Cylinder deactivation pattern matching

Information

  • Patent Grant
  • 10227939
  • Patent Number
    10,227,939
  • Date Filed
    Wednesday, March 13, 2013
    11 years ago
  • Date Issued
    Tuesday, March 12, 2019
    5 years ago
Abstract
A cylinder control module: selects one of N predetermined cylinder activation/deactivation patterns as a desired cylinder activation/deactivation pattern for cylinders of an engine, wherein N is an integer greater than two; and activates and deactivates opening of intake and exhaust valves of first and second ones of the cylinders that are to be activated based on the desired cylinder activation/deactivation pattern, respectively. A fuel control module provides fuel to the first ones of the cylinders and disables fueling to the second ones of the cylinders. The cylinder control module further: determines M possible ones of the N cylinder activation/deactivation patterns, wherein M is an integer greater than or equal to one; selectively compares the M possible cylinder activation/deactivation patterns with the desired cylinder activation/deactivation pattern; and selectively updates the desired cylinder activation/deactivation pattern to one of the M possible cylinder activation/deactivation patterns.
Description
FIELD

The present disclosure relates to internal combustion engines and more specifically to cylinder deactivation control systems and methods.


BACKGROUND

The background description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.


Internal combustion engines combust an air and fuel mixture within cylinders to drive pistons, which produces drive torque. Air flow into the engine is regulated via a throttle. More specifically, the throttle adjusts throttle area, which increases or decreases air flow into the engine. As the throttle area increases, the air flow into the engine increases. A fuel control system adjusts the rate that fuel is injected to provide a desired air/fuel mixture to the cylinders and/or to achieve a desired torque output. Increasing the amount of air and fuel provided to the cylinders increases the torque output of the engine.


Under some circumstances, one or more cylinders of an engine may be deactivated. Deactivation of a cylinder may include deactivating the opening and closing of intake valves of the cylinder and halting the fueling of the cylinder. One or more cylinders may be deactivated, for example, to decrease fuel consumption when the engine can produce a requested amount of torque while the one or more cylinders are deactivated.


SUMMARY

A cylinder control module: selects one of N predetermined cylinder activation/deactivation patterns as a desired cylinder activation/deactivation pattern for cylinders of an engine, wherein N is an integer greater than two; activates opening of intake and exhaust valves of first ones of the cylinders that are to be activated based on the desired cylinder activation/deactivation pattern; and deactivates opening of intake and exhaust valves of second ones of the cylinders that are to be deactivated based on the desired cylinder activation/deactivation pattern. A fuel control module provides fuel to the first ones of the cylinders and disables fueling to the second ones of the cylinders. The cylinder control module further: determines M possible ones of the N cylinder activation/deactivation patterns, wherein M is an integer greater than or equal to one; selectively compares the M possible cylinder activation/deactivation patterns with the desired cylinder activation/deactivation pattern, and selectively updates the desired cylinder activation/deactivation pattern to one of the M possible cylinder activation/deactivation patterns.


A cylinder control method includes: selecting one of N predetermined cylinder activation/deactivation patterns as a desired cylinder activation/deactivation pattern for cylinders of an engine, wherein N is an integer greater than two; activating opening of intake and exhaust valves of first ones of the cylinders that are to be activated based on the desired cylinder activation/deactivation pattern; and deactivating opening of intake and exhaust valves of second ones of the cylinders that are to be deactivated based on the desired cylinder activation/deactivation pattern. The cylinder control method further includes: providing fuel to the first ones of the cylinders; disabling fueling to the second ones of the cylinders; and determining M possible ones of the N cylinder activation/deactivation patterns, wherein M is an integer greater than or equal to one. The cylinder control method further includes: selectively comparing the M possible cylinder activation/deactivation patterns with the desired cylinder activation/deactivation pattern; and selectively updating the desired cylinder activation/deactivation pattern to one of the M possible cylinder activation/deactivation patterns.


Further areas of applicability of the present disclosure will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure will become more fully understood from the detailed description and the accompanying drawings, wherein:



FIG. 1 is a functional block diagram of an example engine system according to the present disclosure;



FIG. 2 is a functional block diagram of an engine control module according to the present disclosure;



FIG. 3 is a functional block diagram of a cylinder control module according to the present disclosure; and



FIG. 4 illustrates a cylinder deactivation pattern matching method according to the present disclosure.





