNFKD
EGL
EFPLRSHLEPTNH
VPTRLSPISILFIDSA
G












MGWDDWIIAPLE

AVIQTLMNSMDP
NNWYKQYEDMVV













YEAFH

ESTPPTC
ES




B7QHX4
grow_factors
28
3
32
31
1

0
RRFPLRVEFSHV
HGV
PFPLPDHLNGTNH
VPTELSPVSLLYVD
G












GWNDWIVAPPS

AIVQTLVNSMRA
AFERVVLKNYQD













YEAYY

GGVPNAC
MVVEG




B7ZPR8
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
HGD
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSS
EYDKWLKNYQEM













YQAFY

IPKAC
VVEG




B7ZQN5
grow_factors
28
3
32
31
1

0
SKKPLHVNFKEL
EGV
DFPLRSHLEPTNH
VPTKLTPISILYIDA
G












GWDDWIIAPLEY

AIIQTLMNSMNPG
GNNWYKQYEDMV













EAHH

STPPSC
VES




B7ZRN7
grow_factors
28
3
31
31
1

0
RRHPLYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNTN
ENEKWLKNYQDM













YHAFY

IPKAC
VVEG




B8A4Z0
grow_factors
30
3
6
33
1

0
RPREMLVEIQQE
AGC
NDEMME
TPTVTYNITLEIKRL
Q












YPDDTEHIFIPSC


KPLRHQGDIFMSFA













WLTR


EHSE




B8XA45
grow_factors
28
3
31
31
1

0
RRHALYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNTN
EHDKVVLKNYQE













YQAYY

IPKAC
MVVEG




B8XRZ3
grow_factors
28
3
31
31
1

0
RRHALYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNTN
EHDKVVLKNYQE













YQAYY

IPKAC
MVVEG




B8YPW1
grow_factors
28
3
32
31
1

0
QRRPLFVDFAEV
QGD
PFPLADHLNGTNH
IPTQLSPISMLYMD
G












GWSDWIVAPPG

AIVQTLVNSVDPA
EHNQVALKNYQD













YEAYF

LVPKAC
MMVMG




B9EJ18
grow_factors
28
3
32
31
1

0
KKHELYVSFRDL
DGE
SFPLNAHMNATN
APTKLNAISVLYFD
G












GWQDWIIAPEGY

HAIVQTLVHLMFP
DSSNVILKKYRNM













AAFY

DHVPKPC
VVRS




C0HBA5
grow_factors
28
3
31
31
1

0
RRHALYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSPISLLYLDE
G












GWNEWIVAPPG

AIVQTLVNSVNSN
YEKVILKNYQDMV













YHAFY

IPRAC
VEG




C0K3N1
grow_factors
30
3
6
34
1

0
QPRETLVSILEEY
GGC
SDESLT
TSVGERTVELQVM
E












PDKISKIFRPSCV


QVTPKTLSSKIKVM













AVLR


KFREHTA




C0K3N2
grow_factors
30
3
6
34
1

0
QTRETLVSILEEH
GGC
SDESLT
TSTGKRSVGREIMR
E












PHEISHLFKPSCV


VDPHKETSKIEVM













TVLR


QFTEHTD




C0K3N3
grow_factors
30
3
6
34
1

0
QTREMLVSILDE
GGC
TDESLT
TATGKRSVGREIM
E












YPSEVAHLFRPS


RVDPRKGTSKIEV













CVTVLR


MQFTEHTE




C0K3N4
grow_factors
30
3
6
33
1

0
RPIETMVDIFQEY
GGC
NDEALE
VPTELYNVTMEIM
E












PDEVEYILKPPCV


KLKPYQSQHIHPM













ALMR


SFQQHSK




C0K3N5
grow_factors
30
3
6
33
1

0
RPVETMVDIFQE
GGC
NDEALE
VPTEVYNVTMEIM
E












YPDEVEYIFKPSC


KLKPFQSQHIHPMS













VALMR


FQQHSK




C0K3N6
grow_factors
30
3
6
34
1

0
QTRETLVPILKEY
GGC
SDESLT
TATGKHSVGREIM
E












PDEVSHLFKPSC


RVDPHKGTSKMEV













VPVLR


MQFKEHTA




C0K3N7
grow_factors
30
3
6
33
1

0
RPIETMVDIFQDY
GGC
NDEALE
VPTELYNVTMEIM
E












PDEVEYILKPPCV


KLKPYQSQHIHPM













ALMR


SFQQHSK




C0K3N8
grow_factors
30
3
6
34
1

0
QARETLVPILQE
SGC
TDESLK
TPVGKHTVDLQIM
E












YPDEISDIFRPSC


RVNPRTQSSKMEV













VAVLR


MKFTEHTA




C0K3N9
grow_factors
30
3
6
34
1

0
QTRETLVSILQEH
SGC
TDESMK
TPVGKHTADIQIMR
E












PDEISDIFRPSCV


MNPRTHSSKMEV













AVLR


MKFMEHTA




C1BJY6
grow_factors
30
3
6
33
1

0
RPRELLVEILQEY
AGC
NDEMLQ
TPTSTHNITMEIKRI
E












PEEVEHIYIPSCW


KPQRQQNDIFMSFT













LTR


EHNS




C3KGR8
grow_factors
30
3
6
33
1

0
RPMEQLVDVEQE
SGC
MDENLE
QASLKSNITLEVMR
E












YPGEVEYIYMPA


IHPMISMHHVLLTF













CVPLWR


VEHQR




C3PT60
grow_factors
28
3
32
31
1

0
SRKALHVNFKD
EGL
EFPLRSHLEPTNH
VPTRLSPISILFIDSA
G












MGWDDWIIAPLE

AVIQTLMNSMDP
NNVVYKQYEDMV













YEAFH

ESTPPTC
VES




C3SB59
grow_factors
28
3
31
31
1

0
KRHPLYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSK
ENEKVVLKNYQD













YHAFY

IPKAC
MVVEG




O13107
grow_factors
28
3
31
31
1

0
RRHALYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNTN
ETDRVVLKNYQEM













YQAYY

IPKWC
VVEG




O13108
grow_factors
28
3
31
31
1

0
RRHALYVDFSDV
HGE
PFPLPDHLNSTNH
IPTELSPISLLYLDE
G












GWNEWIVAPPG

AIVQTLVNSVNSN
YEKVILKNYQDMV













YHAFY

IPKAC
VEG




O13109
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
QGE
PFPLADHLNSTTN
VPTDLSPVSLLYLD
G












GWNDWIVAPPG

AMVQTLVNSVNS
EYERVILKNYQDM













YHAFY

NIPRAC
VVEG




O19006
grow_factors
28
3
31
31
1

0
KRHPLYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSK
ENEKVVLKNYQD













YHAFY

IPKAC
MVVEG




O42303
grow_factors
28
3
32
31
1

0
NRKQLHVNFKE
DGV
DFPIRSHLEPTNH
VPTRLSPISILYIDS
G












MGWDDWIIAPLE

AIIQTLMNSMDPR
ANNVVYKQYEDM













YEAFH

STPPTC
VVES




O42571
grow_factors
30
3
6
33
1

0
QVREILVDIFQEY
AGC
NDESLE
VPTECYNITMQIM
E












PDEVEYIFKPSCV


KIKPHISQHIMDMS













PLMR


FQQHSQ




O42572
grow_factors
30
3
6
33
1

0
QVREILVDIFQEY
AGC
NDESLE
VPTECYNITMQIM
E












PDEVEYIFKPSCV


KIKPHISQHIMDMS













PLMR


FQQHSQ




O46564
grow_factors
28
3
31
31
1

0
KRHPLYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSK
ENEKVVLKNYQD













YHAFY

IPKAC
MVVEG




O46576
grow_factors
28
3
31
31
1

0
RRHALYVDFSDV
HGD
PFPLADHFNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSS
EYDKVVLKNYQE













YQAFY

IPKAC
MVVEG




O57573
grow_factors
28
3
31
31
1

0
RRHALYVDFSDV
HGE
PFPLPDHLNSTNH
IPTELSPISLLYLDE
G












GWNEWIVAPPG

AIVQTLVNSVNSN
YEKVILKNYQDMV













YHAFY

IPKAC
VEG




O57574
grow_factors
28
3
31
31
1

0
RRHALYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNTN
ETDRVVLKNYQEM













YQAYY

IPKAC
VVEG




O73682
grow_factors
30
3
6
33
1

0
KTRELLVDIIQEY
AGC
NDEALE
VPTETRNVTMEVL
E












PDEIEHTYIPSCV


RVKQRVSQHNFQL













VLMR


SFTEHTK




O73682-2
grow_factors
30
3
6
33
1

0
KTRELLVDIIQEY
AGC
NDEALE
VPTETRNVTMEVL
E












PDEIEHTYIPSCV


RVKQRVSQHNFQL













VLMR


SFTEHTK




O73818
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
HGD
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNAS
EYDKVVLKNYQE













YQAFY

IPKAC
MVVEG




O76851
grow_factors
28
3
32
31
1

0
QRQDLYVDFSDV
NGE
PFPLAEYMNATN
VPTELSPIAMLYVD
G












NWDDWIVAPHG

HAIVQTLVNSVDP
ECELVVLKTYQQM













YHAFY

SLTPKPC
AVEG




O77643
grow_factors
30
3
6
33
1

0
RPIETLVDIFQEY
GGC
NDESLE
VPTEEFNITMQIMR
E












PDEIEFIFKPSCVP


IKPHQSQHIGEMSF













LMR


LQHNK




O88911
grow_factors
30
3
6
14
1

0
RPIETLVDIFQEY
AGC
NDEALE
VPTSESNVTMQTC
S












PDEIEYIFKPSCV


K













PLMR







O93369
grow_factors
28
3
31
31
1

0
RRHALYVDFSDV
HGE
PFPLPDHLNSTNH
IPTELSPISLLYLDE
G












GWNEWIVAPPG

AIVQTLVNSVNSN
YEKVILKNYQDMV













YHAFY

IPKAC
VEG




O93573
grow_factors
28
3
32
31
1

0
SRKPLHVNFKEL
EGV
DFPLRSHLEPTNH
VPSKLSPISILYIDS
G












GWDDWIIAPLDY

AIIQTLMNSMDPE
GNNVVYKQYEDM













EAYH

STPPSC
VVET




O96504
grow_factors
28
3
32
31
1

0
RRHSLYVDFSDV
HGE
PFPLADHLNSTNH
VPTDLSPISMLYLN
G












GWNDWIVAPPG

AIVQTLVNSVNPL
ENDQVVLKNYQD













YQAYY

AVPKAC
MVVEG




O97390
grow_factors
28
3
32
31
1

0
RRKELNVDFKAV
DGS
HWPYDDHMNVT
VPTELSSLSLLYTD
G












GWNDWIFAPPG

NHAIVQDLVNSID
EHGAVVLKVYQD













YNAYY

PRAAPKPC
MVVEG




P07713
grow_factors
28
3
32
31
1

0
RRHSLYVDFSDV
HGK
PFPLADHFNSTNH
VPTQLDSVAMLYL
G












GWDDWIVAPLG

AVVQTLVNNMNP
NDQSTVVLKNYQE













YDAYY

GKVPKAC
MTVVG




P12643
grow_factors
28
3
31
31
1

0
KRHPLYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSK
ENEKVVLKNYQD













YHAFY

IPKAC
MVVEG




P12644
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
HGD
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSS
EYDKVVLKNYQE













YQAFY

IPKAC
MVVEG




P15691
grow_factors
30
3
6
33
1

0
RPIETLVDIFQEY
GGC
NDESLE
VPTEEFNITMQIMR
E












PDEIEFIFKPSCVP


IKPHQSQHIGEMSF













LMR


LQHNK




P15691-2
grow_factors
30
3
6
33
1

0
RPIETLVDIFQEY
GGC
NDESLE
VPTEEFNITMQIMR
E












PDEIEFIFKPSCVP


IKPHQSQHIGEMSF













LMR


LQHNK




P15692
grow_factors
30
3
6
33
1

1
HPIETLVDIFQEY
GGC
NDEGLE
VPTEESNITMQIMR
E












PDEIEYIFKPSCV


IKPHQGQHIGEMSF













PLMR


LQHNK




P15692-10
grow_factors
30
3
6
33
1

1
HPIETLVDIFQEY
GGC
NDEGLE
VPTEESNITMQIMR
E












PDEIEYIFKPSCV


IKPHQGQHIGEMSF













PLMR


LQHNK




P15692-2
grow_factors
30
3
6
33
1

1
HPIETLVDIFQEY
GGC
NDEGLE
VPTEESNITMQIMR
E












PDEIEYIFKPSCV


PHQGQHIGEMSFLI













PLMR


KQHNK




P15692-3
grow_factors
30
3
6
33
1

1
HPIETLVDIFQEY
GGC
NDEGLE
VPTEESNITMQIMR
E












PDEIEYIFKPSCV


IKPHQGQHIGEMSF













PLMR


LQHNK




P15692-4
grow_factors
30
3
6
33
1

1
HPIETLVDIFQEY
GGC
NDEGLE
VPTEESNITMQIMR
E












PDEIEYIFKPSCV


IKPHQGQHIGEMSF













PLMR


LQHNK




P15692-5
grow_factors
30
3
6
33
1

1
HPIETLVDIFQEY
GGC
NDEGLE
VPTEESNITMQIMR
E












PDEIEYIFKPSCV


IKPHQGQHIGEMSF













PLMR


LQHNK




P15692-6
grow_factors
30
3
6
33
1

1
HPIETLVDIFQEY
GGC
NDEGLE
VPTEESNITMQIMR
E












PDEIEYIFKPSCV


IKPHQGQHIGEMSF













PLMR


LQHNK




P15692-7
grow_factors
30
3
6
33
1

1
HPIETLVDIFQEY
GGC
NDEGLE
VPTEESNITMQIMR
E












PDEIEYIFKPSCV


IKPHQGQHIGEMSF













PLMR


LQHNK




P15692-8
grow_factors
30
3
6
33
1

1
HPIETLVDIFQEY
GGC
NDEGLE
VPTEESNITMQIMR
E












PDEIEYIFKPSCV


IKPHQGQHIGEMSF













PLMR


LQHNK




P15692-9
grow_factors
30
3
6
33
1

1
HPIETLVDIFQEY
GGC
NDEGLE
VPTEESNITMQIMR
E












PDEIEYIFKPSCV


IKPHQGQHIGEMSF













PLMR


LQHNK




P16612
grow_factors
30
3
6
33
1

0
RPIETLVDIFQEY
AGC
NDEALE
VPTSESNVTMQIM
E












PDEIEYIFKPSCV


RIKPHQSQHIGEMS













PLMR


FLQHSR




P16612-2
grow_factors
30
3
6
33
1

0
RPIETLVDIFQEY
AGC
NDEALE
VPTSESNVTMQIM
E












PDEIEYIFKPSCV


RIKPHQSQHIGEMS













PLMR


FLQHSR




P16612-3
grow_factors
30
3
6
33
1

0
RPIETLVDIFQEY
AGC
NDEALE
VPTSESNVTMQIM
E












PDEIEYIFKPSCV


RIKPHQSQHIGEMS













PLMR


FLQHSR




P16612-4
grow_factors
30
3
6
33
1

0
RPIETLVDIFQEY
AGC
NDEALE
VPTSESNVTMQIM
E












PDEIEYIFKPSCV


RIKPHQSQHIGEMS













PLMR


FLQHSR




P18075
grow_factors
28
3
32
31
1

0
KKHELYVSFRDL
EGE
AFPLNSYMNATN
APTQLNAISVLYFD
G












GWQDWIIAPEGY

HAIVQTLVHFINP
DSSNVILKKYRNM













AAYY

ETVPKPC
VVRA




P20722
grow_factors
28
3
32
31
1

0
KKHELYVSFQDL
DGE
SFPLNAHMNATN
APTKLNAISVLYFD
G












GWQDWIIAPKGY

HAIVQTLVHLMN
DNSNVILKKYRNM













AANY

PEYVPKPC
VVRA




P21274
grow_factors
28
3
31
31
1

0
KRHPLYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSK
ENEKVLKNYQDM













YHAFY

IPKAC
VVEG




P21275
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
HGD
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSS
EYDKVLKNYQEM













YQAFY

IPKAC
VVEG




P22003
grow_factors
28
3
32
31
1

0
KKHELYVSFRDL
DGE
SFPLNAHMNATN
APTKLNAISVLYFD
G












GWQDWIIAPEGY

HAIVQTLVHLMFP
DSSNVILKKYRNM













AAFY

DHVPKPC
VVRS




P22004
grow_factors
28
3
32
31
1

0
RKHELYVSFQDL
DGE
SFPLNAHMNATN
APTKLNAISVLYFD
G












GWQDWIIAPKGY

HAIVQTLVHLMN
DNSNVILKKYRNM













AANY

PEYVPKPC
VVRA




P23359
grow_factors
28
3
32
31
1

0
KKHELYVSFRDL
EGE
AFPLNSYMNATN
APTQLNAISVLYFD
G












GWQDWIIAPEGY

HAIVQTLVHFINP
DSSNVILKKYRNM













AAYY

DTVPKPC
VVRA




P25703
grow_factors
28
3
31
31
1

0
RRHPLYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNTN
ENEKVVLKNYQD













YHAFY

IPKAC
MVVEG




P26617
grow_factors
30
3
6
33
1

0
RPIEMLVDIFQEY
GGC
NDESLE
VPTEEFNITMQIMR
E












PDEIEYIFKPSCV


IKPHQGQHIGEMSF













PLMR


LQHSK




P30884
grow_factors
28
3
31
31
1

0
RRHPLYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNTN
ENEKVVLKNYQD













YHAFY

IPKAC
MVVEG




P30885
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
HGD
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSS
EYDKVVLKNYQE













