1. Field of the Invention
2. Description of the Prior Art
Some pneumatic motors, as shown in TW 1259865 and TW 1325808, have several outlets. Pressurized air can be released to surroundings via one of the outlets. By choosing one of the outlets, the power stroke may be lengthened. As such, the power of the pneumatic may be enlarged.
In addition, patent document U.S. Pat. No. 7,174,971 provides another pneumatic motor which has air input selection mechanism for adjusting rotation direction of the motor. The pneumatic motor has two air passages for pressurized air to be input and output. In general, pressurized air flows into the motor via one of the air passages. After driving the rotor, most air flows out of the motor via outlets on the cylinder. The remaining air is further released from the other air passage.
However, in some specialized condition, such increased power is too strong to be used. Overly increased power can damage threaded components easily. Therefore, pneumatic motor, as disclosed in TW 1345514, which has slightly decreased power is then created.
Accordingly, by the mechanisms disclosed in the documents mention above, power of pneumatic motor is increased and decreased. Effects of the mechanisms fight against each other. Technical resources and producing resources are squandered.
The present invention is, therefore, arisen to obviate or at least mitigate the above mentioned disadvantages.
The main object of the present invention is to provide a pneumatic motor which has plenty of power stages, including weakened power stage. Thus, user can choose the suitable stage for working.
To achieve the above and other objects, a cylinder assembly for pneumatic motor of the present invention is revealed hereinafter. The cylinder assembly defines a cylindrical chamber for receiving a rotor therein. An axial direction is defined by the chamber. The cylinder assembly has two air passages communicating with the chamber respectively. The air passages are adapted for air to flow therethrough. Air drives the rotor received in the chamber to rotate when air flows into the chamber via one of the air passages. Air drives the rotor received in the chamber to rotate along an opposite direction when air flows into the chamber via the other air passage. When air drives the rotor through one air passage, the other air passage is used for air exhaust.
The cylinder assembly further defines an aperture which communicates with the chamber. The one or more apertures and the air passages are arranged about the axial direction and around the chamber.
The cylinder assembly comprises an adjustment mechanism for selectively blocking one or several of the apertures. Air can flow in and out of the chamber via only the air passages when all apertures are blocked.
In addition, a pneumatic motor of the present invention includes the cylinder assembly and a rotor. The rotor is rotatably and eccentrically disposed in the chamber of the cylinder assembly. The air passages communicate with the chamber at a peripheral inner surface of the chamber and locating close to the rotor, so that air is able to drive the rotor to rotate when the air flows into the chamber via one of the air passages.
The present invention will become more obvious from the following description when taken in connection with the accompanying drawings, which show, for purpose of illustrations only, the preferred embodiment(s) in accordance with the present invention.
Please refer to
The cylinder assembly defines a cylindrical chamber 11 for receiving a rotor therein, two air passages 12, and one or several apertures 13. The chamber 11 defines an axial direction. The air passages 12 and the apertures 13 communicate with the chamber 11 respectively, so that air can flow into or out of the chamber 11 via one of the air passages 12 and the apertures 13. The air passages 12 and the apertures 13 are arranged about the axial direction and around the chamber 11. More particularly, the cylinder assembly includes a main body 14, a rear cover 15, and an adjustment mechanism 16. The rear cover 15 is firmly affixed to the main body 14 by several threaded members so as to define the chamber 11 therebetween. The air passages 12 are formed in the main body 14, in particularly, the lower extension portion of the main body 14, as shown in
The adjustment mechanism 16 is used for selectively blocking the apertures 13. Thus, when the apertures 13 are blocked, air can flow passing through only the air passages 12, and can not flow passing through the apertures 13. Said blocking is defined that the air is unable to pass through the apertures 13. In the present embodiment, the apertures are coved for blocking. In other possible embodiments, the apertures may be filled for blocking.
More specifically, the adjustment mechanism 16 includes a leading member 161, an adjusting member 162, and a switch 163. The leading member 161 is firmly affixed to the rear cover 15 by several threaded members 164. As shown in
The rotor 2 is rotatably and eccentrically disposed in the chamber 11. The rotor 2 is shifted from center of the chamber and is close to the air passages 12 located at lower extension portion of the main body 14. Thus, pressurized air drives the rotor received in the chamber to rotate when pressurized air flows into the chamber via one of the air passages 12. Pressurized air drives the rotor to rotate along an opposite direction when pressurized air flows into the chamber via the other air passage. For directing pressurized air into the correct or desired air passage 12, the main body 14 may be further assembled with a controlling valve in the lower extension portion of the main body 14.
For operation, pressurized air can be input into the pneumatic motor. Firstly, the adjusting member 162 is rotated to a predetermined position for a suitable power stage, as shown in
For adjusting power stage, the adjusting member 162 can be rotated. Thus, pressurized air can be released to the surroundings via the leading groove and the aperture chosen. The power stroke of pressurized air is then changed for a suitable power stage.
Furthermore, the adjusting member is able to block all of the leading grooves 165. In this condition, pressurized air flowed into the chamber from one of the air passages 12 can be released via only the other one of the air passages 12. Pressurized air would move along the inner surface of the chamber almost a circle. Thus, a new power stage of weakened torque is provided different from the power stages provided with the leading grooves. That is to say, there are total three power stages, two provided from the apertures 13 and one provided from the air passages 12, in present pneumatic motor which has only two apertures 13. Quantity of the power stages provided is more than that of the apertures 13.
Accordingly, the pneumatic motor has power stages for user to choose from. One of the power stages which achieved by blocking all of the apertures 13 has significantly lowered power or torque. The power stage mentioned is not disclosed by previous pneumatic motors in the art, such as the pneumatic motor disclosed in U.S. Pat. No. 7,174,971. By the disclosure of U.S. Pat. No. 7,174,971, it does mention that pressurized air can flow into the chamber via one of the air passages, and flow out of the chamber via the other air passage. However, as disclosed in column 3 lines 54-57 of the specification of U.S. Pat. No. 7,174,971, “After the pressurized air is passed to drive the pneumatic motor module, a remaining air affecting the working efficiency of the pneumatic motor module will be produced.”, it should be noticed that the air flow out of the chamber from the air passage is “remaining air”. It is considered that the air is released from another outlet before arriving the air passage. Objectively speaking, Chen, the inventor of U.S. Pat. No. 7,174,971, tries to control rotation direction of the pneumatic motor by choosing from where the pressurized air is input. Chen's statement does nothing about power adjustment. In comparison with U.S. Pat. No. 7,174,971, the pneumatic motor of the present application may be assembled with the controlling valve in the lower extension portion of the main body 14 for rotation direction control and selection. The present application concerns on controlling power of the pneumatic motor by choosing from where the pressurized air is released. The adjustment mechanism of the pneumatic motor of the present application controls power, rather than rotation direction of the pneumatic motor. In the end, quantity of power stages is superiorly provided.
Please refer to
Please refer to
To conclude, power stage of the pneumatic motor is adjustable. Not only higher but lower power can be provided by the pneumatic motor.
The present invention is a CIP of application Ser. No. 12/898,168, filed Oct. 5, 2010, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 12898168 | Oct 2010 | US |
Child | 13369868 | US |