DETAILED DESCRIPTION

One or more cylinders of an engine of a vehicle may be deactivated and/or operated according to a selected deactivation pattern (i.e., sequence). For example, the engine includes a plurality of possible deactivation patterns, and the vehicle determines which of the deactivation patterns to implement and selects a deactivation pattern accordingly. The cylinders of the engine are selectively operated (i.e., fired or not fired) through one or more engine cycles based on the deactivation pattern. For example only, a control module of the vehicle determines the selected deactivation pattern based on a variety of factors including, but not limited to, respective fuel economies associated with each of the deactivation patterns and/or noise and vibration (N&V) associated each of the deactivation patterns. Fuel efficiency and N&V are, at least in part, based on the sequence in which cylinders are activated and deactivated (i.e., the deactivation pattern). In a cylinder deactivation pattern matching system according to the principles of the present disclosure, the control module controls transitions between two or more of the deactivation patterns based on comparisons between a previously selected (i.e., current) deactivation pattern and a plurality of possible next deactivation patterns.


Referring now to FIG. 1, a functional block diagram of an example engine system 100 is presented. The engine system 100 of a vehicle includes an engine 102 that combusts an air/fuel mixture to produce torque based on driver input from a driver input module 104. Air is drawn into the engine 102 through an intake system 108. The intake system 108 may include an intake manifold 110 and a throttle valve 112. For example only, the throttle valve 112 may include a butterfly valve having a rotatable blade. An engine control module (ECM) 114 controls a throttle actuator module 116, and the throttle actuator module 116 regulates opening of the throttle valve 112 to control airflow into the intake manifold 110.


Air from the intake manifold 110 is drawn into cylinders of the engine 102. While the engine 102 includes multiple cylinders, for illustration purposes a single representative cylinder 118 is shown. For example only, the engine 102 may include 2, 3, 4, 5, 6, 8, 10, and/or 12 cylinders. The ECM 114 may instruct a cylinder actuator module 120 to selectively deactivate some of the cylinders under some circumstances, as discussed further below, which may improve fuel efficiency.


The engine 102 may operate using a four-stroke cycle. The four strokes, described below, will be referred to as the intake stroke, the compression stroke, the combustion stroke, and the exhaust stroke. During each revolution of a crankshaft (not shown), two of the four strokes occur within the cylinder 118. Therefore, two crankshaft revolutions are necessary for the cylinder 118 to experience all four of the strokes.


During the intake stroke, air from the intake manifold 110 is drawn into the cylinder 118 through an intake valve 122. The ECM 114 controls a fuel actuator module 124, which regulates fuel injection to achieve a desired air/fuel ratio. Fuel may be injected into the intake manifold 110 at a central location or at multiple locations, such as near the intake valve 122 of each of the cylinders. In various implementations (not shown), fuel may be injected directly into the cylinders or into mixing chambers/ports associated with the cylinders. The fuel actuator module 124 may halt injection of fuel to cylinders that are deactivated.


The injected fuel mixes with air and creates an air/fuel mixture in the cylinder 118. During the compression stroke, a piston (not shown) within the cylinder 118 compresses the air/fuel mixture. The engine 102 may be a compression-ignition engine, in which case compression causes ignition of the air/fuel mixture. Alternatively, the engine 102 may be a spark-ignition engine, in which case a spark actuator module 126 energizes a spark plug 128 in the cylinder 118 based on a signal from the ECM 114, which ignites the air/fuel mixture. Some types of engines, such as homogenous charge compression ignition (HCCI) engines may perform both compression ignition and spark ignition. The timing of the spark may be specified relative to the time when the piston is at its topmost position, which will be referred to as top dead center (TDC).


The spark actuator module 126 may be controlled by a timing signal specifying how far before or after TDC to generate the spark. Because piston position is directly related to crankshaft rotation, operation of the spark actuator module 126 may be synchronized with the position of the crankshaft. The spark actuator module 126 may halt provision of spark to deactivated cylinders or provide spark to deactivated cylinders.


During the combustion stroke, the combustion of the air/fuel mixture drives the piston down, thereby driving the crankshaft. The combustion stroke may be defined as the time between the piston reaching TDC and the time at which the piston returns to a bottom most position, which will be referred to as bottom dead center (BDC).


During the exhaust stroke, the piston begins moving up from BDC and expels the byproducts of combustion through an exhaust valve 130. The byproducts of combustion are exhausted from the vehicle via an exhaust system 134.


The intake valve 122 may be controlled by an intake camshaft 140, while the exhaust valve 130 may be controlled by an exhaust camshaft 142. In various implementations, multiple intake camshafts (including the intake camshaft 140) may control multiple intake valves (including the intake valve 122) for the cylinder 118 and/or may control the intake valves (including the intake valve 122) of multiple banks of cylinders (including the cylinder 118). Similarly, multiple exhaust camshafts (including the exhaust camshaft 142) may control multiple exhaust valves for the cylinder 118 and/or may control exhaust valves (including the exhaust valve 130) for multiple banks of cylinders (including the cylinder 118).