YQAFY

IPKAC
MVVEG




P35621
grow_factors
28
3
32
31
1

0
KPRRLYIDFKDV
HGE
PFPLSESLNGTNH
VPIKLSPISMLYYD
G












GWQDWIIAPQGY

AILQTLVHSFDPK
NNDNVVLRHYED













LANY

GTPQPC
MVVDE




P43026
grow_factors
28
3
32
31
1

0
SRKALHVNFKD
EGL
EFPLRSHLEPTNH
VPTRLSPISILFIDSA
G












MGWDDWIIAPLE

AVIQTLMNSMDP
NNVVYKQYEDMV













YEAFH

ESTPPTC
VES




P43027
grow_factors
28
3
32
31
1

0
SRKALHVNFKD
EGL
EFPLRSHLEPTNH
VPTRLSPISILFIDSA
G












MGWDDWIIAPLE

AVIQTLMNSMDP
NNVVYKQYEDMV













YEAFH

ESTPPTC
VES




P43028
grow_factors
28
3
32
31
1

0
SRKPLHVNFKEL
EGV
DFPLRSHLEPTNH
VPTKLTPISILYIDA
G












GWDDWIIAPLEY

AIIQTLMNSMDPG
GNNVVYKQYEDM













EAYH

STPPSC
VVES




P43029
grow_factors
28
3
32
31
1

0
SRKSLHVDFKEL
EGV
DFPLRSHLEPTNH
VPARLSPISILYIDA
G












GWDDWIIAPLDY

AIIQTLLNSMAPD
ANNVVYKQYEDM













EAYH

AAPASC
VVEA




P43029-2
grow_factors
28
3
32
31
1

0
SRKSLHVDFKEL
EGV
DFPLRSHLEPTNH
VPARLSPISILYIDA
G












GWDDWIIAPLDY

AIIQTLLNSMAPD
ANNVVYKQYEDM













EAYH

AAPASC
VVEA




P48969
grow_factors
28
3
32
31
1

0
KRKNLFVNFEDL
QGE
AFPLNGHANATN
APTKLSPITVLYYD
G












DWQEWIIAPLGY

HAIVQTLVHHMS
DSRNVVLKKYKN













VAFY

PSHVPQPC
MVVRA




P48970
grow_factors
28
3
32
31
1

0
QRHRLFVSFRDV
DGE
PFPLGERLNGTNH
APTKLSGISMLYFD
G












GWENWIIAPMG

AIIQTLVNSIDNRA
NNENVVLRQYED













YQAYY

VPKVC
MVVEA




P49001
grow_factors
28
3
31
31
1

0
KRHPLYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSK
ENEKVVLKNYQD













YHAFY

IPKAC
MVVEG




P49003
grow_factors
28
3
32
31
1

0
KKHELYVSFRDL
DGE
SFPLNAHMNATN
APTKLNAISVLYFD
G












GWQDWIIAPEGY

HAIVQTLVHLMFP
DSSNVILKKYRNM













AAFY

DHVPKPC
VVRS




P49151
grow_factors
30
3
6
33
1

0
RPIETLVDIFQEY
GGC
NDEGLE
VPTEEFNITMQIMR
E












PDEIEYIFKPSCV


IKPHQGQHIGEMSF













PLMR


LQHNK




P49763
grow_factors
30
3
6
33
1

0
RALERLVDVVSE
TGC
GDENLH
VPVETANVTMQLL
E












YPSEVEHMFSPS


KIRSGDRPSYVELT













CVSLLR


FSQHVR




P49763-2
grow_factors
30
3
6
33
1

0
RALERLVDVVSE
TGC
GDENLH
VPVETANVTMQLL
E












YPSEVEHMFSPS


KIRSGDRPSYVELT













CVSLLR


FSQHVR




P49763-3
grow_factors
30
3
6
33
1

0
RALERLVDVVSE
TGC
GDENLH
VPVETANVTMQLL
E












YPSEVEHMFSPS


KIRSGDRPSYVELT













CVSLLR


FSQHVR




P49764
grow_factors
30
3
6
34
1

0
RPMEKLVYILDE
SGC
GDEGLH
VPIKTANITMQILKI
E












YPDEVSHIFSPSC


PPNRDPHFYVEMT













VLLSR


FSQDVL




P50412
grow_factors
30
3
6
33
1

0
RPIETLVDIFQEY
GGC
NDESLE
VPTEEFNITMQIMR
E












PDEIEFIFKPSCVP


IKPHQSQHIGEMSF













LMR


LQHNK




P55106
grow_factors
28
3
32
31
1

0
SKKPLHVNFKEL
EGV
DFPLRSHLEPTNH
VPTKLTPISILYIDA
G












GWDDWIIAPLEY

AIIQTLMNSMDPG
GNNVVYNEYEEM













EAYH

STPPSC
VVES




P67860
grow_factors
30
3
6
33
1

0
RPIETMVDIFQDY
GGC
NDEALE
VPTELYNVTMEIM
E












PDEVEYILKPPCV


KLKPYQSQHIHPM













ALMR


SFQQHSK




P67860-2
grow_factors
30
3
6
33
1

0
RPIETMVDIFQDY
GGC
NDEALE
VPTELYNVTMEIM
E












PDEVEYILKPPCV


KLKPYQSQHIHPM













ALMR


SFQQHSK




P67860-3
grow_factors
30
3
6
33
1

0
RPIETMVDIFQDY
GGC
NDEALE
VPTELYNVTMEIM
E












PDEVEYILKPPCV


KLKPYQSQHIHPM













ALMR


SFQQHSK




P67861
grow_factors
30
3
6
34
1

0
QTRETLVSILQEH
SGC
TDESMK
TPVGKHTADIQIMR
E












PDEISDIFRPSCV


MNPRTHSSKMEV













AVLR


MKFMEHTA




P67862
grow_factors
30
3
6
34
1

0
QTRETLVPILKEY
GGC
SDESLT
TATGKHSVGREIM
E












PDEVSHLFKPSC


RVDPHKGTSKMEV













VPVLR


MQFKEHTA




P67863
grow_factors
30
3
6
34
1

0
QARETLVPILQE
SGC
TDESLK
TPVGKHTVDLQIM
E












YPDEISDIFRPSC


RVNPRTQSSKMEV













VAVLR


MKFTEHTA




P67964
grow_factors
30
3
6
33
1

0
RTIETLVQIFQEY
AGC
GDEGLE
VPVDVYNVTMEIA
D












PDEVEYIFRPSCV


RIKPHQSQHIAHMS













PLMR


FLQHSK




P67965
grow_factors
30
3
6
33
1

0
RTIETLVDIFQEY
AGC
GDEGLE
VPVDVYNVTMEIA
D












PDEVEYIFRPSCV


RIKPHQSQHIAHMS













PLMR


FLQHSK




P67965-2
grow_factors
30
3
6
33
1

0
RTIETLVDIFQEY
AGC
GDEGLE
VPVDVYNVTMEIA
D












PDEVEYIFRPSCV


RIKPHQSQHIAHMS













PLMR


FLQHSK




P67965-3
grow_factors
30
3
6
33
1

0
RTIETLVDIFQEY
AGC
GDEGLE
VPVDVYNVTMEIA
D












PDEVEYIFRPSCV


RIKPHQSQHIAHMS













PLMR


FLQHSK




P67985-4
grow_factors
30
3
6
33
1

0
RTIETLVDIFQEY
AGC
GDEGLE
VPVDVYNVTMEIA
D












PDEVEYIFRPSCV


RIKPHQSQHIAHMS













PLMR


FLQHSK




P82475
grow_factors
30
3
6
34
1

0
QARETLVSILQE
SGC
TDESLK
TPVGKHTVDMQIM
E












YPDEISDIFRPSC


RVNPRTQSSKMEV













VAVLR


MKFTEHTA




P83906
grow_factors
30
3
6
33
1

0
RPVETMVDIFQE
GGC
NDEALE
VPTEMYNVTMEV
E












YPDEVEYIFKPSC


MKLKPFQSQHIHP













VALMR


VSFQQHSK




P83942
grow_factors
30
3
6
34
1

0
QARETLVSILQE
SGC
TDESLK
TPVGKHTVDLQIM
E












YPDEISDIFRPSC


RVNPRTQSSKMEV













VAVLR


MKFTEHTA




P85857
grow_factors
28
3
32
31
1

0
SKKALHVNFKEL
EGV
DFPLRSHLEPTNH
VPTKLSPISILYIDS
G












GWDDWIIAPLDY

AIIQTLMNSMDPN
GNNVVYKQYEDM













EAYH

STPPSC
VVEQ




P87373
grow_factors
28
3
32
31
1

0
KKHELYVSFRDL
DGE
SFPLNAHMNATN
APTKLNAISVLYFD
G












GWQDWIIAPEGY

HAIVQTLVHLMFP
DSSNVILKKYRNM













AAFY

DHVPKPC
VVRS




P91706
grow_factors
28
3
32
31
1

0
RRHSLYVDFSDV
HGK
PFPLADHFNSTNH
VPTQLDSVAMLYL
G












GWDDWIVAPLG

AWQTLVNNMNP
NDQSTVVLKNYQE













YDAYY

GKVPKAC
MTVVG




P91720
grow_factors
28
3
32
31
1

0
RRHSLYVDFQDV
HGK
QFPLADHLNSTNH
VPTQLEGISMLYLN
G












GWSDWIVAPPG

AWQTLVNNLNPG
DQRTVVLKNYQD













YDAYY

KVPKAC
MTVVG




Q00731
grow_factors
30
3
6
33
1

0
RPIETLVDIFQEY
AGC
NDEALE
VPTSESNITMQIMR
E












PDEIEYIFKPSCV


IKPHQSQHIGEMSF













PLMR


LQHSR




Q00731-2
grow_factors
30
3
6
33
1

0
RPIETLVDIFQEY
AGC
NDEALE
VPTSESNITMQI
E












PDEIEYIFKPSCV


MRIKPHQSQHIGE













PLMR


MSFLQHSR




Q00731-3
grow_factors
30
3
6
33
1

0
RPIETLVDIFQEY
AGC
NDEALE
VPTSESNITMQIMR
E












PDEIEYIFKPSCV


IKPHQSQHIGEMSF













PLMR


LQHSR




Q00731-4
grow_factors
30
3
6
40
1

0
RPIETLVDIFQEY
AGC
NDEALE
VPTSESNITMQVGT
L












PDEIEYIFKPSCV


CGTGDGAGAGGG













PLMR


RRTVVQGGALEGC
















L




Q04906
grow_factors
28
3
32
31
1

0
KKHELYVSFQDL
DGE
SFPLNAHMNATN
APTKLNAISVLYFD
G












GWQDWIIAPKGY

HAIVQTLVHLMN
DNSNVILKKYRNM













AANY

PEYVPKPC
VVRA




Q06826
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
HGD
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSS
EYDKVVLKNYQE













YQAFY

IPKAC
MVVEG




Q07G81
grow_factors
30
3
6
33
1

0
QVREILVDIFQEY
AGC
NDESLE
VPTESYNITMQIMK
E












PDEVEYIFKPSCV


IKPHISQHIMDMSF













PLMR


QQHSQ




Q0P6N0
grow_factors
28
3
31
31
1

0
QRHPLYVDFTDV
TGV
PYPIAKHLNATNH
IPTTLNPISILSLNEF
G












GWNDWIVAPPG

AIVQTIMNTVDSN
DKVVLKNYKDMVI













YHAFY

VPNAC
EG




Q0QYI0
grow_factors
30
3
6
33
1

0
RPREMLVEIQQE
AGC
NDEMME
TPTVTYNITLEIKRL
Q












YPDDTEHIFIPSC


KPLRHQGDIFMSFA













WLTR


EHSE




Q17JZ3
grow_factors
28
3
32
31
1

0
QRRPLYVDFSDV
HGD
QFPIADHLNTTNH
VPTQLSSISMLYLN
G












GWSDWIVAPPG

AIVQTLVNSINPSL
EQNKVVLKNYQD













YEAYY

APKAC
MTVVG




Q19T09
grow_factors
30
3
6
33
1

0
RPIETLVOIFQEY
GGC
NDESLE
VPTEEFNITMQIMR
E












PDEIEFIFKPSCVP


IKPHQSQHIGEMSF













LMR


LQHNK




Q1ANK8
grow_factors
30
3
6
33
1

0
RPREMLVEIQQE
AGC
NDEMME
TPTVTYNITLEIKRL
Q












YPDDTEHIFIPSC


KPLRHQGDIFMSFA













WLTR


EHSE




Q1ECU5
grow_factors
30
3
6
33
1

0
RPREMLVEIQQE
AGC
NDEMME
TPTVTYNITLEIKRL
Q












YPDDTEHIFIPSC


KPLRHQGDIFMSFA













WLTR


EHSE




Q1PHR6
grow_factors
28
3
32
31
1

0
KKRSLWSFRELG
NGE
SFPLNAHMNATN
APTKLNAISVLYFD
G












WQDWIIAPDGYS

HAIVQTLVHLMD
DSSNVILKKYRNMI













AFY

PEAVPKPC
VKS




Q1PHR7
grow_factors
28
3
32
31
1

0
KRHELYVDFND
HGE
PFPIAEHLNSTNH
VPTDLSPISMLYLD
G












VGWNDWIVAPP

AIVQTLVNSVSPD
EFDKVVLKNYQD













GYHAFY

SVPKAC
MVVEG




Q1WKY6
grow_factors
28
3
32
31
1

0
RRHSLYVDFSDV
HGK
PFPLADHFNSTNH
VPTQLDSVAMLYL
G












GWDDWIVAPLG

AVVQTLVNNMNP
NDQSTVVLKNYQE













YDAYY

GKVPKAC
MTVVG




Q1WKY7
grow_factors
28
3
32
31
1

0
RRHSLYVDFSDV
HGK
PFPLADHFNSTNH
VPTQLDSVAMLYL
G












GWDDWIVAPLG

AVVQTLVNNMNP
NDQSTVVLKNYQE













YDAYY

GKVPKAC
MTVVG




Q1WKY8
grow_factors
28
3
32
31
1

0
RRHSLYVDFSDV
HGK
PFPLADHFNSTNH
VPTQLDSVAMLYL
G












GWDDWIVAPLG

AVVQTLVNNMNP
NDQSTVVLKNYQE













YDAYY

GKVPKAC
MTVVG




Q25211
grow_factors
28
3
32
31
1

0
QRRPLFVDFADV
QGD
PFPLSDHLNGTNH
VPTQLSSISMLYMD
G












GWSDWIVAPHG

AIVQTLVNSVNPA
EVNNVVLKNYQD













YDAYY

AVPKAC
MMVVG




Q264B8
grow_factors
28
3
32
31
1

0
RRHPLYVDFREV
HGD
PFPLSAHMNSTNH
IPTQLTSISMLYLDE
G












GWDDWIVAPPG

AVVQTLMNSMNP
ESKVVLKNYHEMA













YEGWY

GLVPKAC
VVG




Q27W10
grow_factors
28
3
32
31
1

0
QRQALHVSFRKL
SGE
SFPLNANMNATN
APTELSPISVLYFD
G












RWQDWVIAPEG

HAIVQTLVHLMN
QDNNVVLKKYNK













YSAFY

PKTVPKPC
MVVKA




Q29607
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
HGD
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSS
EYDKVVLKNYQE













YQAFY

IPKAC
MVVEG




Q2KJH1
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
HGD
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSS
EYDKVVLKNYQE













YQAFY

IPKAC
MVVEG




Q2KT33
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
HGD
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSS
EYDKVVLKNYQE













YQAFY

IPKAC
MVVEA




Q2NKW7
grow_factors
28
3
32
31
1

0
SRKALHVNFKD
EGL
EFPLRSHLEPTNH
VPTRLSPISILFIDSA
G












MGWDDWIIAPLE

AVIQTLMNSMDP
NNVVYKQYEDMV













YEAFH

ESTPPTC
VES




Q2VEW5
grow_factors
28
3
31
31
1

0
RRHPLYVDFSDV
QGD
PFPLTDHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSS
EYDKVVLKNYQE













YHAFY

IPRAC
MVVEG




Q2WBX0
grow_factors
28
3
32
31
1

0
RRHPLYVDFSDV
NGE
GFPLPEYINATNH
VPTELSPISMLYVD
G












GWDDWIVAPPG

AIVQTLVHSVNPE
EHDKVTLKNYQD













YRAYF

AVPRPC
MVVVG




Q330H7
grow_factors
28
3
32
32
1

0
RRKRMYVDFRL
EGE
KYPIDNYLRPTNH
TPNELSPISILYTED
G












LGWSDWIIAPQG

ATVQTIVNSLDPSI
GSNNVVYKNYKD













YDAYL

APKAC
MVVER




Q330KB
grow_factors
30
3
6
34
1

0
QTREMLVPILKE
GGC
SDESLT
TATGKRSVGREVM
E












YPNEVSHLFKPS


RVDPHKGTSKIEV













CVPVLR


MQFKEHTA




Q38KY2
grow_factors
30
3
6
33
1

0
RPRELLVDIYQE
GGC
NDEALE
VPVATRNVTLEVK
D












YPEEIEHTYIPSC


RVKLHVTQHNFLlS













WLMR


FTEHTS




Q3LSL9
grow_factors
28
3
32
31
1

0
RRHNLYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSPISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNPQ
EADKVVLKNYQD













YQAYY

LVPKAC
MVVEG




Q3LSM3
grow_factors
28
3
32
31
1

0
SRKALHVNFKD
EGL
EFPLRSHLEPTNH
VPTRLSPISILFIDSA
G












MGWDDWIIAPLE

AVIQTLMNSMDP
NNVVYKQYEDMV













YEAFH

ESTPPTC
VES




Q3ULR1
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
HGD
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSS
EYDKVVLKNYQE













YQAFY

IPKAC
MVVEG




Q3UXB2
grow_factors
28
3
32
31
1

0
KKHELYVSFQDL
DGE
SFPLNAHMNATN
APTKLNAISVLYFD
G












GWQDWIIAPKGY

HAIVQTLVHLMN
DNSNVILKKYRNM













AANY

PEYVPKPC
VVRA




Q3V1I4
grow_factors
28
3
31
31
1

0
KRHPLYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSQ
ENEKVVLKNYQD













YHAFY

IPKAC
MVVEG




Q496P8
grow_factors
28
3
32
31
1

0
KKHELYVSFRDL
DGE
SFPLNAHMNATN
APTKLNAISVLYFD
G












GWQDWIIAPEGY

HAIVQTLVHLMFP
OSSNVILKKYRNM













AAFY

DHVPKPC
VVRS




Q496P9
grow_factors
28
3
32
31
1

0
KKHELYVSFRDL
DGE
SFPLNAHMNATN
APTKLNAISVLYFD
G












GWQDWIIAPEGY

HAIVQTLVHLMFP
DSSNVILKKYRNM













AAFY

DHVPKPC
VVRS




Q497W8
grow_factors
28
3
31
31
1

0
KRHPLYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSK
ENEKVVLKNYQD













YHAFY

IPKAC
MVVEG




Q4H2P7
grow_factors
28
3
32
31
1

0
QRHSMWVDFEE
AGE
PFPLSGKLNGTNH
VPTRLSSVSMLYL
G












MGWSDWVIAPR

AMLMTMMNSVD
DKKDNVVLRLYED













AFQSYR

PSNTPMPC
MVVEA




Q4JCQ2
grow_factors
28
3
32
31
1

0
RKHELYVSFQDL
DGE
SFPLNAHMNATN
APTKLNAISVLYFD
G












GWQDWIIAPKGY

HAIVQTLVHLMN
DNSNVILKKYRNM













AANY

PEYVPKPC
VVRA




Q4LEV0
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
HGD
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSS
EYDKVVLKNYQE













YQAFY

IPKAC
MVVEG




Q4R5W6
grow_factors
28
3
32
31
1

0
KKHELYVSFRDL
DGE
SFPLNAHMNATN
APTKLNAISVLYFD
G












GWQDWIIAPEGY

HAIVQTLVHLMFP
DSSNVILKKYRNM













AAFY

DHVPKPC
VVRS




Q4RLY8
grow_factors
30
3
6
34
1

0
RTIEKLVEWQEY
AGC
GDEKLE
HPTTTTNVTMQLL
E












PTEVEYIYSPSCV


KIRPSEPHKEYVH













PLVR


MTFVEHQT




Q4RMK1
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
HGD
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSN
EHDKVVLKNYQE













YQAYY

IPKAC
MVVEG




Q4RQB0
grow_factors
28
3
32
31
1

0
KKHELYVSFRDL
DGE
AFPLNAHMNATN
APTKLNAISVLYFD
G












GWQDWIIAPEGY

HAIVQTLVHLMFP
DSSNVILKKYRNM













AAFY

DNVPKPC
VVRS




Q4SCW7
grow_factors
30
3
6
34
1

0
QPMEQLVDVEQ
SGC
GDEHLE
QPTLESNVTLQVIK
E












EYPGELEYTYMP


IQQTWSMHYVEITF













SCVPLKR


VEHQR




Q4SSW6
grow_factors
28
3
32
31
1

0
SRKALHVNFKEL
EGV
DFPLRSHLEPTNH
VPTKLSPISILYIDS
G












GWDDWIIAPLDY

AIIQTLMNSMDPN
GNNVVYKQYEDM













EAHH

STPPSC
VVEQ




Q4SV40
grow_factors
30
3
6
33
1

0
QPRDVLVDVFQA
GGC
NDEGKE
VPAESRNVTLQLQ
V












YPEDTEHIYTPSC


RFRPRVIKEVVDLS













VVLKR


FTEHVL




Q4SZ19
grow_factors
28
3
32
31
1

0
KARRLYIDFKDV
HGE
PFPLSDSLNGTNH
VPIRLSPISMLYYD
G












GWQDWIIAPQGY

AILQTLVHSLDPH
NNDNVVLRHYQD













MANY

GTPQPC
MVVDE




Q4U4G1
grow_factors
30
3
6
33
1

0
KPRPMVFRVHDE
GGC
NDESLE
VPTEEANVTMQLM
D












YPTLTSQRFNPPC


GASVSGGNGMQH













VTLMR


LSFVEHKK




Q4VBA3
grow_factors
28
3
32
31
1

0
RKHELYVSFQDL
DGE
SFPLNAHMNATN
APTKLNAISVLYFD
G












GWQDWIIAPKGY

HAIVQTLVHLMN
DNSNVILKKYRNM













AANY

PEYVPKPC
VVRA




Q53XC5
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
HGD
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSS
EYDKVVLKNYQE













YQAFY

IPKAC
MVVEG




Q53XY6
grow_factors
30
3
6
33
1

0
RALERLVDVVSE
TGC
GDENLH
VPVETANVTMQLL
E












YPSEVEHMFSPS


KIRSGDRPSYVELT













CVSLLR


FSQHVR




Q540I2
grow_factors
30
3
6
33
1

0
RTIETLVDIFQEY
AGC
GDEGLE
VPVDVYNVTMEIA
D












PDEVEYIFRPSCV


RIKPHQSQHIAHMS













PLMR


FLQHSK




Q541S7
grow_factors
30
3
6
33
1

0
RPIETLVDIFQEY
AGC
NDEALE
VPTSESNVTMQIM
E












PDEIEYIFKPSCV


RIKPHQSQHIGEMS













PLMR


FLQHSR




Q544A5
grow_factors
30
3
6
34
1

0
RPMEKLVYILDE
SGC
GDEGLH
VPIKTANITMQILKI
E












YPDEVSHIFSPSC


PPNRDPHFYVEMT













VLLSR


FSQDVL




Q58E94
grow_factors
28
3
31
31
1

0
RRHPLYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNTN
ENEKVVLKNYQD













YHAFY

IPKAC
MVVEG




Q58G88
grow_factors
28
3
32
31
1

0
QRHSLYVSFREV
SGE
PFPLNDRLNGTNH
APTKLSAISMLYFD
G












GWQDWIIAPMG

AIIQTLVNSMDPS
NDENVVLRQYED













YQAYF

SVPKVC
MVVEA




Q59FH5
grow_factors
30
3
6
33
1

1
HPIETLVDIFQEY
GGC
NDEGLE
VPTEESNITMQIMR
E












PDEIEYIFKPSCV


IKPHQGQHIGEMSF













PLMR


LQHNK




Q5I4I9
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
HGD
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSS
EYDKVVLKNYQE













YQAFY

IPKAC
MVVEG




Q5RHW5
grow_factors
30
3
6
33
1

0
RPREMLVEIQQE
AGC
NDEMME
TPTVTYNITLEIKRL
Q












YPDDTEHIFIPSC


KPLRHQGDIFMSFA













WLTR


EHSE




Q5RKN7
grow_factors
28
3
32
31
1

0
KPRRLYIDFKDV
HGE
PFPLSESLNGTNH
VPIKLSPISMLYYD
G












GWQDWIIAPQGY

AILQTLVHSFDPK
NNDNVVLRHYED













LANY

GTPQPC
MVVDE




Q5YJC3
grow_factors
28
3
32
32
1

0
RRKRMYVDFRL
EGE
KYPIONYLRPTNH
TPNELSPISILYTED
G












LGWSDWIIAPQG

ATVQTIVNSLDPSI
GSNNVVYKNYKD













YDAYL

APKAC
MVVER




Q63434
grow_factors
30
3
6
34
1

0
RPMEKLVYIADE
SGC
GDEGLH
VALKTANITMQILK
E












HPNEVSHIFSPSC


IPPNRDPHSYVEMT













VLLSR


FSQDVL




Q64FZ6
grow_factors
30
3
6
33
1

0
RPIETLVDIFQEY
AGC
NDEALE
VPTSESNVTMQIM
E












PDEIEYIFKPSCV


RIKPHQSQHIGEMS













PLMR


FLQHSR




Q66KL4
grow_factors
28
3
32
31
1

0
KKRRLYIDFKDV
YGE
PYPLTEMLRGTN
APTKLSPISMLYYD
G












GWQNWVIAPRG

HAVLQTLVHSVE
NNDNVVLRHYED













YMANY

PESTPLPC
MVVDE




Q68KG0
grow_factors
28
3
32
31
1

0
SKKPLHVNFKD
EGL
EFPLRSHLEPTNH
VPTRLSPISILYTDS
G












MGWDDWIIAPLE

AVIQTLMNSMDP
ANNVVYKQYEDM













YEAYH

ETTPPTC
VVES




Q6AYU9
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
HGD
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSS
EYDKVVLKNYQE













YQAFY

IPKAC
MVVEG




Q6EH35
grow_factors
28
3
31
31
1

0
KRHPLYVDFNDV
HGE
PFPLADHLNTTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSK
ENEKVVLKNYQD













YGAFY

IPKAC
MVVEG




Q6H8S7
grow_factors
30
3
6
33
1

0
RTREMLVDVFQE
AGC
NDEALE
VPTETKNVTMEVI
E












YPDEIEHTYIPSC


QVKQRVSQHHFLL













WLMR


SFTEHRK




Q6H8S8
grow_factors
30
3
6
33
1

0
RTREMLVDVFQE
AGC
NDEALE
VPTETKNVTMEVI
E












YPDEIEHTYIPSC


QVKQRVSQHHFLL













VVLMR


SFTEHRK




Q6HA10
grow_factors
28
3
32
31
1

0
SRKPLHVNFKEL
EGV
DFPLRSHLEPTNH
VPTKLTPISILYIDA
G












GWDDWIIAPLEY

AIIQTLMNSMDPG
GNNVVYKQYEDM













EAYH

STPPSC
VVES




Q6J3S4
grow_factors
28
3
31
31
1

0
QRQPLYVDFREV
QGE
PFPLADHLNSTNH
VPTELSPISMLYMD
G












GWDDWIVAPPG

AIVQTLVNSVNAS
EYEKVVLKNYQD













YNAYF

IPRAC
MVVEG




Q6J3S5
grow_factors
28
3
31
31
1

0
RRHALYVDFREV
HGE
PFPLADHLNSTNH
VPTELSPISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNAS
EYGKVVLKNYQD













YHAYF

IPRAC
MVVEG




Q6J3S6
grow_factors
28
3
31
31
1

0
ARYPLYVDFSDV
QGE
HFPLPQHLNSTNH
IPTELTPIALLYLDE
G












GWNDWIVAPPG

AIVQTLVNSVNPE
YEKVVLKNYQDM













YNAFF

VPRAC
VVEG




Q6J936
grow_factors
30
3
6
34
1

0
QPRETLVSILEEY
GGC
TDESLE
TATGKRSVGREIM
E












PGEIAHIFRPSCV


RLSPHKGTSEKEV













TALR


MQFTEHTD




Q6KF10
grow_factors
28
3
32
31
1

0
SKKPLHVNFKEL
EGV
DFPLRSHLEPTNH
VPTKLTPISILYIDA
G












GWDDWIIAPLEY

AIIQTLMNSMDPG
GNNVVYKQYEDM













EAYH

STPPSC
VVES




Q6P4J4
grow_factors
28
3
32
31
1

0
KKHELYVSFKDL
EGE
AFPLNSYMNATN
APTQLNPISVLYFD
G












GWQDWIIAPEGY

HAIVQTLVHFINP
DSSNVILKKYRNM













AAFY

DTVPKPC
VVRA




Q6PAF3
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
HGD
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNAS
EYDKVVLKNYQE













YQAFY

IPKAC
MVVEG




Q6R5A5
grow_factors
30
3
6
45
1

0
RPMPTTVRVSDE
GGC
NDESLE
VPTETSNVTMQLM
E












YPNDTSERYNPQ


VTSAHNGGSNDNG













CVTLMR


SGGGIGSGMREMS
















FLQHNK




Q6RF65
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
HGD
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSS
EYDKVVLKNYQE













YQAFY

IPKAC
MVVEG




Q6TVI2
grow_factors
30
3
6
41
1

0
QPMKTPVKVSDE
GGC
NDESLE
VPTETSNVTMQIM
E












YPDNTNDRHSPP


TTSAYNDGGTSGGI













CVTLMR


SSGMREMSFLQHN
















K




Q6WZM0
grow_factors
30
3
6
37
1

0
HPIETLVDIFQEY
GGC
NDEGLE
VPTEESNITMQVGI
L












PDEIEYIFKPSCV


FGKWGKGGIGRGV













PLMR


TLWEQWPGR




Q6XDQ0
grow_factors
28
3
31
31
1

0
KRHPLYVDFNDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSK
ENEKVVLKNYQD













YSAFY

IPKAC
MVVEG




Q6YLN3
grow_factors
30
3
6
33
1

0
RPIETLVDIFQEY
AGC
NDEALE
VPTSESNITMQIMR
E












PDEIEYIFKPSCV


IKPHQSQHIGEMSF













PLMR


LQHSR




Q75N54
grow_factors
28
3
31
31
1

0
KRHALYVDFSDV
HGE
PFPLADHLNSTNH
VPTDLSPISLLYLD
G












GWNEWIVAPPG

AIVQTLVNSVNSN
EYEKVILKNYQDM













YHAFY

IPRAC
VVEG




Q75RY1
grow_factors
28
3
32
31
1

0
SRKPLHVDFKEL
EGL
DFPLRSHLEPTNH
VPARLSPISILYIDA
G












GWDDWIIAPLDY

AIIQTLLNSMAPD
ANNVVYKQYEDM













EAYH

AAPASC
VVEA




Q75WK6
grow_factors
28
3
32
31
1

0
RRHPLYVDFVDV
HGD
PFPLADHLNSTNH
VPTALSSISMLYLD
G












GWNDWIVAPPG

AIVQTLVYSTNPN
EENKVVLKNYQD













YDAFY

IVPKAC
MAVLG




Q772M8
grow_factors
30
3
6
33
1

0
KPRPMVFRVHDE
GGC
NDESLE
VPTEEANVTMQLM
D












HPELTSQRFNPPC


GASVSGGNGMQH













VTLMR


LSFVEHKK




Q78DH3
grow_factors
28
3
31
31
1

0
RRHALYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNN
EHDKVVLKNYQE













YQAYY

NIPKAC
MVVEG




Q7BDH4
grow_factors
28
3
31
31
1

0
RRHALYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNN
EHDKVVLKNYQE













YQAYY

NIPKAC
MVVEG




Q78DH5
grow_factors
28
3
31
31
1

0
RRHALYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNN
EHDKVVLKNYQE













YQAYY

NIPKAC
MVVEG




Q78DH6
grow_factors
28
3
31
31
1

0
RRHALYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNN
EHDKVVLKNYQE













YQAYY

NIPKAC
MVVEG




Q7Q3Q7
grow_factors
28
3
32
31
1

0
QRKPLYVDFSDV
QGD
RFPIADHLNTTNH
VPTQLSSISMLYLN
G












GWNDWIVAPPG

AIVQTLVNSYNPT
EQNKVVLKNYQD













YEAYY

LAPKAC
MTVVG




Q7T288
grow_factors
28
3
32
31
1

0
KKHELYVSFRDL
DGE
SFPLNAHMNATN
APTKLNAISVLYFD
G












GWQDWIIAPEGY

HAIVQTLVHLMFP
DSSNVILKKYRNM













AAFY

DNVPKPC
VVRS




Q7Z4P5
grow_factors
28
3
32
31
1

0
SRKPLHVDFKEL
EGL
DFPLRSHLEPTNH
VPARLSPISILYIDA
G












GWDDWIIAPLDY

AIIQTLLNSMAPD
ANNVVYKQYEDM













EAYH

AAPASC
VVEA




Q804S2
grow_factors
28
3
31
31
1

0
KRHALYVDFSDV
QGE
PFPLADHLNSTNH
VPTDLSPISLLYLD
G












GWNEWIVAPPG

AIVQTLVNSVNSN
EYEKVILKNYQDM













YHAFY

IPRAC
VVEG




Q804S3
grow_factors
28
3
31
31
1

0
KRHALYVDFSDV
QGE
PFPLADHLNSTNH
VPTDLSPISLLYLD
G












GWNEWIVAPPG

AIVQTLVNSVNSN
EYEKVILKNYMDM













YHAFY

IPRAC
VVEG




Q811S3
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
HGD
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSS
EYDKVVLKNYQE













YQAFY

IPKAC
MVVEG




Q866G4
grow_factors
30
3
6
33
1

0
QPIETLVDIFQEY
GGC
NDESLE
VPTEEFNVTMQIM
E












PDEIEYIFKPSCV


RIKPHQGQHIGEMS













PLVR


FLQHNK




Q869A4
grow_factors
28
3
32
31
1

0
RRHALYVDFSDV
HGD
PFPLPDHLNTTNH
VPTELSPISMLYKD
G












GWNDWIIAPPGY

AIVQTLVNSANPA
KFDNVVLKNYQD













NAYF

AVPRAC
MVVEG




Q86RL7
grow_factors
28
3
32
31
1

0
RRHALYVDFQEV
QGD
NFPLAQHLNSTNH
VPTELSAISMLYLN
G












GWEQWIVAPDG

AIVQTLVNSVDPT
ERGKVQLKNYQD













YNAYF

AVSKAC
MVVEA




Q8BRW3
grow_factors
28
3
32
31
1

0
KKHELYVSFQDL
DGE
SFPLNAHMNATN
APTKLNAISVLYFD
G












GWQDWIIAPKGY

HAIVQTLVHLMN
DNSNVILKKYRNM













AANY

PEYVPKPC
VVRA




Q8BRW9
grow_factors
28
3
32
31
1

0
SRKALHVNFKD
EGL
EFPLRSHLEPTNH
VPTRLSPISILFIDSA
G












MGWDDWIIAPLE

AVIQTLMNSMDP
NNVVYKQYEDMV













YEAFH

ESTPPTC
VES




Q8CCE0
grow_factors
28
3
32
31
1

0
KKHELYVSFRDL
DGE
SFPLNAHMNATN
APTKLNAISVLYFD
G












GWQDWIIAPEGY

HAIVQTLVHLMFP
DSSNVILKKYRNM













AAFY

DHVPKPC
VVRS




Q8HY70
grow_factors
30
3
6
33
1

0
RPIETLVDIFQEY
GGC
NDEGLE
VPTEEFNITMQIMR
E












PDEIEYIFKPSCV


IKPHQGQHIGEMSF













PLMR


LQHSK




Q8HY75
grow_factors
30
3
6
33
1

0
RPVERLVDIVSE
TGC
SDETMH
MPLETANVTMQL
E












YPSEVEHMFSPS


MKYHSLDQPFFVE













CVSLMR


MSFSQHVR




Q8IAE3
grow_factors
28
3
32
31
1

0
SKHSLYVDFAIV
QGE
PYPMPEHLNPTNH
VPTELDTLNMLYL
G












GWDSWLAPEGY

AIVQTIVHSADPSS
NEKEQIILKNYKD













QAYY

VPKAC
MIVTS




Q8JFE2
grow_factors
28
3
31
31
1

0
RRHALYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNN
EHDKVVLKNYQE













YQAYY

NIPKAC
MVVEG




Q8JIJ2
grow_factors
28
3
31
31
1

0
RRHALYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNN
EHDKVVLKNYQE













YQAYY

NIPKAC
MVVEG




Q8JIJ3
grow_factors
28
3
31
31
1

0
RRHALYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNN
EHDKVVLKNYQE













YQAYY

NIPKAC
MVVEG




Q8JIJ4
grow_factors
28
3
31
31
1

0
RRHALYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNN
EHDKVVLKNYQE













YQAYY

NIPKAC
MVVEG




Q8JIJ5
grow_factors
28
3
31
31
1

0
RRHALYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNN
EHDKVVLKNYQE













YQAYY

NIPKAC
MVVEG




Q8JIJ6
grow_factors
28
3
31
31
1

0
RRHALYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNN
EHDKVVLKNYQE













YQAYY

NIPKAC
MVVEG




Q8JIJ7
grow_factors
28
3
31
31
1

0
RRHALYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNN
EHDKVVLKNYQE













YQAYY

NIPKAC
MVVEG




Q8JIJ8
grow_factors
28
3
31
31
1

0
RRHALYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNN
EHDKVVLKNYQE













YQAYY

NIPKAC
MVVEG




Q8JIJ9
grow_factors
28
3
31
31
1

0
RRHALYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNN
EHDKVVLKNYQE













YQAYY

NIPKAC
MVVEG




Q8JIK0
grow_factors
28
3
31
31
1

0
RRHALYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNN
EHDKVVLKNYQE













YQAYY

NIPKAC
MVVEG




Q8JIK1
grow_factors
28
3
31
31
1

0
RRHALYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNN
EHDKVVLKNYQE













YQAYY

NIPKAC
MVVEG




Q8JIK2
grow_factors
28
3
31
31
1

0
RRHALYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNN
EHDKVVLKNYQE













YQAYY

NIPKAC
MVVEG




Q8MJV5
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
HGD
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSS
EYDKVVLKNYQE













YQAFY

IPKAC
MVVEG




Q8MWG4
grow_factors
28
3
32
31
1

0
KRHVLYVDFGD
RGE
PFPMGQHLNSTH
VPSDLSAISMLYLD
G












VGWNDWIVAPP

HAVMQTLVHSVD
ELDKVVLKNYQD













GYNAYF

PTAVPKAC
MVVEG




Q8MXC2
grow_factors
28
3
32
31
1

0
QRHPLYVDFSEV
KGE
PFPIADHLNTTNH
VPTTLEAISMLFMN
G












GWNDWIVAPPG

AIVQTLMNSVNP
EHSKVVLKNYQD













YQGFY

NNVPPAC
MVVDG




Q8MXZ3
grow_factors
28
3
32
31
1

0
KRKNLFVNFEDL
QGE
AFPLNGHANATN
APTKLSPITVLYYD
G












DWQEWIIAPLGY

HAIVQTLVHHMS
DSRNVVLKKYKN













VAFY

PSTVPQPC
MVVRA




Q8SPL5
grow_factors
30
3
6
33
1

0
RPIETLVDIFQEY
GGC
NDEGLE
VPTAEFNITMQIMR
E












PDEIEYIFKPSCV


IKPHQSQHIGEMSF













PLMR


LQHSK




Q8SPZ9
grow_factors
30
3
6
33
1

0
RPIETLVDIFQEY
GGC
NDEGLE
VPTEEFNITMQIMR
E












PDEIEYIFKPSCV


IKPHQGQHIGEMSF













PLMR


LQHNK




Q8WMQ4
grow_factors
30
3
6
33
1

0
RPIETLVDIFQEY
GGC
NDEGLE
VPTEEFNIAMQIMR
E












PDEIEYIFKPSCV


IKPHQGQHIGEMSF













PLMR


LQHNK




Q8WS99
grow_factors
28
3
32
31
1

0
RRHPLYVDFTDV
QGE
PFPLVDHLNATNH
VPTDLSAISMLYLD
G












GWNSWIVAPAG

AIVQTLVNSASPQ
DSDSVILRNYQDM













YQAYY

LAPKAC
VVEG




Q90723
grow_factors
28
3
32
31
1

0
KPRRLYISFSDVG
LGE
PFPLTAELNSTNH
VPVRLSPISILYYD
G












WENWIIAPQGY

AILQTMVHSLDPE
NSDNVVLRHYED













MANY

GTPQPC
MVVDE




Q90751
grow_factors
28
3
31
31
1

0
KRHPLYVDFNDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSK
ENEKVVLKNYQD













YSAFY

IPKAC
MVVEG




Q90752
grow_factors
28
3
31
31
1

0
RRHALYVDFSDV
HGD
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSS
EYDKVVLKNYQE













YQAFY

IPKAC
MVVEG




Q90X23
grow_factors
30
3
6
34
1

0
QPRETLVSILEEY
GGC
TDESLE
TATGKRSVGREIM
E












PGEISHIFRPSCVT


RLSPHKGTSEKEV













ALR


MQFTEHTD




Q90X24
grow_factors
30
3
6
34
1

0
QTRETLVSILEEH
GGC
TDESLK
TATGKRSVGREIM
E












PDEVSHIFRPSCV


RVDPHKGTSKTEV













TALR


MQFTEHTD




Q90Y81
grow_factors
28
3
31
31
1

0
RRHALYVDFREV
HGE
PFPLADHLNSTNH
VPTELSPISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNAS
EYGKVVLKNYQD













YHAYF

IPRAC
MVVEG




Q90Y82
grow_factors
28
3
31
31
1

0
ARYPLYVDFSDV
QGE
HFPLPQHLNSTNH
IPTELTPIALLYLDE
G












GWNDWIVAPPG

AIVQTLVNSVNPE
YEKVVLKNYQDM













YNAFF

VPRAC
VVEG




Q90YD6
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
HGD
PFPLADHLNSTNH
VPTDLSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSS
EYDKVVLKNYQE













YQAFY

IPKAC
MVVEG




Q90YD7
grow_factors
28
3
31
31
1

0
RRHPLYVDFSDV
HGE
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNNVNP
ENEKVVLKNYQD













YHAFY

NIPKAC
MVVEG




Q91403
grow_factors
28
3
32
31
1

0
KKHELYVSFRDL
EGE
AFPLNSYMNATN
APTQLNAISVLYFD
G












GWQDWIIAPEGY

HAIVQTLVHFINP
DSSNVILKKYRNM













AAYY

ETVPKPC
VVRA




Q91703
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
HGD
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNAS
EYDKVVLKNYQE