The cylinder actuator module 120 may deactivate the cylinder 118 by deactivating opening of the intake valve 122 and/or the exhaust valve 130. The time at which the intake valve 122 is opened may be varied with respect to piston TDC by an intake cam phaser 148. The time at which the exhaust valve 130 is opened may be varied with respect to piston TDC by an exhaust cam phaser 150. A phaser actuator module 158 may control the intake cam phaser 148 and the exhaust cam phaser 150 based on signals from the ECM 114. When implemented, variable valve lift (not shown) may also be controlled by the phaser actuator module 158. In various other implementations, the intake valve 122 and/or the exhaust valve 130 may be controlled by actuators other than camshafts, such as electromechanical actuators, electrohydraulic actuators, electromagnetic actuators, etc.


The engine system 100 may include a boost device that provides pressurized air to the intake manifold 110. For example, FIG. 1 shows a turbocharger including a turbine 160-1 that is driven by exhaust gases flowing through the exhaust system 134. The turbocharger also includes a compressor 160-2 that is driven by the turbine 160-1 and that compresses air leading into the throttle valve 112. In various implementations, a supercharger (not shown), driven by the crankshaft, may compress air from the throttle valve 112 and deliver the compressed air to the intake manifold 110.


A wastegate 162 may allow exhaust to bypass the turbine 160-1, thereby reducing the boost (the amount of intake air compression) of the turbocharger. The ECM 114 may control the turbocharger via a boost actuator module 164. The boost actuator module 164 may modulate the boost of the turbocharger by controlling the position of the wastegate 162. In various implementations, multiple turbochargers may be controlled by the boost actuator module 164. The turbocharger may have variable geometry, which may be controlled by the boost actuator module 164.


An intercooler (not shown) may dissipate some of the heat contained in the compressed air charge, which is generated as the air is compressed. Although shown separated for purposes of illustration, the turbine 160-1 and the compressor 160-2 may be mechanically linked to each other, placing intake air in close proximity to hot exhaust. The compressed air charge may absorb heat from components of the exhaust system 134.


The engine system 100 may include an exhaust gas recirculation (EGR) valve 170, which selectively redirects exhaust gas back to the intake manifold 110. The EGR valve 170 may be located upstream of the turbocharger's turbine 160-1. The EGR valve 170 may be controlled by an EGR actuator module 172.


Crankshaft position may be measured using a crankshaft position sensor 180. A temperature of engine coolant may be measured using an engine coolant temperature (ECT) sensor 182. The ECT sensor 182 may be located within the engine 102 or at other locations where the coolant is circulated, such as a radiator (not shown).


A pressure within the intake manifold 110 may be measured using a manifold absolute pressure (MAP) sensor 184. In various implementations, engine vacuum, which is the difference between ambient air pressure and the pressure within the intake manifold 110, may be measured. A mass flow rate of air flowing into the intake manifold 110 may be measured using a mass air flow (MAF) sensor 186. In various implementations, the MAF sensor 186 may be located in a housing that also includes the throttle valve 112.


Position of the throttle valve 112 may be measured using one or more throttle position sensors (TPS) 190. A temperature of air being drawn into the engine 102 may be measured using an intake air temperature (IAT) sensor 192. The engine system 100 may also include one or more other sensors 193. The ECM 114 may use signals from the sensors to make control decisions for the engine system 100.


The ECM 114 may communicate with a transmission control module 194 to coordinate shifting gears in a transmission (not shown). For example, the ECM 114 may reduce engine torque during a gear shift. The engine 102 outputs torque to a transmission (not shown) via the crankshaft. One or more coupling devices, such as a torque converter and/or one or more clutches, regulate torque transfer between a transmission input shaft and the crankshaft. Torque is transferred between the transmission input shaft and a transmission output shaft via the gears.


Torque is transferred between the transmission output shaft and wheels of the vehicle via one or more differentials, driveshafts, etc. Wheels that receive torque output by the transmission will be referred to as drive wheels. Wheels that do not receive torque from the transmission will be referred to as undriven wheels.


The ECM 114 may communicate with a hybrid control module 196 to coordinate operation of the engine 102 and one or more electric motors 198. The electric motor 198 may also function as a generator, and may be used to produce electrical energy for use by vehicle electrical systems and/or for storage in a battery. In various implementations, various functions of the ECM 114, the transmission control module 194, and the hybrid control module 196 may be integrated into one or more modules.


Each system that varies an engine parameter may be referred to as an engine actuator. Each engine actuator receives an actuator value. For example, the throttle actuator module 116 may be referred to as an engine actuator, and the throttle opening area may be referred to as the actuator value. In the example of FIG. 1, the throttle actuator module 116 achieves the throttle opening area by adjusting an angle of the blade of the throttle valve 112.