YQAFY

IPKAC
MVVEG




Q95LQ4
grow_factors
30
3
6
33
1

0
RPIETLVDIFQEY
GGC
NDEGLE
VPTEEFNITMQIMR
E












PDEIEYIFKPSCV


IKPHQGQHIGEMSF













PLMR


LQHSK




Q95NE5
grow_factors
30
3
6
33
1

1
HPIETLVDIFQEY
GGC
NDEGLE
VPTEESNITMQIMR
E












PDEIEYIFKPSCV


IKPHQGQHIGEMSF













PLMR


LQHNK




Q95W38
grow_factors
28
3
32
31
1

0
RRHPLYVDFREV
HGD
PFPLSAHMNSTNH
VPTQLTSISMLYLD
G












GWDDWIVAPPG

AWQTLMNSMNP
EESKWLKNYHEM













YEAWY

GLVPKAC
AVVG




Q98950
grow_factors
28
3
32
31
1

0
KPRRLYISFSDVG
LGE
PFPLTAELNSTNH
VPVRLSPISILYYD
G












WENWIIAPQGY

AILQTMVHSLDPE
NSDNVVLRHYED













MANY

GTPQPC
MVVDE




Q99PS1
grow_factors
30
3
6
33
1

0
HPIETLVDIFQEY
GGC
SDEALE
VPTSESNITMQIMR
E












PDEIEYIFKPSCV


VKPHQSQHIGEMS













PLMR


FLQHSR




Q9BDP7
grow_factors
30
3
6
33
1

1
HPIETLVDIFQEY
GGC
NDEGLE
VPTEESNITMQIMR
E












PDEIEYIFKPSCV


IKPHQGQHIGEMSF













PLMR


LQHNK




Q9BDW8
grow_factors
28
3
32
31
1

0
SRKPLHVDFKEL
EGV
DFPLRSHLEPTNH
VPARLSPISILYIDA
G












GWDDWIIAPLDY

AIIQTLLNSMAPD
ANNVVYKQYEDM













EAYH

AAPASC
VVEA




Q9BDW9
grow_factors
28
3
32
31
1

0
SRKPLHVDFKEL
EGV
DFPLRSHLEPTNH
VPARLSPISILYIDA
G












GWDDWIIAPLDY

AIIQTLLNSMAPD
ANNVVYKQYEDM













EAYH

AAPASC
VVEA




Q9DGN4
grow_factors
28
3
32
31
1

0
SKKPLLVNFKEL
EGV
DFPLRSHLEPTNH
VPSKLSPISILYIDS
S












GWDDWIIAPLDY

AIIQTLMNSMDPE
GNNVVYKQYEDM













EAYH

STPPSC
VVES




Q9ERL6
grow_factors
30
3
6
33
1

0
HPIETLVDIFQEY
GGC
SDEALE
VPTSESNITMQIMR
E












PDEIEYIFKPSCV


VKPHQSQHIGEMS













PLMR


FLQHSR




Q9GK00
grow_factors
30
3
6
33
1

0
HPIETLVDIFQEY
GGC
NDEGLE
VPTEEFNITMQIMR
E












PDEIEYIFKPSCV


IKPHQGQHIGEMSF













PLMR


LQHNK




Q9GKR0
grow_factors
30
3
6
33
1

0
RPIETLVDIFQEY
GGC
NDEGLE
VPTAEFNITMQIMR
E












PDEIEYIFKPSCV


IKPHQSQHIGEMSF













PLMR


LQHSK




Q9I8T6
grow_factors
28
3
32
31
1

0
KKHELYVSFRDL
EGE
AFPLNSYMNATN
APTQLNAISVLYFD
G












GWQDWIIAPEGY

HAIVQTLVHFINP
DSSNVILKKYRNM













AAYY

ETVPKPC
VVRA




Q9MYV3
grow_factors
30
3
6
33
1

0
RPIETLVDIFQEY
GGC
NDEGLE
VPTEEFNITMQIMR
E












PDEIEYIFKPSCV


IKPHQGQHIGEMSF













PLMR


LQHSK




Q9MYV3-2
grow_factors
30
3
6
33
1

0
RPIETLVDIFQEY
GGC
NDEGLE
VPTEEFNITMQIMR
E












PDEIEYIFKPSCV


IKPHQGQHIGEMSF













PLMR


LQHSK




Q9MYV3-3
grow_factors
30
3
6
33
1

0
RPIETLVDIFQEY
GGC
NDEGLE
VPTEEFNITMQIMR
E












PDEIEYIFKPSCV


IKPHQGQHIGEMSF













PLMR


LQHSK




Q9MZB1
grow_factors
30
3
6
33
1

0
RPIETLVDIFQEY
GGC
NDESLE
VPTEEFNITMQIMR
E












PDEIEFIFKPSCVP


IKPHQSQHIGEMSF













LMR


LQHNK




Q9MZV5
grow_factors
28
3
31
31
1

0
RRHSLYVDFSDV
HGD
PFPLADHLNSTNH
VPTELSAISMLYLD
G












GWNDWIVAPPG

AIVQTLVNSVNSS
EYDKVVLKNYQE













YQAFY

IPKAC
MVVEG




Q9PTF9
grow_factors
28
3
32
31
1

0
KKHELYVSFRDL
EGE
VFPLNSYMNATN
APTQLHGISVLYFD
G












GWQDWIIAPEGY

HAIVQTLVHFINP
DSSNVILKKYRNM













AAYY

ETVPKPC
VVRA




Q9QX39
grow_factors
30
3
6
33
1

0
HPIETLVDIFQEY
GGC
NDEALE
VPTSESNITMQIMR
E












PDEIEYIFKPSCV


IKPHQSQHIGEMSF













PLMR


LQHNR




Q9U418
grow_factors
28
3
32
31
1

0
RRHSLYVDFSDV
HGE
PFPLADHLNSTNH
VPTDLSPISMLYLN
G












GWNDWIVAPPG

AIVQTLVNSVNPL
ENDQVVLKNYQD













YQAYY

AVPKAC
MVVEG




Q9U5E8
grow_factors
28
3
32
31
1

0
RRRSLYVDFSDV
DGE
PFPLADHLNSTNH
VPTELSPISMLYLD
G












GWNDWIVAPPG

AIVQTLVHSVKAS
EYDKVILKNYQEM













YNAFY

AVPQAC
VVEG




Q9W6C0
grow_factors
28
3
32
31
1

0
SRKPLHVNFKEL
EGL
DFPLRSHLEPTNH
VPSKLSPISILYIDS
G












GWDDWIIAPLDY

AIIQTLMNSMDPE
GNNVVYKQYEDM













EAYH

STPPSC
VVES




Q9W6G0
grow_factors
28
3
32
31
1

0
SRKALHVNFKD
EGL
EFPLRSHLEPTNH
VPTRLSPISILFIDSA
G












MGWDDWIIAPLE

AVIQTLMNSMDP
NNVVYKQYEDMV













YEAYH

ESTPPTC
VES




Q9W753
grow_factors
28
3
32
31
1

0
SKKPLHVNFKEL
EGV
DFPLRSHLEPTNH
VPTKLTPISILYIDA
G












GWDDWIIAPLEY

AIIQTLMNSMNPG
GNNVVYKQYEDM













EAHH

STPPSC
VVES




Q9XS47
grow_factors
30
3
6
33
1

0
RPVERLVDIVSE
TGC
SDESMH
VPLETANVTMQLM
E












YPSEMEHLFSPSC


KYRSLDQPFFVEM













VSLMR


SFSQHVR




Q9XYQ7
grow_factors
28
3
32
31
1

0
RRHPLYVDFSDV
HGE
PFPLAEHLNTTNH
GPTELSAISMLYLD
G












HWNDWIVAPAG

AIVQTLVNSVNPA
EYEKVVLKNYQD













YQAYY

LVPKAC
MVVEG




Q9XYQ8
grow_factors
28
3
32
31
1

0
RRHELYVDFSDV
RGE
PFPLAEHLNTTNH
VPTELSAISMLYLD
G












HWNDWIVAPAG

AIVQTLVNSVNPA
EYEKVVLKNYQD













YQAYY

LVPKAC
MVVEG




Q9XZ69
grow_factors
28
3
32
31
1

0
RRHPLYVDFSDV
HGE
PFPLAEHLNTTNH
VPTELSAISMLYLD
G












HWNDWIVAPAG

AIVQTLVNSVNPA
EYEKVVLKNYQD













YQAYY

LVPKAC
MVVEG




Q9YGH7
grow_factors
28
3
32
31
1

0
KKHELYVSFKDL
EGE
AFPLNSYMNATN
APTQLNAISVLYFD
G












GWQDWIIAPEGY

HAIVQTLVHFINP
DSSNVILKKYRNM













AAFY

DTVPKPC
VVRA




Q9YGV1
grow_factors
28
3
32
31
1

0
KKRRLYIDFKDV
HGE
PYPLTEMLRGTN
APTKLSPISMLYYD
G












GWQNWVIAPRG

HAVLQTLVHSVE
NNDNVVLRHYED













YMANY

PENTPLPC
MVVDE




Q9YMF3
grow_factors
30
3
6
33
1

0
KPRPMVFRVHDE
GGC
NDESLE
VPTEEANVTMQLM
D












HPELTSQRFNPPC


GASVSGGNGMQH













VTLMR


LSFVEHKK




GUR_GYMSY
gurmarine
6
6
0
4
9

2
VKKDEL
IPYYLD

EPLE
KKVNWWD
















HK



ALO1_ACRLO
insect_anti-
6
8
0
3
10

0
IKNGNG
QPDGSQGN

SRY
HKEPGWVA




microbial











GY



ALO2_ACRLO
insect_anti-
6
8
0
3
10

0
IANRNG
QPDGSQGN

SGY
HKEPGWVA




microbial











GY



ALO3_ACRLO
insect_anti-
6
8
0
3
10

1
IKNGNG
QPNGSQGN

SGY
HKQPGWVA




microbial











GY



CVP3_PIMHY
insect_anti-
6
5
0
4
9

0
GFPGRR
SPTEE

EGLV
QPRKNGPS




microbial











M



CVP5_PIMHY
insect_anti-
6
6
0
2
6

0
SSMGAS
QIGSAT

GV
NVHTLR




microbial















Q2MJU0_LYSTE
insect_anti-
6
5
0
6
6

0
SPPGFF
QTDDD

FTKLFR
LEIVGR




microbial















Q2PQC7_BEMTA
insect_anti-
6
8
0
3
11

0
ISNWTK
KPDGSIGN

SGY
FQEKPDWE




microbial











YGI



Q2PQC8_BEMTA
insect_anti-
6
8
0
3
10

0
LTKGAS
KGDGSMGN

SGF
WQANPSSP




microbial











GS



Q2PQC9_BEMTA
insect_anti-
6
8
0
3
14

0
LSDGAA
QSDGSIGN

SGF
LQYVEPGL




microbial











HATPGT



Q2PQD0_BEMTA
insect_anti-
6
8
0
3
12

0
LPDGAP
QADGSMGN

TTF
LQHEQPGG




microbial











TPGH



Q3LTD6_9DIPT
insect_anti-
6
8
0
3
10

0
IPDGGR
HESDPGPG

SGF
YRERNWKD




microbial











GD



FSPM_SOLLC
metallocarboxy-
3
5
5
2
13

0
NEP
SSNSD
IGITL
QF
KEKTDQYG




peptidase_inhibitor











LTYRT



MCPI_SOLLC
metallocarboxy-
3
5
5
2
6

0
HKP
STQDD
SGGTF
QA
WRFAGT




peptidase_inhibitor















MCPI_SOLTU
metallocarboxy-
3
5
5
2
6

2
NKP
KTHDD
SGAWF
OA
WNSART




peptidase_inhibitor















O24372_SOLTU
metallocarboxy-
3
5
5
2
13

0
NDY
NTNAD
LGITL
PW
KLKKSSSGF




peptidase_inhibitor











TYSE



O24373_SOLTU
metallocarboxy-
3
5
5
2
13

0
NDY
TTNAD
FGITL
PW
KLKKSPSG




peptidase_inhibitor











GTYSE



O24639_SOLTU
metallocarboxy-
3
5
5
2
13

0
NDY
TTNAD
IGITF
PW
KLKKSPSGF




peptidase_inhibitor











TYSE



Q3S480_SOLTU
metallocarboxy-
3
5
5
2
13

0
NDY
TRNSD
FGITL
PW
KLKKSPGG




peptidase_inhibitor











GTYSE



Q3S486_SOLTU
metallocarboxy-
3
5
5
2
13

0
NDY
NTNAD
FGLTL
PW
KLKKSSSGF




peptidase_inhibitor











TYSE



Q41432_SOLTU
metallocarboxy-
3
5
5
2
13

0
NDY
NTNAD
FGITL
PW
KLKKSSSGF




peptidase_inhibitor











TYSE



Q948Z8_SOLTU
metallocarboxy-
3
5
5
2
13

0
NDY
TTNAD
FGITL
PW
KLKKSPSG




peptidase_inhibitor











GTYSE



Q949A1_SOLBR
metallocarboxy-
3
5
5
2
14

0
NYY
TSNSD
IGITF
QW
KVKTNPYD




peptidase_inhibitor











GSASRT



Q9SBH8_SOLTU
metallocarboxy-
3
5
5
2
6

0
NKP
KTHDD
SGAWF
OA
WNSART




peptidase_inhibitor















Q9SXP0_HYONI
metallocarboxy-
3
5
5
2
11

0
FKY
NVESD
SDGWL
YN
VPSAFEGW




peptidase_inhibitor











RSQ



POI_MUSDO
phenol-
6
5
0
3
6

0
LANGSK
YSHDV

TKR
HNYAKK




oxidase_inhibitor















Q170Q5_AEDAE
phenol-
6
5
0
3
6

0
AANGEY
LTHSE

SGS
LSFSYK




oxidase_inhibitor















Q170Q6_AEDAE
phenol-
6
5
0
3
6

0
AANGEY
LTHSE

SGS
LSFSYK




oxidase_inhibitor















Q5BN34_ANOGA
phenol-
6
5
0
3
6

0
AKNNEY
LTHRD

SGS
LSFSYK




oxidase_inhibitor















AMP1_MESCR
plant_anti-
6
8
0
3
10

0
IKNGKG
REDQGPPF

SGF
YRQVGWA




microbial











RGY



AMP1_MIRJA
plant_anti-
6
8
0
3
10

0
IGNGGR
NENVGPPY

SGF
LRQPGQGY




microbial











GY



AMP2_MIRJA
plant_anti-
6
8
0
3
10

0
IGNGGR
NENVGPPY

SGF
LRQPNQGY




microbial











GV



PAFP_PHYAM
plant_anti-
6
8
0
3
10

1
IKNGGR
NASAGPPY

SSY
FQIAGQSYG




microbial











V



Q54AI2_PHYAM
plant_anti-
6
8
0
3
10

0
IKNGGR
NASAGPPY

SSY
FQIAGQSYG




microbial











V



Q9SDS1_PHYAM
plant_anti-
6
8
0
3
10

0
IKNGGR
VASGGPPY

SNY
LQIAGQSYG




microbial











V



DEF1_PETHY
plant_defensin
6
5
2
10
6

1
PTWDSV
INKKP
VA
CKKAKFSDGH
SKILRR



DEF2_PETHY
plant_defensin
6
5
2
12
6

0
PTWEGI
INKAP
VK
CKAQPEKFTDGH
SKILRR



ALB1A_PEA
plant_toxin
3
7
4
1
9

0
NGV
SPFEMPP
GTSA
R
IPVGLVVGY



ALB1B_PEA
plant_toxin
3
7
4
1
9

1
NGV
SPFEMPP
GSSA
R
IPVGLVVGY



ALB1C_PEA
plant_toxin
3
7
4
1
9

0
NGV
SPFDIPP
GSPL
R
IPAGLVIGN



ALB1D_PEA
plant_toxin
3
7
4
1
9

0
NGV
SPFEMPP
GTSA
R
IPVGLFIGY



ALB1E_PEA
plant_toxin
3
7
4
1
9

0
NGV
SPFEMPP
GSSA
R
IPVGLLIGY



ALB1F_PEA
plant_toxin
3
7
4
1
9

0
NGV
SPFEMPP
GTSA
R
IPVGLVIGY



ALB1_GLYSO
plant_toxin
3
7
4
1
9

0
NGA
SPFEVPP
RSSD
R
VPIGLFVGF



ALB1_PHAAN
plant_toxin
3
7
4
1
10

0
NGA
SPFQMPP
GSTD
L
IPAGLLFVG
















Y



ALB1_PHAAU
plant_toxin
3
7
4
1
9

0
NGA
SPFEMPP
RSTD
R
IPIALFGGF



ALB1_SOYBN
plant_toxin
3
7
4
1
9

1
NGA
SPFEVPP
RSRD
R
VPIGLFVGF



O24095_MEDTR
plant_toxin
6
7
4
1
11

0
PTAGTA
SQRRGNS
GGIE
I
VSQGYPYD
















GGI



O24100_MEDTR
plant_toxin
6
7
5
1
9

0
ARVGMR
SRALPNP
GDIVT
R
VHLHLVGS
















T



O48617_MEDTR
plant_toxin
6
7
5
1
11

0
PFAGRV
SQYESNA
GDSEE
I
VSEWSHYD
















GGI



Q6A1C7_9FABA
plant_toxin
3
7
4
1
9

0
NGV
SPFEMPP
GSSD
R
IPVGLVVGY



Q6A1C8_TRIFG
plant_toxin
3
7
4
1
9

0
SGI
SPFEMPP
RSSD
R
IPIVLVGGY



Q6A1C9_ONOVI
plant_toxin
3
7
4
1
9

0
DGV
SPFEMPP
GSTD
R
VPWGLFVG
















Q



Q8A1D1_9FABA
plant_toxin
5
7
5
1
9

0
NGRDW
SPFEMPP
GDAQN
R
IPWLVGGY



Q6A1D2_MELAB
plant_toxin
3
7
4
1
9

0
SGI
SSFEMPP
RSSS
R
IPWLLGGN



Q6A1D3_LONCA
plant_toxin
5
7
5
1
9

0
NGRDV
SPFEMPP
DDATN
R
IPWGLWGQ



Q6A1D4_CANBR
plant_toxin
3
7
4
1
9

0
SGG
SPFEMPP
GSSD
R
IPWGLVAG
















Y



Q6A1D5_9FABA
plant_toxin
3
7
4
1
9

0
SGA
FPFQMPP
GSTD
R
VPWGLFVG
















Q



Q6A1D6_9FABA
plant_toxin
3
7
4
1
9

0
SGA
SPFERPL
GSTD
R
IPIVLLAGF



Q6A1D7_9FABA
plant_toxin
3
7
4
1
9

0
SGV
SPFEMPP
GSTD
R
IPWGLFVGE



Q7XZC2_PHAVU
plant_toxin
3
7
5
1
9

0
SGV
SPFERPP
GSTRD
R
IPYGLFIGA



Q7XZC3_SOYBN
plant_toxin
3
7
4
1
9

0
NGA
SPFEMPP
RSRD
R
VPIGLVAGF



Q7XZC5_MEDTR
plant_toxin
3
7
4
1
9

0
SGA
SPFEMPP
RSSD
R
IPIGLVAGY



SCCT_MESMA
scorpion1
2
10
2
6
4

0
GP
FTTDANMARK
RE
CGGIGK
FGPQ



SCCX_MESMA
scorpion1
2
10
2
6
4

0
GP
FTTDANMARK
RE
CGGNGK
FGPQ



SCIT_MESTA
scorpion1
2
10
2
7
4

0
GP
FTTDPQTQAK
SE
CGRKGGV
KGPQ



SCX1_BUTEU
scorpion1
2
10
2
6
4

0
MP
FTTRPDMAQQ
RA
CKGRGK
FGPQ



SCX1_BUTSI
scorpion1
2
10
2
8
4

0
KP
FTTDPQMSKK
AD
CGGKGKGK
YGPQ



SCX1_LEIQH
scorpion1
2
10
2
6
4

0
GP
FTTDHQMEQK
AE
CGGIGK
YGPQ



SCX3_BUTEU
scorpion1
2
10
2
7
3

0
MP
FTTDHQTARR
RD
CGGRGRK
FGQ



SCX3_MESTA
scorpion1
2
10
2
6
4

0
PP
FTTNPNMEAD
RK
CGGRGY
ASYQ



SCX4_BUTEU
scorpion1
2
10
2
6
4

0
MP
FTTDHNMAKK
RD
CGGNGK
FGPQ



SCX5_BUTEU
scorpion1
2
10
2
6
4

1
MP
FTTDPNMAKK
RD
CGGNGK
FGPQ



SCX8_LEIQH
scorpion1
2
10
2
8
4

0
SP
FTTDQQMTKK
YD
CGGKGKGK
YGPQ



SCXL_BUTSI
scorpion1
2
10
2
6
4

0
GP
FTKDPETEKK
AT
CGGIGR
FGPQ



SCXL_LEIQU
scorpion1
2
10
2
8
4

1
MP
FTTDHQMARK
DD
CGGKGRGK
YGPQ



SCXP_ANDMA
scorpion1
2
10
2
6
4

0
GP
FTTDPYTESK
AT
CGGRGK
VGPQ



SCXS_BUTEU
scorpion1
2
10
2
6
4

0
MP
FTTDPNMANK
RD
CGGGKK
FGPQ



IPTXA_PANIM
scorpion2
6
5
0
3
10

1
LPHLKR
KADND

GKK
KRRGTNAE
















KR



SCX1_OPICA
scorpion2
6
5
0
3
10

0
LPHLKR
KENND

SKK
KRRGTNPE
















KR



SCX2_OPICA
scorpion2
6
5
0
3
10

0
LPHLKR
KENND

SKK
KRRGANPE
















KR



SCXC1_MESMA
scorpion2
6
5
0
5
8

0
NRLNKK
NSDGD

RYGER
ISTGVNYY



SCXC_SCOMA
scorpion2
6
5
0
3
10

1
LPHLKL
KENKD

SKK
KRRGTNIEK
















R



KGX11_CENNO
scorpion3
5
8
2
10
4

2
VDKSR
AKYGYYQE
QD
CKNAGHNGGT
MFFK



KGX12_CENEL
scorpion3
5
8
2
10
4

0
VDKSR
AKYGYYQE
TD
CKKYGHNGGT
MFFK



KGX13_CENGR
scorpion3
5
8
2
10
4

0
VDKSR
AKYGHYQE
TD
CKKYGHNGGT
MFFK



KGX14_CENSC
scorpion3
5
8
2
10
4

0
VDKSR
AKYGYYQE
QD
CKKAGHNGGT
MFFK



KGX15_CENLL
scorpion3
5
8
2
10
4

0
VDKSR
SKYGYYQE
QD
CKKAGHNGGT
MFFK



KGX16_CENEX
scorpion3
5
8
2
10
4

0
VDKSR
AKYGYYQE
QD
CKKAGHSGGT
MFFK



KGX31_CENNO
scorpion3
5
8
2
10
4

0
VNKSR
AKYGYYSQ
EV
CKKAGHKGGT
DFFK



KGX32_CENEL
scorpion3
5
8
2
10
4

0
VDKSR
AKYGYYQQ
EI
CKKAGHRGGT
EFFK



KGX33_CENSC
scorpion3
5
8
2
10
4

0
VDKSR
AKYGYYGQ
EV
CKKAGHRGGT
DFFK



KGX34_CENGR
scorpion3
5
8
2
10
4

0
VDKSR
QKYGNYAQ
TA
CKKAGHNKGT
DFFK



KGX41_CENLL
scorpion3
5
8
2
10
4

0
VDKSK
SKYGYYGQ
DE
CKKAGDRAGN
VYFK



KGX42_CENNO
scorpion3
5
8
2
10
4

0
VDKSK
GKYGYYQE
QD
CKNAGHNGGT
VYYK



KGX43_CENEX
scorpion3
5
8
2
10
4

0
VDKSK
GKYGYYGQ
DE
CKKAGDRAGI
EYYK



KGX44_CENEX
scorpion3
5
8
2
10
4

0
VDKSK
AKYGYYYQ
DE
CKKAGDRAGT
EYFK



KGX45_CENEX
scorpion3
5
8
2
10
4

0
VDKSQ
AKYGYYYQ
DE
CKKAGDRAGT
EYFK



KGX46_CENLL
scorpion3
5
8
2
10
4

0
VDKSK
SKYGYYGQ
DK
CKKAGDRAGN
VYFK



KGX47_CENLL
scorpion3
5
8
2
10
4

0
VDKSK
AKYGYYGQ
DE
CKKAGDRAGN
VYLK



KGX48_CENEL
scorpion3
5
8
2
10
4

0
VDKSK
GKYGYYHQ
DE
CKKAGDRAGN
VYYK



KGX49_CENSC
scorpion3
5
8
2
10
4

0
VDKSR
GKYGYYGQ
DD
CKKAGDRAGT
VYYK



KGX4A_CENSC
scorpion3
5
8
2
10
4

0
VDKSR
GKYGYYGQ
DE
CKKAGDRAGT
VYYK



KGX4B_CENNO
scorpion3
5
8
2
10
4

0
VDKSQ
GKYGYYGQ
DE
CKKAGERVGT
VYYK



KGX4C_CENSC
scorpion3
5
8
2
10
4

0
VEKSK
GKYGYYGQ
DE
CKKAGDRAGT
VYYK



KGX4D_CENNO
scorpion3
5
8
2
10
4

0
VDKSK
GKYGYYGQ
DE
CKKAGDRAGT
VYYK



KGX51_CENSC
scorpion3
5
8
2
10
4

0
VDKSR
AKYGYYGQ
EV
CKKAGHNGGT
MFFK



KGX52_CENGR
scorpion3
5
8
2
10
4

0
VDKSR
QKYGPYGQ
TD
CKKAGHTGGT
IYFK



A6N2U8_MOMCH
serine_protein-
6
5
3
1
4

0
PRIWME
KRDSD
MAQ
I
VDGH




ase_inhib















IELI_MOMCH
serine_protein-
6
5
3
1
4

0
PLIWME
KRDSD
LAQ
I
VDGH




ase_inhib















ITI1_LAGLE
serine_protein-
6
5
3
1
5

0
PRIYME
KHDSD
LAD
V
LEHGI




ase_inhib















ITR1_CITLA
serine_protein-
6
5
3
1
5

0
PRIYME
KRDAD
LAD
V
LQHGI




ase_inhib















ITR1_CUCMA
serine_protein-
6
5
3
1
5

7
PRILME
KKDSD
LAE
V
LEHGY




ase_inhib















ITR1_LUFCY
serine_protein-
6
5
3
1
5

0
PRILME
SSDSD
LAE
I
LEQGF




ase_inhib















ITR1_MOMCH
serine_protein-
6
5
3
1
5

0
PRILKQ
KRDSD
PGE
I
MAHGF




ase_inhib















ITR1_MOMCO
serine_protein-
6
5
3
1
5

0
PKILQR
RRDSD
PGA
I
RGNGY




ase_inhib















ITR1_MOMRE
serine_protein-
6
5
3
1
5

0
PRILME
KRDSD
LAQ
V
KRQGY




ase_inhib















ITR1_TRIKI
serine_protein-
6
5
3
1
5

0
PRILMP
KVNDD
LRG
K
LSNGY




ase_inhib















ITR2B_CUCSA
serine_protein-
6
5
3
1
6

0
PKILMK
KHDSD
LLD
V
LEDIGY




ase_inhib















ITR2_BRYDI
serine_protein-
6
5
3
1
5

0
PRILMR
KRDSD
LAG
V
QKNGY




ase_inhib















ITR2_ECBEL
serine_protein-
6
5
3
1
5

7
PRILMR
KQDSD
LAG
V
GPNGF




ase_inhib















ITR2_LUFCY
serine_protein-
6
5
3
1
6

0
PRILME
SSDSD
LAE
I
LEQDGF




ase_inhib















ITR2_MOMCH
serine_protein-
6
5
3
1
4

1
PRIWME
KRDSD
MAQ
I
VDGH




ase_inhib















ITR2_MOMCO
serine_protein-
6
5
3
1
5

3
PKILKK
RRDSD
PGA
I
RGNGY




ase_inhib















ITR2_SECED
serine_protein-
6
5
3
1
5

0
PKILMR
KRDSD
LAK
T
QESGY




ase_inhib















ITR3_CUCMC
serine_protein-
6
5
3
1
5

0
PKILMK
KQDSD
LLD
V
LKEGF




ase_inhib















ITR3_CUCPE
serine_protein-
6
5
3
1
5

2
PKILME
KKDSD
LAE
I
LEHGY




ase_inhib















ITR3_CYCPE
serine_protein-
6
5
3
1
5

0
PRILME
KADSD
LAQ
I
EESGF




ase_inhib















ITR3_LUFCY
serine_protein-
6
5
3
1
5

0
PRILME
SSDSD
LAE
I
LENGF




ase_inhib















ITR3_MOMCH
serine_protein-
6
5
3
1
5

0
PRILKQ
KQDSD
PGE
I
MAHGF




ase_inhib















ITR3_MOMCO
serine_protein-
6
5
3
1
5

0
PRILKK
RRDSD
PGE
I
KENGY




ase_inhib















ITR4_CUCMA
serine_protein-
6
5
3
1
5

0
PRILMK
KKDSD
LAE
V
LEHGY




ase_inhib















ITR4_CUCSA
serine_protein-
6
5
3
1
6

0
PRILMK
KHDSD
LPG
V
LEHIEY




ase_inhib















ITR4_CYCPE
serine_protein-
6
5
3
1
5

0
PRILME
KADSD
LAQ
I
QENGF




ase_inhib















ITR4_LUFCY
serine_protein-
6
5
3
1
5

0
PRILMP
SSDSD
LAE
I
LENGF




ase_inhib















ITR5_CYCPE
serine_protein-
6
5
3
1
5

0
PRILME
KADSD
LAQ
I
QESGF




ase_inhib















ITR5_LUFCY
serine_protein-
6
5
3
1
5

0
PRILMP
KTDDD
MLD
R
LSNGY




ase_inhib















ITR5_SECED
serine_protein-
6
5
3
1
5

0
PRILMK
KLDTD
FPT
T
RPSGF




ase_inhib















ITR6_CYCPE
serine_protein-
6
5
3
1
5

0
PRILMK
KKDSD
LAE
I
EEHGF




ase_inhib















ITR7_CYCPE
serine_protein-
6
5
3
1
5

0
PRILMK
KKDSD
LAE
I
QEHGF




ase_inhib















ITRA_MOMCH
serine_protein-
6
5
3
1
4

1
PRIWME
TRDSD
MAK
I
VAGH




ase_inhib















Q9S8D2_CUCME
serine_protein-
6
5
3
1
5

0
PRILMK
KTDRD
LTG
T
KRNGY




ase_inhib















Q9S8W2_CUCME
serine_protein-
6
5
3
1
5

0
PKILMK
KQDSD
LLD
V
LKEGF




ase_inhib















Q9S8W3_CUCME
serine_protein-
6
5
3
1
5

0
PKILMK
KQDSD
LLD
V
LKEGF




ase_inhib















ITR1_MIRJA
serine_protein-
6
7
0
3
10

0
AKTDQI
PPNAPNY

SGS
VPHPRLRIF




ase_inhib_2











V



ITR1_SPIOL
serine_protein-
6
8
0
3
10

0
SPSGAI
SGFGPPEQ

SGA
VPHPILRIFV




ase_inhib_2















ITR2_SPIOL
serine_protein-
6
8
0
3
10

0
SPSGAI
SGFGPPEQ

SGA
VPHPILRIFV




ase_inhib_2















ITR3_SPIOL
serine_protein-
6
8
0
3
10

0
SPSGAI
SGFGPPEQ

SGA
VPHPILRIFV




ase_inhib_2















29C0_ANCSP
spider
5
4
0
10
9

0
TKQAD
AEDE

LDNLFFKRPY
EMRYGAGK
















R



A5A3H0_ATRRO
spider
6
5
0
3
13

0
IPSGQP
PYNEH

SGS
TYKENENG
















NTVQR



A5A3H1_ATRRO
spider
6
5
0
3
13

0
TPTGQP
PYNES

SGS
QEQLNENG
















HTVKR



A5A3H3_ATRRO
spider
6
5
0
3
13

0
IPSGQP
PYNEN

SQS
TFKENENG
















NTVKR



A5A3H4_ATRRO
spider
6
5
0
3
13

0
IPSGQP
PYNEN

SKS
TYKENENG
















NTVQR



A5A3H5_ATRRO
spider
6
5
0
3
13

0
IPSGQP
PYNEN

SQS
TFKENETG
















NTVKR



A9XDF9_GEOA2
spider
6
6
0
4
19

0
ITWRNS
MHNDKG

FPWS
VCWSQTVS
















RNSSRKEK
















KCQ



A9XDG0_GEOA2
spider
6
6
0
4
19

0
ITWRNS
MHNDKG

FPWS
VCWSQTVS
















RNSSRKEK
















KCQ



A9XDG1_GEOA2
spider
6
6
0
4
19

0
ITWRNS
MHNDKG

FPWS
VCWSQTVS
















RNSSGKEK
















KCQ



A9XDG2_GEOA2
spider
6
6
0
4
19

0
ITWRNS
MHNDKG

FPWS
VCWSQTVP
















RNSSRKEK
















KCQ



A9XDG3_GEOA2
spider
6
6
0
4
19

0
ITWRNS
MHYDKG

FPWT
VCWSQTVS
















RNSSRKEK
















KCQ



A9XDG4_GEOA2
spider
6
6
0
4
19

0
TTWRNS
MHNDKG

FPWS
VCWSQTVS
















RNSSRKEK
















KCQ



A9XDG5_GEOA2
spider
6
6
0
4
19

0
ITWRNS
VHNDKG

FPWS
VCWSQTVS
















RNSSRKEK
















KCQ



AF1_GRARO
spider
6
5
0
4
3

0
QKWLWT
DSERK

EDMV
RLW



AF2_GRARO
spider
6
5
0
4
3

0
QKWMWT
DEERK

EGLV
RLW



B1P1A0_CHIJI
spider
6
5
0
4
6

0
KKMFGG
TVHSD

AHLG
KPTLKY



B1P1A1_CHIJI
spider
6
6
0
4
6

0
GGFWWK
GRGKPP

KGYA
SKTWGW



B1P1A2_CHIJI
spider
6
5
0
4
7

0
RWMFGG
TTDSD

EHLG
RWEKPSW



B1P1A3_CHIJI
spider
6
6
0
4
6

0
GGLMAG
DGKSTF

SGYN
SPTWKW



B1P1A4_CHIJI
spider
6
6
0
4
6

0
GGLMAG
DGKSTF

SGYN
SPTWKW



B1P1B0_CHIJI
spider
6
5
0
4
9

0
IEEGKW
PKKAP

GRLE
KGPSPKQK
















K



B1P1B1_CHIJI
spider
6
5
0
4
9

0
IEEGKW
PKKAP

GRLE
KGPSPKQK
















K



B1P1B2_CHIJI
spider
6
5
0
4
9

0
IEEGKW
PKKAP

GRLE
KGPSPKQK
















K



B1P1B3_CHIJI
spider
6
5
0
4
9

0
FKEGHS
PKTAP

RPLV
KGPSPNTK
















K



B1P1B4_CHIJI
spider
6
7
0
2
4

0
EPSGKP
RPLMRIP

GS
VRGK



B1P1B5_CHIJI
spider
6
5
0
4
3

0
QKWMWT
DSERK

EGYV
ELW



B1P1B6_CHIJI
spider
6
5
0
4
3

0
QKWMWT
DSERK

EGYV
ELW



B1P1B7_CHIJI
spider
6
6
0
4
6

0
GQFWWK
GEGKPP

ANFA
KIGLYL



B1P1B8_CHIJI
spider
6
6
0
4
6

0
GQFWWK
GEGKPP

ANFA
KIGLYL



B1P1B9_CHIJI
spider
6
5
0
4
6

0
GTMWSP
STEKP

DNFS
QPAIKW



B1P1C0_CHIJI
spider
6
6
0
4
6

0
QKFFWT
HPGQPP

SGLA
TWPTEI



B1P1C1_CHIJI
spider
6
6
0
4
6

0
QKFFWT
HPGQPP

SGLA
TWPTEI



B1P1C2_CHIJI
spider
6
6
0
4
6

0
GGLMAG
GGKSTF

SGYN
SPTWKW



B1P1C3_CHIJI
spider
6
6
0
4
6

0
GGLMDG
DGKSTF

SGYN
SPTWKW



B1P1C4_CHIJI
spider
6
6
0
4
6

0
GGLMDG
DGKSTF

SGFN
SPTWKW



B1P1C6_CHIJI
spider
6
6
0
4
6

0
GGLMDG
DGKSTF

SGFN
SPTWKW



B1P1C8_CHIJI
spider
6
6
0
4
6

0
GEFMWK
GAGKPT

SGYD
SPTWKW



B1P1C9_CHIJI
spider
6
6
0
4
6

0
GEFMWK
GAGKPT

SGYD
SPTWKW



B1P1D0_CHIJI
spider
6
6
0
4
6

0
GEFMWK
GAGKPT

SGYD
SPTWKW



B1P1D1_CHIJI
spider
6
5
0
4
6

0
KGFQVK
KKDSE

SSYV
GSQWKW



B1P1D2_CHIJI
spider
6
5
0
4
6

0
KGFQVK
KKDSE

SSYV
GSQWKW



B1P1D3_CHIJI
spider
6
5
0
4
6

0
KGFQVK
KKDSE

SSYV
GRQWKW



B1P1D4_CHIJI
spider
6
5
0
4
6

0
YDIGEL
SSDKP

SGYY
SPRWGW



B1P1D5_CHIJI
spider
6
6
0
4
6

0
GGFWWK
GSGKPA

PKYV
SPKWGL



B1P1D6_CHIJI
spider
6
6
0
4
6

0
GGFWWK
GSGKPA

PKYV
SPKWGL



B1P1D7_CHIJI
spider
6
5
0
4
6

0
RKMFGG
SKHED

AHLA
KRTFNY



B1P1D8_CHIJI
spider
6
5
0
4
6

0
RKMFGG
SKHED

AHLA
KRTFNY



B1P1D9_CHIJI
spider
6
5
0
4
6

0
RKMFGG
SVDSD

AHLG
KPTLKY



B1P1E0_CHIJI
spider
6
5
0
4
6

0
RKMFGG
SVDSD

AHLG
KPTLKY



B1P1E1_CHIJI
spider
6
5
0
4
6

0
RKMFGG
SVDSD

AHLG
KPTLKY



B1P1E2_CHIJI
spider
6
5
0
4
6

0
RKMFGG
SVDSD

AHLG
KPTLKY



B1P1E3_CHIJI
spider
6
5
0
4
6

0
RKMFGG
SVDSD

AHLG
KPTLKY



B1P1E4_CHIJI
spider
6
5
0
4
6

0
RKMFGG
SVHSD

AHLG
KPTLKY



B1P1E5_CHIJI
spider
6
5
0
4
5

0
GGWMAK
ADSDD

ETFH
TRFNV



B1P1E6_CHIJI
spider
6
5
0
4
5

0
GGWMAK
ADSDD

ETFH
TRFNV



B1P1E7_CHIJI
spider
6
5
0
4
5

0
GGWMAK
ADSDD

ETFH
TRFNV



B1P1E8_CHIJI
spider
6
5
0
4
5

0
GGWMAK
ADSDD

EAFH
TRFNV



B1P1F0_CHIJI
spider
6
6
0
4
5

0
RGYGLP
TPEKND

QRLY
SQHRL



B1P1F1_CHIJI
spider
6
6
0
4
6

0
LGMFSS
NPDNDK

EGRK
DRRDQW



B1P1F2_CHIJI
spider
6
6
0
4
6

0
LGLFSS
NPDNDK

EGRK
NRRDKW



B1P1F3_CHIJI
spider
6
5
0
4
6

0
TKFLGG
SEDSE

PHLG
KDVLYY



B1P1F4_CHIJI
spider
6
5
0
4
6

0
TKFLGG
SEDSE

PHLG
KDVLYY



B1P1F5_CHIJI
spider
6
5
0
4
7

0
TKLLGG
TKDSE

PHLG
RKKWPYH



B1P1F6_CHIJI
spider
6
5
0
4
7

0
RYLMGG
SKDGD

EHLV
RTKWPYH



B1P1F7_CHIJI
spider
6
5
0
4
7

0
REWLGG
SKDAD

AHLE
RKKWPYH



B1P1F8_CHIJI
spider
6
5
0
4
7

0
RALYGG
TKDED

KHLA
RRTLPTY



B1P1F9_CHIJI
spider
6
5
0
4
7

0
RALYGG
TKDED

KHLA
RRTLPTY



B1P1G0_CHIJI
spider
6
5
0
4
7

0
RWLFGG
EKDSD

EHLG
RRAKPSW



B1P1G2_CHIJI
spider
6
5
0
4
7

0
RWLFGG
EKDSD

EHLG
RRAKPSW



B1P1G3_CHIJI
spider
6
5
0
4
7

0
RWLFGG
EKDSD

EHLG
RRAKPSW



B1P1G4_CHIJI
spider
6
5
0
4
7

0
RWLFGG
EKDSD

EHLG
RRAKPSW



B1P1G5_CHIJI
spider
6
5
0
4
7

0
RWLFGG
EKDSD

EHLG
RRTKPSW



B1P1G6_CHIJI
spider
6
5
0
4
7

0
RWMFGG
TTDSD

EHLG
RWEKPSW



B1P1G7_CHIJI
spider
6
5
0
4
7

0
RWMFGG
TTDSD

EHLG
RWEKPSW



B1P1G8_CHIJI
spider
6
5
0
4
6

0
KWYLGD
KAHED

EHLR
HSRWDW



B1P1G9_CHIJI
spider
6
5
0
4
5

0
GEKNDR
KTNQD

SGFR
TKFRR



B1P1H0_CHIJI
spider
6
5
0
4
5

0
GEKNDR
KTNQD

SGFR
TKFRR



B1P1H1_CHIJI
spider
6
5
0
4
6

0
RKMFGG
SVDSD

AHLG
KPTLKY



B1P1H2_CHIJI
spider
6
6
0
4
6

0
LGLFWI
NYMDDK

PGYK
ERSSPW



B1P1H3_CHIJI
spider
6
7
0
4
9

0
IERMQT
EVEAGLP

SGAP
ICPYIGDCI



B1P1H4_CHIJI
spider
6
7
0
4
9

0
IERMQT
EVEAGLP

SGAP
ICPYIGDCI



B1P1H5_CHIJI
spider
6
7
0
4
9

0
IERMQT
GVEAGLP

SGAP
ICPYIGDCI



B1P1H6_CHIJI
spider
6
6
0
4
14

0
WGANVP
EDENSP

SPLK
EKTFGYGW
















WYGSPF



B1P1H7_CHIJI
spider
6
6
0
4
14

0
WGANVP
EDENSP

PPLK
EKTFGYGW
















WYGSPF



B1P1H8_CHIJI
spider
6
9
0
4
4

0
GHLHDP
PNDRPGHRT

IGLQ
RYGS



B1P1H9_CHIJI
spider
6
5
0
4
7

0
RWFWGA
KSDSD

RYLG
KRKWPNI



B1P1I0_CHIJI
spider
6
5
0
10
9

0
SRKTWP
ETSED

DKNCSDTFWT
QLGYGCSR
















V



CALA_CALS5
spider
6
5
0
3
16

0
ISARYP
SNSKD

SGN
GTFWTCYIR
















KDPCSKE



CALB_CALS5
spider
6
5
0
3
16

0
ISARYP
SNSKD

SGN
GTFWTCFIR
















KDPCSKE



CALC_CALS5
spider
6
5
0
3
16

0
ISARYP
SNSKD

SGS
GIFWTCYLR
















KDPCSKE



F256_OLIOR
spider
6
5
0
3
8

0
TYPGQQ
KSDDE

HGT
KTAFIGRI



JZT11_CHIJI
spider
6
5
0
4
6

1
RKMFGG
SVDSD

AHLG
KPTLKY



JZT12_CHIJI
spider
6
5
0
4
3

0
QKWMWT
DSERK

EGYV
ELW



JZTX1_CHIJI
spider
6
6
0
4
6

0
GQFWWK
GEGKPP

ANFA
KIGLYL



JZTX3_CHIJI
spider
6
6
0
4
6

1
GGFWWK
GRGKPP

KGYA
SKTWGW



JZTX5_CHIJI
spider
6
5
0
4
3

0
QKWMWT
DSKRA

EGLR
KLW



JZTX7_CHIJI
spider
6
6
0
4
6

2
GGLMAG
DGKSTF

SGYN
SPTWKW



MTX2_GRARO
spider
6
5
0
4
3

1
QKWMWT
DEERK

EGLV
RLW



MTX4_GRARO
spider
6
6
0
5
6

2
LEFWWK
NPNDDK

RPKLK
SKLFKL



Q5Y4U5_AGEOR
spider
6
4
0
4
8

0
AEKGIK
HNIH

SGLT
KCKGSSCV



Q5Y4U6_AGEOR
spider
6
6
0
4
9

0
VGENGH
RSWYND

DGYY
SCMQPPNCI



Q5Y4U7_AGEOR
spider
6
6
0
4
9

0
VGENGR
RDWYND

DGFY
SCRQPPYCI



Q5Y4U8_AGEOR
spider
6
7
0
4
9

0
VGENQQ
ADWAGLH

SGYY
TCRYFPKCI



Q5Y4U9_AGEOR
spider
6
7
0
4
9

0
VGENQQ
ADWARPH

SGYY
TCRYFPKCI



Q5Y4V0_AGEOR
spider
6
7
0
4
9

0
VGENQQ
ANWAGPH

SGYY
TCRYFPKCI



Q5Y4V1_AGEOR
spider
6
7
0
4
9

0
VGESQQ
ADWSGPY

KGYY
TCQYFPKCI



Q5Y4V2_AGEOR
spider
6
7
0
4
9

0
VGESQQ
ADWSGPY

KGYY
TCRYFPKCI



Q5Y4V3_AGEOR
spider
6
7
0
4
9

0
VGESQQ
ADWSGPY

KGYY
TCRYFPKCI



Q5Y4V4_AGEOR
spider
6
7
0
4
9

0
VGENQQ
ADWAGPH

SGYY
TCRYFPKCI



Q5Y4V5_AGEOR
spider
6
7
0
4
9

0
VGDGQR
ADWAGPY

SGYY
SCRSMPYC
















R



Q5Y4V6_AGEOR
spider
6
7
0
4
9

0
VGENQQ
ADWAGPH

SGYY
TCRYFPKCI



Q5Y4V7_AGEOR
spider
6
7
0
4
9

0
VGDGQR
ADWAGPY

SGYY
SCRSMPYC
















R



Q5Y4V8_AGEOR
spider
6
7
0
4
9

0
AAKNKR
ADWAGPW

EGLY
SCRSYPGC
















M



Q5Y4W0_AGEOR
spider
4
5
0
4
10

0
THGS
ENGET

DGWR
RYTGRAVP
















FM



Q5Y4W1_AGEOR
spider
6
7
0
4
9

0
VGENQQ
ADWAGPH

SGLR
KELSIWDSR



Q5Y4W2_AGEOR
spider
6
7
0
4
9

0
LPRNKF
NPSSGPR

SGLT
KELNIWAN
















K



Q5Y4W3_AGEOR
spider
6
7
0
4
9

0
LPRNKF
NPSSGPR

SGLT
KELNIWDS
















R



Q5Y4W4_AGEOR
spider
6
7
0
4
9

0
LPRNKF
NPSSGPR

SGLT
KELNIWAS
















K



Q5Y4W5_AGEOR
spider
6
7
0
4
9

0
LPRNKF
NPSSGPR

SGLT
KELNIWAS
















K



Q5Y4W6_AGEOR
spider
6
7
0
4
9

0
LPHNRF
NALSGPR

SGLT
KELNIWAS
















K



Q5Y4W7_AGEOR
spider
6
7
0
4
9

0
LPHNKF
NALSGPR

SGLK
KELTIWNT
















K



Q5Y4W8_AGEOR
spicier
6
7
0
4
9

0
LPHNRF
NALTGPR

SRLR
KELSIWDSI



Q5Y4X0_AGEOR
spider
6
7
0
4
9

0
LPHNRF
NALSGPR

SGLK
KELSIWDSI



Q5Y4X1_AGEOR
spider
6
7
0
4
9

0
LPHNRF
NALSGPR

TGLK
KELSIWDSR



Q5Y4X2_AGEOR
spider
6
7
0
4
9

0
LPHNRF
NALSGPR

SGLR
KELSIRDSR



Q5Y4X3_AGEOR
spider
6
7
0
4
9

0
LPHNRF
NALSGPR

SGLK
KELSIWDST



Q5Y4X4_AGEOR
spider
6
7
0
4
9

0
LPHNRF
NALSDPR

SGLR
KELSIWDSR



Q5Y4X8_AGEOR
spider
6
7
0
4
9

0
LPHNRF
NALSGPR

SGLR
KELSIWDST



Q5Y4Y0_AGEOR
spider
6
7
0
4
9

0
LPHNRF
NALSGPR

SRLK
KELSIWDSR



Q5Y4Y1_AGEOR
spider
6
7
0
4
9

0
LPRNRF
NALSGPR

SGLR
KELSIWASK



Q5Y4Y2_AGEOR
spider
6
7
0
4
9

0
LPHNRF
NALSGPR

SGLK
KELSIYDSR



Q5Y4Y4_AGEOR
spider
6
7
0
4
9

0
LPHNRF
NALSGPR

SGLR
KELSIWDSR



SFI1_SEGFL
spider
6
7
0
4
17

0
MTDGTV
YIHNHND

GSCL
SNGPIARPW
















EMMVGNC
















M



SFI2_SEGFL
spider
6
7
0
4
17

0
MADETV
YIHNHNN

GSCL
LNGPYARP
















WEMLVGN
















CK



SFI3_SEGFL
spider
6
7
0
4
17

0
MVDGTV
YIHNHND

GSCL
LNGPIARPW
















EMMVGNC
















K



SFI4_SEGFL
spider
6
7
0
4
17

0
MVDGTV
YIHNHND

GSCL
LNGPIARPW
















KMMVGNC
















K



SFI5_SEGFL
spider
6
7
0
4
17

0
MVDGTV
YIHNHND

GSCL
PNGPLARP
















WEMLVGN
















CK



SFI6_SEGFL
spider
6
7
0
4
17

0
MTDETV
YIHNHND

GSCL
LNGPIARPW
















EMMVGNC
















K



SFI7_SEGFL
spider
6
7
0
4
17

0
MADGTV
YIHNHND

GSCL
PNGPLARP
















WEVLVGNC
















K



SFI8_SEGFL
spider
6
7
0
4
17

0
MADGTV
YIHNHND

GSCL
PNGPLARP
















WEMLVGN
















CK



T244_PHONI
spider
6
5
0
3
8

0
RFNGQQ
TSDGQ

YGK
RTAFLRMI



TACHC_TACTR
spider
6
7
0
4
4

0
ATYGQK
RTWSPPN

WNLR
KAFR



TJT1A_HADFO
spider
6
5
0
4
10

0
TGADRP
AACCP

PGTS
KGPEPNGV
















SY



TJT1A_HADVE
spider
6
5
0
4
10

0
TGADRP
AACCP

PGTS
QGPESNGV
















VY



TJT1B_HADVE
spider
6
5
0
4
10

0
TGADRP
AACCP

PGTS
QGPEPNGV
















SY



TJT1C_HADVE
spider
6
5
0
4
9

1
TGADRP
AACCP

PGTS
KAESNGVS
















Y



TOG4A_AGEAP
spider
7
6
0
4
10

3
IAKDYGR
KWGGTP

RGRG
ICSIMGTNC
















E



TOG4B_AGEAP
spider
7
6
0
4
10

3
IAEDYGK
TWGGTK

RGRP
RCSMIGTNC
















E



TOM1A_MISBR
spider
6
6
0
10
7

0
TPSGQP
QPNTQP

NNAEEEQTIN
NGNTVYR



TOT1A_ATRRO
spider
6
5
0
3
13

0
IPSGQP
PYNEH

SGS
TYKENENG
















NTVQR



TOT1A_HADIN
spider
6
5
0
3
13

0
TPTDQP
PYHES

SGS
TYKANENG
















NQVKR



TOT1A_HADVE
spider
6
5
0
3
13

2
IPSGQP
PYNEN

SQS
TFKENENG
















NTVKR



TOT1B_HADFO
spider
6
5
0
3
13

0
IRSGQP
PYNEN

SQS
TFKTNENG
















NTVKR



TOT1B_HADIN
spider
6
5
0
3
13

0
IPTGQP
PYNEN

SQS
TYKANENG
















NQVKR



TOT1B_HADVE
spider
6
5
0
3
13

0
IPSGQP
PYNEN

SQS
TYKENENG
















NTVKR



TOT1C_HADIN
spider
6
5
0
3
13

0
IRTDQP
PYNES

SGS
TYKANENG
















NQVKR



TOT1C_HADVE
spider
6
5
0
3
13

0
IPSGQP
PYNEN

SQS
TFKENENG
















NTVKR



TOT1D_HADVE
spider
6
5
0
3
13

0
IPSGQP
PYNEN

SKS
TYKENENG
















NTVQR



TOT1E_HADVE
spider
6
5
0
3
13

0
IPSGQP
PYNEN

SQS
TYKENENG
















NTVKR



TOT1F_HADVE
spider
6
5
0
3
13

0
IPSGQP
PYSKY

SGS
TYKTNENG
















NSVQR



TOT2A_ATRIL
spider
5
5
0
5
4

0
VLSRV
SPDAN

GLTPI
KMGL



TOT2A_HADIN
spider
6
5
0
5
4

0
VVNTLG
SSDKD

GMTPS
TLGI



TOT2A_HADVE
spider
6
5
0
5
4

2
LFGNGR
SSNRD

ELTPV
KRGS



TOT2B_ATRIL
spider
5
5
0
5
4

0
VLSRV
SPDAN

GLTPI
KMGL



TOT2B_HADIN
spider
6
5
0
5
4

0
VLNTLG
SSDKD

GMTPS
TLGI



TX13_CUPSA
spider
6
6
0
8
14

0
TLRNHD
TDDRHS

RSKMFKDV
TCFYPSQAK
















KELCT



TX13_PHONI
spider
6
5
0
3
8

0
RSNGQQ
TSDGQ

YGK
MTAFMGKI



TX17_PHORI
spider
6
5
0
3
8

0
RFNGQQ
TSDGQ

NGR
INAFQGRI



TX19_PHOKE
spider
6
4
0
8
8

0
ADAWKS
DNLP

VVNGYSRT
MCSANRCN



TX1A_GEOA2
spider
6
6
0
4
19

0
ITWRNS
MHNDKG

FPWS
VCWSQTVS
















RNSSRKEK
















KCQ



TX1_CERCR
spider
6
6
0
4
6

0
LGWFKS
DPKNDK

KNYT
SRRDRW



TX1_GRARO
spider
6
5
0
4
3

0
QKWMWT
DSKRK

EDMV
QLW



TX1_HETMC
spider
6
5
0
4
6

0
RYLFGG
SSTSD

KHLS
RSDWKY



TX1_PSACA
spider
6
5
0
4
6

0
RWFMGG
DSTLD

KHLS
KMGLYY



TX1_SCOGR
spider
6
5
0
4
6

1
RYLFGG
KTTAD

KHLA
RSDGKY



TX1_STRCF
spider
6
5
0
4
6

0
TRMFGA
RRDSD

PHLG
KPTSKY



TX1_THEBL
spider
6
6
0
4
6

0
LGMFES
DPNNDK

PNRE
NRKHKW



TX21_PHOKE
spider
6
5
0
3
8

0
KYNGEQ
TSDGQ

NGR
RTAFMGKI



TX22_PHOKE
spider
6
6
0
4
13

0
IGHRRS
KEDRNG

KLYT
NCWYPTPD
















DQWCK



TX22_PHONI
spider
6
5
0
4
9

0
PKILKQ
KSDED

RGWK
FGFSIKDKM



TX24_PHONI
spider
6
5
0
3
8

0
RFNGQQ
TSDGQ

YGK
RTAFMGKI



TX27_PHONI
spider
6
5
0
4
11

0
APRFSL
NSDKE

KGLR
KSRIANMW
















PTF



TX27_PHORI
spider
6
5
0
4
11

0
APRGLL
FRDKE

KGLT
KGRFVNTW
















PTF



TX29_PHONI
spider
5
5
0
4
8

0
IPFKP
KSDEN

KKFK
KTTGIVKL



TX2_CERCR
spider
6
6
0
4
6

0
LGWFKS
DPKNDK

KNYT
SRRDRW



TX2_HETMC
spider
6
5
0
4
10

0
RYFWGE
NDEMV

EHLV
KEKWPITY
















KI



TX2_PSACA
spider
6
5
0
4
6

0
RWFLGG
KSTSD

EHLS
KMGLDY



TX2_THEBL
spider
6
6
0
4
6

0
LGMFSS
DPKNDK

PNRV
RSRDQW



TX31_PHONI
spider
6
6
0
4
10

0
AAVYER
GKGYKR

EERP
KCNIVMDN
















CT



TX325_SEGFL
spider
6
10
0
4
20

0
IESGKS
THSRSMKNGL

PKSR
NCRQIQHR
















HDYLGKRK
















YSCR



TX32_PHOKE
spider
6
5
0
4
11

0
APRGQL
FSDKL

IGLR
KSRVANM
















WPTF



TX32_PHONI
spider
6
6
0
4
10

0
AGLYKK
GKGASP

EDRP
KCDLAMGN
















CI



TX33A_PHONI
spider
6
5
0
9
8

0
ADAYKS
NHPRT

DGYNGYKRA
ICSGSNCK



TX35A_PHONI
spider
6
6
0
4
13

0
IGHRRS
KEDRNG

RLYT
NCWYPTPG
















DQWCK



TX35_PHONI
spider
6
6
0
4
16

0
IGRNES
KFDRHG

WPWS
SCWNKEGQ
















PESDVWCE



TX37_PHORI
spider
6
6
0
4
10

0
AGLYKK
GKGVNT

ENRP
KCDLAMGN
















CI



TX3A_PHONI
spider
6
6
0
4
9

0
ADVYKE
WYPEKP

KDRA
QCTLGMTC
















K



TX3_CERCR
spider
6
5
0
4
6

0
RKLLGG
TIDDD

PHLG
NKKYWH



TX3_LOXIN
spider
6
9
0
15
10

0
IKYGDR
GSPHGLPSN

NDWKYKGRC
TCGPNCPSR















GCTMGV
G



TX3_PARSR
spider
6
6
0
5
6

0
LGFLWK
NPSNDK

RPNLV
SRKDKW



TX3_PSACA
spider
6
5
0
4
6

0
RWYLGG
KEDSE

EHLQ
HSYWEW



TX3_THEBL
spider
6
6
0
4
6

0
LGMFSS
DPNNDK

PNRV
RVRDQW



TX482_HYSGI
spider
6
5
0
4
6

0
RYMFGG
SVNDD

PRLG
HSLFSY



TX5A_HETVE
spider
6
5
0
4
9

0
GWIMDD
TSDSD

PNWV
SKTGFVKNI



TX5B_HETVE
spider
6
5
0
4
9

0
GWLFHS
ESNAD

ENWA
ATTGRFRY
















L



TXAG_AGEOP
spider
6
7
0
4
9

1
LPHNRF
NALSGPR

SGLK
KELSIWDSR



TXAG_AGEOR
spider
6
7
0
4
9

0
LPHNRF
NALSGPR

SGLK
KELSIWDSR



TXC1_CUPSA
spider
6
6
0
8
17

0
IPKHEE
TNDKHN

RKGLFKLK
QCSTFDDES
















GQPTERCA



TXC1_HOLCU
spider
6
6
0
4
9

0
VGEYGR
RSAYED

DGYY
NCSQPPYCL



TXC2_HOLCU
spider
6
7
0
4
9

0
VGDGQR
ADWAGPY

SGYY
SCRSMPYC
















R



TXC3_HOLCU
spider
6
7
0
4
9

0
VGDGQK
ADWFGPY

SGYY
SCRSMPYC
















R



TXC5_PHONI
spider
6
4
0
4
8

0
AQKGIK
HDIH

TNLK
VREGSNRV



TXC5_PHORI
spider
6
4
0
4
10

0
ADAYKS
DSLK

NNRT
MCSMIGTN
















CT



TXC9_CUPSA
spider
6
6
0
8
17

0
IPKHHE
TNDKKN

KKGLTKMK
KCFTVADA
















KGATSERC
















A



TXDP1_PARLU
spider
6
7
0
4
9

1
LGEGEK
ADWSGPS

DGFY
SCRSMPYC
















R



TXDP2_PARLU
spider
6
7
0
4
9

1
VGDGQR
ASWSGPY

DGYY
SCRSMPYC
















R



TXDP3_PARLU
spider
6
7
0
4
9

0
LNEGDW
ADWSGPS

GEMW
SCPGFGKCR



TXDP4_PARLU
spider
6
7
0
4
9

0
ATKNQR
ASWAGPY

DGFY
SCRSYPGC
















M



TXDT1_HADVE
spider
6
5
0
4
10

1
AKKRNW
GKTED

CPMK
VYAWYNE
















QGS



TXFK1_PSACA
spider
6
8
0
4
4

1
GILHDN
VYVPAQNP

RGLQ
RYGK



TXFK2_PSACA
spider
6
8
0
2
4

0
LPAGKT
VRGPMRVP

GS
SQNK



TXFU5_OLIOR
spider
6
6
0
4
10

0
VPVYKE
WYPQKP

EDRV
QCSFGMTN
















CK



TXG1D_PLEGU
spider
6
6
0
4
6

0
GGFWWK
GSGKPA

PKYV
SPKWGL



TXG1E_PLEGU
spider
6
6
0
4
6

0
GGFWWK
GSGKPA

PKYV
SPKWGL



TXG2_PLEGU
spider
6
5
0
4
6

0
RKMFGG
SVDSD

AHLG
KPTLKY



TXH10_ORNHU
spider
6
8
0
2
4

1
LPPGKP
YGATQKIP

GV
SHNK



TXH1_ORNHU
spider
6
6
0
4
6

1
KGVFDA
TPGKNE

PNRV
SDKHKW



TXH3_ORNHU
spider
6
4
0
4
6

0
AGYMRE
KEKL

SGYV
SSRWKW



TXH4_ORNHU
spider
6
6
0
6
6

1
LEIFKA
NPSNDQ

KSSKLV
SRKTRW



TXH5_ORNHU
spider
6
5
0
4
6

0
RWYLGG
SQDGD

KHLQ
HSNYEW



TXH9_ORNHU
spider
6
5
0
4
10

0
APEGGP
VAGIG

AGLR
SGAKLGLA
















GS



TXHA1_SELHA
spider
6
6
0
4
6

1
KGFGKS
VPGKNE

SGYA
NSRDKW



TXHA3_SELHA
spider
6
6
0
4
6

1
KGFGDS
TPGKNE

PNYA
SSKHKW



TXHA4_SELHA
spider
6
6
0
6
6

3
LGFGKG
NPSNDQ

KSSNLV
SRKHRW



TXHA5_SELHA
spider
6
6
0
6
6

0
LGFGKG
NPSNDQ

KSANLV
SRKHRW



TXHN1_GRARO
spider
6
5
0
4
6

1
RYLFGG
KTTSD

KHLG
KFRDKY



TXHN2_GRARO
spider
6
5
0
4
6

0
RYLFGG
KTTAD

KHLG
KFRDKY



TXHP1_HETVE
spider
6
6
0
4
4

0
GTIWHY
GTDQSE

EGWK
SRQL



TXHP2_HETVE
spider
6
5
0
4
3

1
GKLFSG
DTNAD

EGYV
RLW



TXHP3_HETVE
spider
6
5
0
4
3

0
GTLFSG
STHAD

EGFI
KLW



TXI11_DIGCA
spider
7
4
0
13
13

0
MKYKSGD
RGKT

DQQYLWYK
RCFTVEVFK















WRNLA
KDCW



TXI92_DIGCA
spider
6
4
0
13
13

0
KKYDVE
DSGE

QKQYLWYK
RCLKSGFFS















WRPLD
SKCV



TXJ1_HETVE
spider
6
5
0
4
3

0
GTLFSG
DTSKD

EGYV
HLW



TXL1_ORNHU
spider
4
5
0
4
6

1
LGDK
DYNNG

SGYV
SRTWKW



TXLT4_LASPA
spider
6
6
0
4
14

0
GGVDAP
DKDRPD

SYAE
LRPSGYGW
















WHGTYY



TXM10_MACGS
spider
6
6
0
4
10

0
LAEYQK
EGSTVP

PGLS
SAGRFRKT
















KL



TXM11_MACGS
spider
6
5
0
4
3

0
KLTFWR
KKDKE

GWNI
TGL



TXM31_OLIOR
spider
6
6
0
4
1

0
VPVYKE
WYPQKP

EDRV
Q



TXMG1_AGEAP
spider
6
6
0
4
9

1
VPENGH
RDWYDE

EGFY
SCRQPPKCI



TXMG1_MACGS
spider
6
5
0
4
13

0
MGYDIH
TDRLP

FGLE
VKTSGYW
















WYKKTY



TXMG2_AGEAP
spider
6
7
0
4
9

0
ATKNKR
ADWAGPW

DGLY
SCRSYPGC
















M



TXMG2_MACGS
spider
6
5
0
6
13

0
MGYDIE
NENLP

KHRKLE
VETSGYWW
















YKRKY



TXMG3_AGEAP
spider
6
7
0
4
9

0
VGDGQR
ADWAGPY

SGYY
SCRSMPYC
















R



TXMG4_AGEAP
spider
6
7
0
4
9

0
VGENQQ
ADWAGPH

DGYY
TCRYFPKCI



TXMG5_AGEAP
spider
6
7
0
4
9

0
VGENKQ
ADWAGPH

DGYY
TCRYFPKCI



TXMG5_MACGS
spider
6
5
0
4
4

1
KLTFWK
KNKKE

GWNA
ALGI



TXMG6_AGEAP
spider
6
7
0
4
9

0
VGESQQ
ADWAGPH

DGYY
TCRYFPKCI



TXMG6_MACGS
spider
4
9
0
4
9

0
VDGS
DPYSSDAPR

GSQI
QCIFFVPCY



TXMG7_MACGS
spider
6
5
0
4
10

0
APEGGP
VVGIG

KGYS
APGLLGLV
















GH



TXMG8_MACGS
spider
6
5
0
4
7

0
KGLFRQ
KKSSE

KGSS
ESDLTGL



TXMG9_MACGS
spider
6
4
0
4
10

0
GTNGKP
VNGQ

GALR
VVTYHYAD
















GV



TXP1_PARSR
spider
6
5
0
4
3

1
QKWMWT
DSARK

EGLV
RLW



TXP1_PSACA
spider
6
6
0
4
9

1
IPKWKG
VNRHGD

EGLE
WKRRRSFE
















V



TXP2_PARSR
spider
6
5
0
4
3

0
QKWMWT
DEERK

EGLV
RLW



TXP3_APTSC
spider
6
5
0
3
15

0
NSKGTP
TNADE

GGK
AYNVWNCI
















GGGCSKT



TXP5_BRASM
spider
6
5
0
4
6

0
VDFQTK
KKDSD

GKLE
SSRWKW



TXP7_APTSC
spider
6
6
0
4
4

1
ARVKEA
GPWEWP

SGLK
DGSE



TXPR1_THRPR
spider
6
5
0
4
6

0
RYWLGG
SAGQT

KHLV
SRRHGW



TXPR2_THRPR
spider
6
5
0
4
3

0
QKWMWT
DSERK

EGMV
RLW



TXPT6_MACGS
spider
6
5
0
4
13

0
MGYDIE
NERLH

ADLE
VKTSGRW
















WYKKTY



TXR3_MACRV
spider
6
5
0
4
4

0
KLTFWK
KNKKE

GWNA
ALGI



TXU2_HETVE
spider
6
5
0
4
3

0
GGLFSG
DSNAD

EGYV
RLW



TXVL2_CORVA
spider
6
5
0
4
6

0
SRAGEN
YKSGR

DGLY
KAYVVT



VSTX1_GRARO
spider
6
5
0
4
6

0
GKFMWK
KNSND

KDLV
SSRWKW



VSTX2_GRARO
spider
6
5
0
4
3

0
QKWMWT
DEERK

EGLV
RLW



VSTX3_GRARO
spider
6
6
0
4
6

0
LGWFKG
DPDNDK

EGYK
NRRDKW



WGRTX_GRARO
spider
6
5
0
4
8

1
VRFWGK
SQTSD

PHLA
KSKWPRNI



ASTAE_ASTSM
sponge
6
7
0
6
9

0
GLFGDL
TLDGTLA

IALELE
IPLNDFVGI



AX6A_TERSU
terebra
3
5
0
4
10

0
PEY
PHGNE

EHHE
RYDPWSRE
















LK



A2Q0G4_9VIRU
virus1
6
8
0
16
7

0
TPNYAD
MDLQFNKP

RQQQLEVGQ
FRFGKGI















IIPEDFV




A2Q0I8_9VIRU
virus1
6
8
0
16
7

0
IPNYAH
TDIGRTEP

RQQELRIGQT
FRFGIGK















IPEDFI




A2Q0M1_9VIRU
virus1
6
6
0
16
7

0
IPQGSY
MDTVKP

QPVVLNGFHV
FIFGQGL















RHYERI




A2Q0M3_9VIRU
virus1
6
6
0
16
7

0
IPQGSY
MDTVKP

QPAVLLNRHI
FVFGQGL















RHYERI




A2Q0M4_9VIRU
virus1
6
6
0
16
7

0
IPEGSY
LDAIAP

QPTVLRHGYDRHR
FIFGQGL















ENI




O11874_CSV
virus1
6
6
0
16
7

0
IDNWKY
RGINKP

GQQLMEDGTLGPK
FELGQGI















HFV




Q5ZNS9_9VIRU
virus1
6
6
0
16
7

0
LKLKSN
DLRSNS

QESEIGNSSSL
DYLGKRV















VKKIH




Q5ZNZ4_9VIRU
virus1
6
6
0
17
7

0
LPLGNP
MKSKLP

KLTYQNSYLRLGE
FKFGKGI















VPTT




Q66216_CSV
virus1
6
6
0
5
7

0
MANWDY
LGFGKP

DQHSI
FKFGEGI



Q66236_CSV
virus1
6
6
0
5
7

0
MANWDY
LGFGKP

DQHSI
FKFGEGI



Q80KH5_CSV
virus1
6
6
0
14
7

0
IGNETN
VHTTLP

SRYEDGEISPRKFV
WRFGTGI



Q80KH6_CSV
virus1
6
6
0
14
7

0
IVNETN
VHTTLP

SRYEDGEISPRKFV
WRFGTGI



Q80KH7_CSV
virus1
6
6
0
17
7

0
IKHYHR
RGVSKP

GQEALPTSGVLVG
AVFGSGL















QEYT




Q80KH8_CSV
virus1
6
6
0
16
7

0
IPNWSN
LHTITP

HQQSLERGQVLPH
WRFGSGL















DFI




Q80KH9_CSV
virus1
6
6
0
16
7

0
LVPSHR
LHTITP

HQQSLERGQVLPH
WRFGSGL















DFI




Q80PW5_CSV
virus1
6
6
0
16
7

0
IAYNDY
RFSLTP

DHGLSTQGAWMS
SVFDSGR















EEHT




Q80S75_9VIRU
virus1
6
6
0
16
7

0
IGNYQP
IESTKP

RLEDRTSVRFGREE
QRFLGGL















YI




Q89632_CSV
virus1
6
6
0
16
7

2
IGHYQK
VNADKP

SKTVRYGDSKNVR
DRDGEGV















KFI




Q91HI4_9VIRU
virus1
6
6
0
17
7

0
IKQFDH
QGMNKP

GEEAVPQLGIXFGV
SVFDSGV















EFT




Q98825_CSV
virus1
6
6
0
16
7

0
IGNYQP
IESTKP

RLEDRTSVQFGRK
DRFFGGL















EYI




A0EYV0_9ABAC
virus2
6
5
0
3
6

0
TETGRN
KYSYE

SNA
SAAFGF



A8C6C4_NPVAP
virus2
6
5
0
3
6

0
TEDGRN
QYSYE

SGA
SALFKF



A9YMX2_9BBAC
virus2
6
5
0
3
6

0
TETGRN
QYSYE

SGA
SAVFKY



B0FDX4_9ABAC
virus2
6
5
0
3
6

0
AETGAV
VHNDE

SGA
SPVFNY



CXOL2_NPVOP
vims2
6
5
0
3
6

0
TETGRN
QYSYE

SGA
SAAFGF



CXOL_NPVAC
virus2
6
5
0
3
6

0
AETGAV
VHNDE

SGA
SPIFNY



Q06KN7_NPVAG
virus2
6
5
0
3
6

0
TETGRN
KYSYE

SGA
SAVFKY



Q0GYM0_9ABAC
virus2
6
5
0
3
6

0
AETGAV
VHNDE

SGA
SPIFNY



Q5Y4P1_NPVAP
virus2
6
5
0
3
6

0
AETGAV
IHNDE

SGA
SPVFNY



Q8JM47_9ABAC
virus2
6
5
0
3
6

0
TETGRN
KYSYE

SGA
SAAFGF



Q8QLC7_9ABAC
virus2
6
5
0
3
6

0
TDTGRN
KYSYE

SGA
SAAFGF



Q9PYR8_GVXN
virus2
6
5
0
3
6

0
TETGRN
QYSYE

SGA
SAAFKY



Hypa_A
cybase_cyclotide
3
4
7
1
4
5
0
AES
VYIP
TITALLG
S
KNKV
YNGIP


circulin_F
cybase_cyclotide
3
4
6
1
4
5
0
GES
VWIP
ISAAIG
S
KNKV
YRAIP


cycloviolacin_B16
cybase_cyclotide
3
4
7
1
4
5
0
AES
VWIP
TVTALLG
S
KDKV
YNTIP


cycloviolacin_B3
cybase_cyclotide
3
4
6
1
4
5
0
AES
VYLP
VTIVIG
S
KDKV
YNGIP


cycloviolacin_B4
cybase_cyclotide
3
4
7
1
4
5
0
AES
VWIP
TVTALLG
S
KDKV
YNGIP


cycloviolacin_H4
cybase_cyclotide
3
4
7
1
4
5
0
AES
VWIP
TVTALLG
S
SNNV
YNGIP


cycloviolacin_O1
cybase_cyclotide
3
4
7
1
4
5
0
AES
VYIP
TVTALLG
S
SNRV
YNGIP


cycloviolacin_O18
cybase_cyclotide
3
4
7
1
4
5
0
GES
VYIP
TVTALAG
K
KSKV
YNGIP


cycloviolacin_O7
cybase_cyclotide
3
4
7
1
4
5
0
GES
VWIP
TITALAG
K
KSKV
YNSIP


cycloviolacin_Y5
cybase_cyclotide
3
4
7
1
4
5
0
AES
VWIP
TVTALVG
S
SDKV
YNGIP


kalata_B16
cybase_cyclotide
3
4
7
1
4
5
0
AES
VYIP
TITALLG
K
QDKV
YDGIP


kalata_B17
cybase_cyclotide
3
4
7
1
4
5
0
AES
VYIP
TITALLG
K
KDQV
YNGIP


mram_3
cybase_cyclotide
3
4
6
1
4
5
0
GES
VYLP
FTTIIG
K
QGKV
YHGIP


vhr1
cybase_cyclotide
3
4
7
1
4
5
1
AES
VWIP
TVTALLG
S
SNKV
YNGIP


vibi_E
cybase_cyclotide
3
4
7
1
4
5
0
AES
VWIP
TVTALIG
G
SNKV
YNGIP


violacin_A
cybase_cyclotide
3
4
4
1
4
5
0
GET
FKFK
YTPR
S
SYPV
KSAIS


Hyfl_A
cybase_cyclotide
3
4
7
1
4
6
0
GES
VYIP
TVTALVG
T
KDKV
YLNSIS


Hyfl_F
cybase_cyclotide
3
4
4
1
6
6
0
GET
TTFN
WIPN
K
NHHDKV
YWNSIS


Hyfl_I
cybase_cyclotide
3
4
6
1
4
6
0
GES
VFIP
ISGVIG
S
KSKV
YRNGIP


Hyfl_J
cybase_cyclotide
3
4
4
1
4
6
0
GES
AYFG
WIPG
S
RNKV
YFNGIA


Hyfl_K
cybase_cyclotide
3
4
6
1
4
6
0
GES
VYIP
FTAVVG
T
KDKV
YLNGTP


Hyfl_L
cybase_cyclotide
3
4
6
1
4
6
0
AES
VYLP
FTGVIG
T
KDKV
YLNGTP


circulin_A
cybase_cyclotide
3
4
6
1
4
6
0
GES
VWIP
ISAALG
S
KNKV
YRNGIP


circulin_C
cybase_cyclotide
3
4
6
1
4
6
0
GES
VFIP
ITSVAG
S
KSKV
YRNGIP


circulin_D
cybase_cyclotide
3
4
6
1
4
6
0
GES
VWIP
VTSIFN
K
ENKV
YHDKIP


circulin_E
cybase_cyclotide
3
4
6
1
4
6
0
GES
VWIP
LTSVFN
K
ENKV
YHDKIP


cyclopsychotride_A
cybase_cyclotide
3
4
7
1
4
6
0
GES
VFIP
TVTALLG
S
KSKV
YKNSIP


cycloviolacin_B1
cybase_cyclotide
3
4
6
1
4
6
0
GES
VYLP
FTAPLG
S
SSKV
YRNGIP


cycloviolacin_B10
cybase_cyclotide
3
4
6
1
4
6
0
GES
VWIP
LTSAIG
S
KSSV
YRNGV
















P


cycloviolacin_B11
cybase_cyclotide
3
4
6
1
4
6
0
GES
VLIP
ISSVIG
S
KSKV
YRNGIP


cycloviolacin_B13
cybase_cyclotide
3
4
6
1
4
6
0
IET
YTFP
ISEMIN
S
KNSR
QKNGA
















G


cycloviolacin_B14
cybase_cyclotide
3
4
6
1
4
6
0
GES
VWIP
ISSAIG
S
KNKV
YRKGIP


cycloviolacin_B15
cybase_cyclotide
3
4
6
1
4
6
0
GES
VWIP
ISGAIG
S
KSKV
YRNGIP


cycloviolacin_B2
cybase_cyclotide
3
4
6
1
4
6
0
GES
VWIP
LTATIG
S
KSKV
YRNGIP


cycloviolacin_B5
cybase_cyclotide
3
8
4
1
6
6
0
GER
VIERTRAW
RTVG
I
SLHTLE
VRNGR
















L


cycloviolacin_B8
cybase_cyclotide
3
4
6
1
4
6
0
GEG
VYLP
FTAPLG
S
SSKV
YRNGIP


cycloviolacin_B9
cybase_cyclotide
3
4
6
1
4
6
0
GES
VWIP
LTAAIG
S
SSKV
YRNGIP


cycloviolacin_H1
cybase_cyclotide
3
4
6
1
4
6
0
GES
VYIP
LTSAIG
S
KSKV
YRNGIP


cycloviolacin_O10
cybase_cyclotide
3
4
6
1
4
6
0
GES
VYIP
LTSAVG
S
KSKV
YRNGIP


cycloviolacin_O13
cybase_cyclotide
3
4
6
1
4
6
0
GES
VWIP
ISAAIG
S
KSKV
YRNGIP


cycloviolacin_O17
cybase_cyclotide
3
4
6
1
4
6
0
GES
VWIP
ISAAIG
S
KNKV
YRNGIP


cycloviolacin_O2
cybase_cyclotide
3
4
6
1
4
6
0
GES
VWIP
ISSAIG
S
KSKV
YRNGIP


cycloviolacin_O20
cybase_cyclotide
3
4
6
1
4
6
0
GES
VWIP
LTSAIG
S
KSKV
YRDGIP


cycloviolacin_O25
cybase_cyclotide
3
4
7
1
4
6
0
GET
AFIP
ITHVPGT
S
KSKV
YFNDIF


cycloviolacin_O3
cybase_cyclotide
3
4
6
1
4
6
0
GES
VWIP
LTSAIG
S
KSKV
YRNGIP


cycloviolacin_O4
cybase_cyclotide
3
4
6
1
4
6
0
GES
VWIP
ISSAIG
S
KNKV
YRNGIP


cycloviolacin_O5
cybase_cyclotide
3
4
6
1
4
6
0
GES
VWIP
ISSAVG
S
KNKV
YKNGT
















P


cycloviolacin_O9
cybase_cyclotide
3
4
6
1
4
6
0
GES
VWIP
LTSAVG
S
KSKV
YRNGIP


cycloviolacin_Y4
cybase_cyclotide
3
4
6
1
4
6
0
GES
VFIP
ITGVIG
S
SSNV
YLNGV
















P


cycloviolin_B
cybase_cyclotide
3
4
4
1
4
6
0
GES
YVLP
FTVG
T
TSSQ
FKNGT
















A


cycloviolin_C
cybase_cyclotide
3
4
6
1
4
6
0
GES
VFIP
LTTVAG
S
KNKV
YRNGIP


cycloviolin_D
cybase_cyclotide
3
4
6
1
4
6
0
GES
VFIP
ISAAIG
S
KNKV
YRNGFP


hcf-1
cybase_cyclotide
3
4
6
1
4
6
0
GES
HYIP
VTSAIG
S
RNRS
MRNGIP


htf-1
cybase_cyclotide
3
4
6
1
4
6
0
GDS
HYIP
VTSTIG
S
TNGS
MRNGIP


kalata_B12
cybase_cyclotide
3
4
4
1
4
6
0
GDT
FVLG
NDSS
S
NYPI
VKDGS
















L


kalata_B18
cybase_cyclotide
3
4
6
1
4
6
0
AES
VYIP
ISTVLG
S
SNQV
YRNGV
















P


kalata_B5
cybase_cyclotide
3
4
6
1
4
6
0
GES
VYIP
ISGVIG
S
TDKV
YLNGTP


mram_2
cybase_cyclotide
3
4
6
1
4
6
0
AES
VYIP
LTSAIG
S
KSKV
YRNGIP


mram_8
cybase_cyclotide
3
4
6
1
4
6
0
GES
VFIP
LTSAIG
S
KSKV
YRNGIP


mram_9
cybase_cyclotide
3
4
6
1
4
6
0
GES
VWIP
LTSIVG
S
KNNV
TLNGVP


vhl_1
cybase_cyclotide
3
5
6
1
4
6
1
GES
AMISF
FTEVIG
S
KNKV
YLNSIS


vibi_I
cybase_cyclotide
3
4
6
1
4
6
0
GES
VWIP
LTSTVG
S
KSKV
YRNGIP


vibi_K
cybase_cyclotide
3
4
6
1
4
6
0
GES
VWIP
LTSAVG
P
KSKV
YRNGIP


vitri_A
cybase_cyclotide
3
4
6
1
4
6
0
GES
VWIP
ITSAIG
S
KSKV
YRNGIP


Hyfl_D
cybase_cyclotide
3
4
6
1
4
7
0
GES
VYIP
FTGIAG
S
KSKV
YYNGS
















VP


Hyfl_E
cybase_cyclotide
3
4
4
1
4
7
0
GES
VYLP
FLPN
Y
RNHV
YLNGEI
















P


Hyfl_M
cybase_cyclotide
3
4
4
1
4
7
0
GES
IFFP
FNPG
S
KDNL
YYNGNI
















P


PS-1
cybase_cyclotide
3
5
4
1
5
7
0
GET
IWDKT
HAAG
S
SVANI
VRNGFI
















P


circulin_B
cybase_cyclotide
3
4
6
1
4
7
0
GES
VFIP
ISTLLG
S
KNKV
YRNGVI
















P


cycloviolacin_B12
cybase_cyclotide
3
4
6
1
4
7
0
GES
VFIP
ISSVIG
S
KSKV
YRNGVI
















P


cycloviolacin_B17
cybase_cyclotide
3
4
4
1
4
7
0
GET
TLGT
YTVG
T
SWPI
TRNGLP
















I


cycloviolacin_B6
cybase_cyclotide
3
4
4
1
4
7
0
GET
VGGT
NTPG
G
SWPV
TRNGLP
















V


cycloviolacin_B7
cybase_cyclotide
3
4
4
1
4
7
0
GET
VGGT
NTPG
A
SWPV
TRNGLP
















V


cycloviolacin_H2
cybase_cyclotide
3
4
4
1
4
7
0
GES
VYIP
FIPG
S
RNRV
YLNSAI
















A


cycloviolacin_H3
cybase_cyclotide
3
4
4
1
5
7
0
GET
FGGT
NTPG
I
DPWPV
TRNGLP
















V


cycloviolacin_O11
cybase_cyclotide
3
4
6
1
4
7
0
GES
VWIP
ISAVVG
S
KSKV
YKNGT
















LP


cycloviolacin_O12
cybase_cyclotide
3
4
4
1
4
7
0
GET
VGGT
NTPG
S
SWPV
TRNGLP
















I


cycloviolacin_O15
cybase_cyclotide
3
4
4
1
4
7
0
GET
FTGK
YTPG
S
SYPI
KKNGL
















VP


cycloviolacin_O16
cybase_cyclotide
3
4
4
1
4
7
0
GET
FTGK
YTPG
S
SYPI
KKINGL
















P


cycloviolacin_O19
cybase_cyclotide
3
4
6
1
4
7
0
GES
VWIP
ISSWG
S
KSKV
YKDGT
















LP


cycloviolacin_O21
cybase_cyclotide
3
4
4
1
4
7
0
GET
VTGS
YTPG
T
SWPV
TRNGLP
















V


cycloviolacin_O22
cybase_cyclotide
3
4
4
1
4
7
0
GET
VGGT
NTPG
T
SWPV
TRNGLP
















I


cycloviolacin_O23
cybase_cyclotide
3
4
4
1
6
7
0
GET
FGGT
NTPG
T
DSSWPI
THNGLP
















T


cycloviolacin_O24
cybase_cyclotide
3
4
4
1
5
7
0
GET
FGGT
NTPG
T
DPWPV
THNGLP
















T


cycloviolacin_O6
cybase_cyclotide
3
4
6
1
4
7
0
GES
VWIP
ISAAVG
S
KSKV
YKNGT
















LP


cycloviolacin_O8
cybase_cyclotide
3
4
6
1
4
7
0
GES
VWIP
ISSVVG
S
KSKV
YKNGT
















LP


cycloviolin_A
cybase_cyclotide
3
4
6
1
4
7
0
GES
VFIP
ISAAIG
S
KNKV
YRNGVI
















P


kalata_B1
cybase_cyclotide
3
4
4
1
4
7
0
GET
VGGT
NTPG
T
SWPV
TRNGLP
















V


kalata_B10
cybase_cyclotide
3
4
4
1
5
7
0
GET
FGGT
NTPG
S
SSWPI
TRDGLP
















T


kalata_B10 linear
cybase_cyclotide
3
4
4
1
5
7
0
GET
FGGT
NTPG
S
SSWPI
TRDGLP
















T


kalata_B11
cybase_cyclotide
3
4
4
1
4
7
0
GET
FGGT
NTPG
S
TDPI
TRDGLP
















V


kalata_B13
cybase_cyclotide
3
4
4
1
5
7
0
GET
FGGT
NTPG
A
DPWPV
TRDGLP
















V


kalata_B14
cybase_cyclotide
3
4
4
1
5
7
0
GES
FGGT
NTPG
A
DPWPV
TRDGLP
















V


kalata_B15
cybase_cyclotide
3
4
4
1
4
7
0
GES
FGGS
YTPG
S
TWPI
TRDGLP
















V


kalata_B2
cybase_cyclotide
3
4
4
1
4
7
0
GET
FGGT
NTPG
S
TWPI
TRDGLP
















V


kalata_B3
cybase_cyclotide
3
4
4
1
5
7
0
GET
FGGT
NTPG
T
DPWPI
TRDGLP
















T


kalata_B4
cybase_cyclotide
3
4
4
1
4
7
0
GET
VGGT
NTPG
T
SWPV
TRDGLP
















V


kalata_B6
cybase_cyclotide
3
4
4
1
5
7
0
GET
FGGT
NTPG
S
SSWPI
TRNGLP
















T


kalata_B7
cybase_cyclotide
3
4
4
1
4
7
0
GET
TLGT
YTQG
T
SWPI
KRNGL
















PV


kalata_S
cybase_cyclotide
3
4
4
1
4
7
0
GET
VGGT
NTPG
S
SWPV
TRNGLP
















V


mram_1
cybase_cyclotide
3
4
6
1
4
7
0
GES
VYIP
ISSLLG
S
KSKV
YKNGSI
















P


mram_10
cybase_cyclotide
3
4
6
1
4
7
0
GES
VFIP
ISSVLG
S
KNKV
YRNGVI
















P


mram_11
cybase_cyclotide
3
4
4
1
4
7
0
GET
LLGT
YTPG
T
KRPV
YKNGH
















PT


mram_13
cybase_cyclotide
3
4
4
1
4
7
0
GET
VGNK
YTPG
T
TWPV
YRNGH
















PI


mram_14
cybase_cyclotide
3
4
6
1
4
7
0
GEG
VFIP
ISSIVG
S
KSKV
YKNGSI
















P


mram_4
cybase_cyclotide
3
4
6
1
4
7
0
GES
VFIP
ISSVVG
S
KNKV
YKNGSI
















P


mram_5
cybase_cyclotide
3
4
6
1
4
7
0
GES
VFIP
LTSAIG
S
KSKV
YKNGTI
















P


mram_6
cybase_cyclotide
3
4
6
1
4
7
0
GES
VYIP
ISSLLG
S
ESKV
YKNGSI
















P


mram_7
cybase_cyclotide
3
4
6
1
4
7
0
GES
VFIP
ISSIVG
S
KSKV
YKNGSI
















P


varv_peptide_A
cybase_cyclotide
3
4
4
1
4
7
0
GET
VGGT
NTPG
S
SWPV
TRNGLP
















V


varv_peptide_B
cybase_cyclotide
3
4
4
1
5
7
0
GET
FGGT
NTPG
S
DPWPM
SRNGLP
















V


varv_peptide_C
cybase_cyclotide
3
4
4
1
4
7
0
GET
VGGT
NTPG
S
SWPV
TRNGV
















PI


varv_peptide_D
cybase_cyclotide
3
4
4
1
4
7
0
GET
VGGS
NTPG
S
SWPV
TRNGLP
















I


varv_peptide_E
cybase_cyclotide
3
4
4
1
4
7
0
GET
VGGT
NTPG
S
SWPV
TRNGLP
















I


varv_peptide_F
cybase_cyclotide
3
4
4
1
4
7
0
GET
TLGT
YTAG
S
SWPV
TRNGV
















PI


varv_peptide_G
cybase_cyclotide
3
4
4
1
5
7
0
GET
FGGT
NTPG
S
DPWPV
SRNGVP
















V


varv_peptide_H
cybase_cyclotide
3
4
4
1
5
7
0
GET
FGGT
NTPG
S
ETWPV
SRNGLP
















V


vhl_2
cybase_cyclotide
3
4
4
1
5
7
0
GET
FTGT
YTNG
T
DPWPV
TRNGLP
















V


vibi_A
cybase_cyclotide
3
4
4
1
4
7
0
GET
FGGT
NTPG
S
SYPI
TRNGLP
















V


vibi_B
cybase_cyclotide
3
4
4
1
4
7
0
GET
FGGT
NTPG
T
SYPI
TRNGLP
















V


vibi_C
cybase_cyclotide
3
4
4
1
4
7
0
GET
AFGS
YTPG
S
SWPV
TRNGLP
















V


vibi_D
cybase_cyclotide
3
4
4
1
4
7
0
GET
FGGR
NTPG
T
SYPI
TRNGLP
















V


vibi_F
cybase_cyclotide
3
4
6
1
4
7
0
GES
VFIP
LTSALG
S
KSKV
YKNGTI
















P


vibi_G
cybase_cyclotide
3
4
6
1
4
7
0
GES
VFIP
LTSAIG
S
KSKV
YKNGT
















FP


vibi_H
cybase_cyclotide
3
4
6
1
4
7
0
AES
VYIP
LTTVIG
S
KSKV
YKNGL
















LP


vibi_J
cybase_cyclotide
3
4
6
1
4
7
0
GES
VWIP
ISKVIG
A
KSKV
YKNGT
















FP


vico_A
cybase_cyclotide
3
4
6
1
4
7
0
AES
VYIP
FTGIAG
S
KNKV
YYNGSI
















P


vico_B
cybase_cyclotide
3
4
6
1
4
7
0
AES
VYIP
ITGIAG
S
KNKV
YYNGSI
















P


violapeptide_1
cybase_cyclotide
3
4
4
1
4
7
0
GET
VGGT
NTPG
S
SRPV
TXNGLP
















V


vodo_M
cybase_cyclotide
3
4
4
1
4
7
0
GES
FTGK
YTVQ
S
SWPV
TRNGA
















PI


vodo_N
cybase_cyclotide
3
4
4
1
4
7
0
GET
TLGK
YTAG
S
SWPV
YRNGL
















PV


CD-1
cybase_cyclotide
3
4
6
1
6
8
0
GES
YVIP
ISYLVG
S
DTIEKV
KRNGA
















DGF


Hyfl_B
cybase_cyclotide
3
4
6
1
4
8
0
AET
FIGK
YTEELG
T
TAFL
MKNGS
















PIQ


Hyfl_C
cybase_cyclotide
3
4
6
1
4
8
0
AET
FIGK
YTEELG
T
TAFL
MKNGS
















PRQ


cycloviolacin_O14
cybase_cyclotide
3
4
4
1
5
8
0
GES
FKGK
YTPG
S
SKYPL
AKNGSI
















PA


kalata_B8
cybase_cyclotide
3
4
4
1
5
8
0
GET
LLGT
YTTG
T
NKYRV
TKDGS
















VLN


kalata_B9
cybase_cyclotide
3
4
4
1
5
8
0
GET
VLGT
YTPG
T
NTYRV
TKDGS
















VFN


kalata_B9_linear
cybase_cyclotide
3
4
4
1
5
8
0
GET
VLGT
YTPG
T
NTYRV
TKDGS
















VFN


mram_12
cybase_cyclotide
3
4
4
1
4
8
0
GES
TLGE
YTPG
T
SWPI
TKNGS
















AIL


palicourein
cybase_cyclotide
3
5
7
1
7
8
1
GET
RVIPV
TYSAALG
T
DDRSDGL
KRNGD
















PTF


cycloviolacin_Y1
cybase_cyclotide
3
4
4
1
5
10
0
GET
FLGT
YTPG
S
GNYGF
YGTNG
















GTIFD


cycloviolacin_Y2
cybase_cyclotide
3
4
4
1
5
10
0
GES
FLGT
YTAG
S
GNWGL
YGTNG
















GTIFD


cycloviolacin_Y3
cybase_cyclotide
3
4
4
1
5
10
0
GET
FLGT
YTAG
S
GNWGL
YGTNG
















GTIFD


tricyclon_A
cybase_cyclotide
3
4
4
1
5
10
0
GES
FLGT
YTKG
S
GEWKL
YGTNG
















GTIFD


tricyclon_B
cybase_cyclotide
3
4
4
1
5
10
0
GES
FLGT
YTKG
S
GEWKL
YGENG
















GTIFD








Claims
  • 1. An isolated nucleic acid molecule encoding a proteinaceous molecule having a cystine knot backbone and a defined biological activity, comprising a sequence of nucleotides encoding a linear precursor form of a cyclic cystine knot polypeptide operably linked to a promoter, wherein said linear precursor form comprises an amino acid sequence comprising: a signal peptide, a cystine knot polypeptide and a non-cystine knot polypeptide,wherein said cystine knot polypeptide in its mature form comprises the structure:
  • 2. The isolated nucleic acid of claim 1, wherein said amino acid sequence of said heterologous peptide comprises a portion of an amino acid sequence of a larger protein, wherein said peptide confers said defined biological activity on said larger protein.
  • 3. The isolated nucleic acid molecule of claim 1, wherein in said amino acid sequence of said precursor form, said signal peptide is adjacent to the N-terminal amino acid of the mature form of said cystine knot polypeptide.
  • 4. A method for producing a cystine knot polypeptide, comprising: transforming a host cell with a vector comprising the nucleic acid molecule of claim 1, wherein said precursor form of said cystine knot polypeptide is expressed.
  • 5. A method for producing a cyclic cystine knot polypeptide, comprising: i) transforming a host cell with a vector comprising the isolated nucleic acid molecule according to claim 1,ii) expressing a linear precursor form of a cystine knot polypeptide; andiii) processing said linear precursor form to form a cyclic cystine knot polypeptide having the structure:
  • 6. The method of claim 5, wherein said host cell is a plant cell.
  • 7. The method of claim 6, wherein said plant cell is from the plant family Fabaceae.
  • 8. The method of claim 4, wherein said host cell carries an enzyme for processing said precursor form of said cystine knot polypeptide to produce a cyclic cystine knot polypeptide.
  • 9. The method of claim 5, wherein said host cell carries an enzyme for processing said precursor form of said cystine knot polypeptide to produce a cyclic cystine knot polypeptide.
  • 10. A composition comprising a host cell comprising a heterologous nucleic acid comprising the isolated nucleic acid of claim 1.
  • 11. The isolated nucleic acid of claim 1, wherein in the cyclic form of said cystine knot polypeptide, loop 6 has an amino acid sequence selected from the group consisting of YRNGVIP (SEQ ID NO: 110), YLNGVIP (SEQ ID NO: 111), YLDGVP (SEQ ID NO: 112), YLNGIP (SEQ ID NO: 113), YLDGIP (SEQ ID NO: 114), YLNGLP (SEQ ID NO: 115), YNNGLP (SEQ ID NO: 116), YNDGLP (SEQ ID NO: 117), YINGTVP (SEQ ID NO: 118), YIDGTVP (SEQ ID NO: 119), YNHEP (SEQ ID NO: 120), YDHEP (SEQ ID NO: 121), LKNGSAF (SEQ ID NO: 122), MKNGLP (SEQ ID NO: 123), YRNGIP (SEQ ID NO: 124), YKNGIP (SEQ ID NO: 125), and YRDGVIP (SEQ ID NO: 126).
Parent Case Info

This application claims priority to U.S. Provisional Application Ser. No. 61/466,888, filed Mar. 23, 2011, which is incorporated herein by reference in its entirety.

US Referenced Citations (5)
Number Name Date Kind
5990385 Vezina et al. Nov 1999 A
7960340 Craik Jun 2011 B2
20030158096 Craik Aug 2003 A1
20060035819 Craik et al. Feb 2006 A1
20060156439 Diehn et al. Jul 2006 A1
Foreign Referenced Citations (2)
Number Date Country
0127147 Apr 2001 WO
0134829 May 2007 WO
Non-Patent Literature Citations (91)
Entry
Daly et al (Advanced Drug Delivery Reviews, 61, pp. 918-930, 2009).
Gillon et al (Plant Journal, 53, pp. 505-515, 2008).
Stoger et al (Current Opinion in Biotechnology, 16(2), pp. 167-173, 2005).
GenEmbl AJ276882 (Published Mar. 2000).
Austin et al (ChemBioChem, 2009, 10: 2663-2670).
Simonsen et al (J. Bio. Chem., 2008, 283: 9805-9813; cited on IDS).
Gunasekera et al (J. Med. Chem., 2008, 51: 7697-7704; cited on IDS).
Abe et al. “Asparaginyl endopeptidase of jack bean seeds. Purification, characterization, and high utility in protein sequence analysis,” J Biol Chem, 268: 3525-3529, 1993.
Barbeta et al. “Plant cyclotides disrupt epithelial cells in the midgut of lepidopteran larvae,” PNAS, 105: 1221-1225, 2008.
Bendsten et al. “Improved prediction of signal peptides: SignalP 3.0,” J Mol Biol, 340: 783-795, 2004.
Boscariol et al. “The use of the PMI/mannose selection system to recover transgenic sweet orange plants (Citrus sinensis L. Osbeck),” Plant Cell Rep, 22: 122-128, 2003.
Brunger et al. “Version 1.2 of the Crystallography and NMR system,” Nat Protoc, 2: 2728-2733, 2007.
Camarero et al. “Biosynthesis of a fully functional cyclotide inside living bacterial cells,” Chem Biochem, 8: 1363-1366, 2007.
Carrington et al. “Polypeptide ligation occurs during post-translational modification of concanavalin A.,” Nature, 313: 64-67, 1985.
Chiche et al. “Squash inhibitors: from structural motifs to macrocyclic knottins,” Curr Protein Pept Sci, 5: 341-349, 2004.
Chowrira et al. “Transgenic grain legumes obtained by in planta electroporation-mediated gene transfe,” Mol Biotechnol, 5: 85-96, 1996.
Colgrave et al. “A new “era” for cyclotide sequencing,” Biopolymers, 94: 592-601, 2010.
Colgrave et al. “Anthelmintic activity of cyclotides: In vitro studies with canine and human hookworms,” Acta Trop, 109: 163-166, 2009.
Colgrave et al. “Cyclotide interactions with the nematode external surface,” Antimicrob Agents Chemother, 54: 2160-2166, 2010.
Colgrave et al. “Cyclotides: natural, circular plant peptides that possess significant activity against gastrointestinal nematode parasites of sheep,” Biochemistry, 47: 5581-5589, 2008.
Colgrave et al. “The anthelmintic activity of the cyclotides: natural variants with enhanced activity,” Chem BioChem, 9: 1939-1945, 2008.
Colgrave et al. “Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot,” Biochemistry, 43: 5965-5975, 2004.
Collinge et al. “Engineering pathogen resistance in crop plants: current trends and future prospects,” Ann Rev Phytopathol, 48: 269-291, 2010.
Cortese et al. “Identification of biologically active peptides using random libraries displayed on phage,” Curr Opin Biotech, 6: 73-80, 1995.
Craik et al. “Chemistry. Seamless proteins tie up their loose ends,” Science, 311: 1563-1564, 2006.
Craik et al. “Plant cyclotides: A unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif,” J Mol Biol, 294, 1327-1336, 1999.
Craik et al. “The cystine knot motif in toxins and implications for drug design,” Toxicon, 39: 43-60, 2001.
Crooks et al. “WebLogo: a sequence logo generator,” Genome Res, 14: 1188-1190, 2004.
Da Silva et al. “Molecular requirements for the insecticidal activity of the plant peptide pea albumin 1 subunit b (PA1b),” J Biol Chem, 285: 32689-32694, 2010.
Daly et al. “Chemical synthesis and folding pathways of large cyclic polypeptides: studies of the cystine knot polypeptide kalata B1,” Biochemistry, 38: 10606-10614, 1999.
Defreitas et al. “Structural characterization and promoter activity analysis of the gamma-kafirin gene from sorghum,” Mol Gen Genet, 245: 177-186, 1994.
Dunwell et al. “Transgenic approaches to crop improvement,” J Exp Bot, 57: 487-496, 2000.
Dutton et al. “Conserved structural and sequence elements implicated in the processing of gene-encoded circular proteins,” J Biol Chem, 279: 46858-46867, 2004.
Ealing et al. “Expression of the pea albumin 1 gene in transgenic white clover and tobacco,” Transgenic Res, 3: 344-354, 1994.
Eapen et al. “Cultivar dependence of transformation rates in moth bean after co-cultivation of protoplasts with Agrobacterium tumefaciens,” TAG: Theor Appl Genet, 75: 207-210, 1987.
Eapen, “Advances in development of transgenic pulse crops,” Biotechnol Adv, 26: 162-168, 2008.
Emanuelsson et al. “Locating proteins in the cell using TargetP, SignalP and related tools,” Nature Protocols, 2: 953-971, 2007.
Fantz et al. “Ethnobotany of Clitoria (Leguminosae),” Econ Bot, 45: 511-520, 1991.
Gao et al. “Synthesis and disulfide bond connectivity-activity studies of a kalata B1-inspired cyclopeptide against dengue NS2B-NS3 protease,” Bioorg Med Chem, 18: 1331-1336, 2010.
Gillon et al. “Biosynthesis of circular proteins in plants,” Plant J, 53: 505-515, 2008.
Gran et al. “1. Gran L: An oxytocic principle found in Oldenlandia affinis DC.,” Medd Nor Farm Selsk, 12: 173-180, 1970.
Gran et al. “Oxytocic principles of Oldenlandia affinis,” Lloydia the Journal of Natural Products, 36: 174-178, 1973.
Gruber et al. “Distribution and evolution of circular miniproteins in flowering plants,” Plant Cell, 20: 2471-2483, 2008.
Gunasekera et al. “Engineering stabilized vascular endothelial growth factor-A antagonists: synthesis, structural characterization, and bioactivity of grafted analogues of cyclotides,” J Med Chem, 51: 7697-7704, 2008.
Guntert, “Automated NMR structure calculation with CYANA,” Methods Mol Biol, 278: 353-378, 2004.
Gustafson et al. “Circulins A and B. Novel human immunodeficiency virus (HIV)-inhibitory macrocyclic peptides from the tropical tree Chassalia parvifolia.,” J Am Chem Soc, 116: 9337-9338, 1994.
Gustafson et al. “New circulin macrocyclic polypeptides from Chassalia parvifolia,” J Nat Prod, 63: 176-178, 2000.
Hajdukiewicz et al. “The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation,” Plant Mol Biol, 25: 989-994, 1994.
Halfon et al. “Autocatalytic activation of human legumain at aspartic acid residues,” FEBS Lett, 438, 114-118, 1998.
Hernandez et al. “Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure,” Biochemistry, 39: 5722-5730, 2000.
Hernandez-Garcia et al. “A soybean (Glycine max) polyubiquitin promoter gives strong constitutive expression in transgenic soybean,” Plant Cell Rep, 28: 837-849, 2009.
Huang et al. “Lysine-scanning mutagenesis reveals an amendable face of the cyclotide kalata B1 for the optimization of nematocidal activity,” J Biol Chem, 285(14):10797-10805, 2010.
Huang et al. “The biological activity of the prototypic cyclotide kalata b1 is modulated by the formation of multimeric pores,” J Biol Chem, 284: 20699-20707, 2009.
Hutchinson et al. “PROMOTIF—a program to identify and analyze structural motifs in proteins,” Protein Sci, 5: 212-220, 1996.
Indurker et al. “Genetic transformation of chickpea (Cicer arietinum L.) with insecticidal crystal protein gene using particle gun bombardment,” Plant Cell Rep, 26: 755-763, 2007.
Ireland et al. “A novel suite of cyclotides from Viola odorata: sequence variation and the implications for structure, function and stability,” Biochem J, 400: 1-12, 2006.
Jennings et al. “Biosynthesis and insecticidal properties of plant cyclotides: the cyclic knotted proteins from Oldenlandia affinis,” PNAS, 98: 10614-10619, 2001.
Kaas et al. “Analysis and classification of circular proteins in CyBase,” Peptide Sci, 94: 584-591, 2010.
Kaas et al. “Conopeptide characterization and classifications: An analysis using ConoServer,” Toxicon, 55: 2010 1491-1509, 2010.
Kamble et al. “A protocol for efficient biolistic transformation of mothbeanVigna aconitifolia L. Jacq. Marechal,” Plant Mol Biol Reporter, 21: 457a-j, 2003.
Koenning et al. “Survey of crop losses in response to phytoparasitic nematodes in the United States for 1994,” J Nematol, 31: 587-618, 1999.
Kohler et al. “Stable transformation of moth bean Vigna aconitifolia via direct gene transfer,” Plant Cell Rep, 6: 1987 313-317, 1987.
Kohler et al. “Influence of plant cultivar and plasmid-DNA on transformation rates in tobacco and moth bean,” Plant Sci, 53: 87-91, 1987.
Komari et al. “Binary vectors and super-binary vectors,” Methods Mol Biol, 343: 15-42, 2006.
Koradi et al. “MOLMOL: a program for display and analysis of macromolecular structures,” J Mol Graph, 14: 29-32, 1996.
Krishnamurthy et al. “Agrobacterium mediated transformation of chickpea ( Cicer arietinum L.) embryo axes,” Plant Cell Rep, 19: 235-240, 2000.
Laskowski et al. “Aqua and Procheck-NMR: programs for checking the quality of protein structures solved by NMR.,” J Biomol NMR, 8: 477-486, 1996.
Min et al. “In vitro splicing of concanavalin A is catalyzed by asparaginyl endopeptidase,” Nat Struct Biol, 1: 502-504, 1994.
Mukherjee et al. “The Ayurvedic medicine Clitoria ternatea—from traditional use to scientific assessment.,” J Ethnopharmacol, 120: 291-301, 2008.
Mulvenna et al. “Discovery, structural determination, and putative processing of the precursor protein that produces the cyclic trypsin inhibitor sunflower trypsin inhibitor 1,” J Biol Chem, 280: 32245-32253, 2005.
Nguyen et al. “Discovery and characterization of novel cyclotides originated from chimeric precursors consisting of albumin-1 chain a and cyclotide domains in the Fabaceae family,” J Biol Chem, 286(27): 24275-24287, 2011.
Opperman et al. “Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism,” PNAS, 105: 14802-14807, 2008.
Pallaghy et al. “A common structural motif incorporating a cystine knot and a triple-stranded beta-sheet in toxic and inhibitory polypeptides,” Protein Sci, 3: 1833-1839, 1994.
Poth et al. “Discovery of cyclotides in the fabaceae plant family provides new insights into the cyclization, evolution, and distribution of circular proteins,” ACS Chem Biol, 6: 345-355, 2011.
Qin et al. “Identification of candidates for cyclotide biosynthesis and cyclisation by expressed sequence tag analysis of Oldenlandia affinis,” BMC Genomics, 11: 111, 2010.
Rogers et al. “[15] Improved vectors for plant transformation: Expression cassette vectors and new selectable markers,” Methods Enyzmol, 153: 253-277, 1987.
Rosengran et al. “Twists, knots, and rings in proteins. Structural definition of the cyclotide framework,” J Biol Chem, 278: 8606-8616, 2003.
Saether et al. “Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1,” Biochemistry, 34: 4147-4158, 1995.
Saska et al. “An asparaginyl endopeptidase mediates in vivo protein backbone cyclization,” J Biol Chem, 282:29721-29728, 2007.
Saska et al. “Quantitative analysis of backbone-cyclised peptides in plants,” J Chromatogr B, 872: 107-114, 2008.
Sharma et al. “Agrobacterium-mediated production of transgenic pigeonpea (Cajanus cajan L. Millsp.) expressing the synthetic Bt cry1Ab gene,” In Vitro Cell Dev Biol Plant, 42: 165-173, 2006.
Simonsen et al. “Alanine scanning mutagenesis of the prototypic cyclotide reveals a cluster of residues essential for bioactivity,” J Biol Chem, 283: 9805-9813, 2008.
Suto et al. “Crystal structures of novel vascular endothelial growth factors (VEGF) from snake venoms: insight into selective VEGF binding to kinase insert domain-containing receptor but not to fms-like tyrosine kinase-1,” J Biol Chem, 290: 2126-2131, 2005.
Svangard et al. “Mechanism of action of cytotoxic cyclotides: cycloviolacin O2 disrupts lipid membranes,” J Nat Prod, 70: 643-647, 2007.
Tam et al. “An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides,” PNAS, 96: 8913-8918, 1999.
Tang et al. “A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins,” Science, 286, 498-502, 1999.
Thongyoo et al. “Chemical and biomimetic total syntheses of natural and engineered MCoTI cyclotides,” Org Biomol Chem, 6: 1462-1470, 2008.
Thongyoo et al. “Potent inhibitors of beta-tryptase and human leukocyte elastase based on the MCoTI-II scaffold,” J Med Chem, 52: 6197-6200, 2009.
Trabi et al. “Tissue-specific expression of head-to-tail cyclized miniproteins in Violaceae and structure determination of the root cyclotide Viola hederacea root cyclotide1,” Plant Cell, 16: 2204-2216, 2004.
Valvekens et al. “Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection,” PNAS, 85: 5536-5540, 1988.
Wright et al. “Nonenzymatic deamidation of asparaginyl and glutaminyl residues in proteins,” Crit Rev Biochem Mol Biol, 26: 1-52, 1991.
Related Publications (1)
Number Date Country
20120244575 A1 Sep 2012 US
Provisional Applications (1)
Number Date Country
61466888 Mar 2011 US