The spark actuator module 126 may also be referred to as an engine actuator, while the corresponding actuator value may be the amount of spark advance relative to cylinder TDC. Other engine actuators may include the cylinder actuator module 120, the fuel actuator module 124, the phaser actuator module 158, the boost actuator module 164, and the EGR actuator module 172. For these engine actuators, the actuator values may correspond to a cylinder activation/deactivation pattern, fueling rate, intake and exhaust cam phaser angles, boost pressure, and EGR valve opening area, respectively. The ECM 114 may generate the actuator values in order to cause the engine 102 to generate a desired engine output torque.


The ECM 114 and/or one or more other modules of the engine system 100 may implement the cylinder deactivation pattern matching system of the present disclosure. For example, the ECM 114 selects a next cylinder deactivation pattern based on one or more factors, including, but not limited to, engine speed, requested torque, a selected gear, air per cylinder (APC, e.g., an estimate or calculation of the mass of air in each cylinder), residual exhaust per cylinder (RPC, e.g., a mass of residual exhaust gas in each cylinder), and respective cylinder identifications (IDs). In particular, the ECM 114 determines one or more possible candidate cylinder deactivation patterns based on the above listed factors, and compares each of the possible cylinder deactivation patterns to a current cylinder deactivation pattern. The ECM 114 selects the next cylinder deactivation pattern based on the comparisons.


Referring now to FIG. 2, a functional block diagram of an example engine control module (ECM) 200 is presented. A torque request module 204 may determine a torque request 208 based on one or more driver inputs 212, such as an accelerator pedal position, a brake pedal position, a cruise control input, and/or one or more other suitable driver inputs. The torque request module 204 may determine the torque request 208 additionally or alternatively based on one or more other torque requests, such as torque requests generated by the ECM 200 and/or torque requests received from other modules of the vehicle, such as the transmission control module 194, the hybrid control module 196, a chassis control module, etc.


One or more engine actuators may be controlled based on the torque request 208 and/or one or more other torque requests. For example, a throttle control module 216 may determine a desired throttle opening 220 based on the torque request 208. The throttle actuator module 116 may adjust opening of the throttle valve 112 based on the desired throttle opening 220. A spark control module 224 may determine a desired spark timing 228 based on the torque request 208. The spark actuator module 126 may generate spark based on the desired spark timing 228. A fuel control module 232 may determine one or more desired fueling parameters 236 based on the torque request 208. For example, the desired fueling parameters 236 may include fuel injection amount, number of fuel injections for injecting the amount, and timing for each of the injections. The fuel actuator module 124 may inject fuel based on the desired fueling parameters 236. A boost control module 240 may determine a desired boost 244 based on the torque request 208. The boost actuator module 164 may control boost output by the boost device(s) based on the desired boost 244.


Additionally, a cylinder control module 248 selects a desired cylinder activation/deactivation pattern 252 based on the torque request 208. The cylinder actuator module 120 deactivates the intake and exhaust valves of the cylinders that are to be deactivated according to the desired cylinder activation/deactivation pattern 252 and activates the intake and exhaust valves of cylinders that are to be activated according to the desired cylinder activation/deactivation pattern 252.


The cylinder control module 248 may select the desired cylinder activation/deactivation pattern 252 also based in part on, for example only, the APC, the RPC, the engine speed, the selected gear, slip, and/or vehicle speed. For example, an APC module 256 determines the APC based on MAP, MAF, throttle, and/or engine speed, an RPC module 260 determines the RPC based on an intake angle and an exhaust angle, EGR valve position, MAP, and/or engine speed, and an engine speed module 264 determines the engine speed based on a crankshaft position.


Fueling is halted (zero fueling) to cylinders that are to be deactivated according to the desired cylinder activation/deactivation pattern 252 and fuel is provided the cylinders that are to be activated according to the desired cylinder activation/deactivation pattern 252. Spark is provided to the cylinders that are to be activated according to the desired cylinder activation/deactivation pattern 252. Spark may be provided or halted to cylinders that are to be deactivated according to the desired cylinder activation/deactivation pattern 252. Cylinder deactivation is different than fuel cutoff (e.g., deceleration fuel cutoff) in that the intake and exhaust valves of cylinders to which fueling is halted during fuel cutoff are still opened and closed during the fuel cutoff.


Referring now to FIG. 3, an example implementation of the cylinder control module 248 is shown. Referring now to FIGS. 2 and 3, N (number of) predetermined cylinder deactivation patterns are stored, such as in a pattern database 304. N is an integer greater than 2 and may be, for example, 3, 4, 5, 6, 7, 8, 9, 10, or another suitable value.


Each of the N predetermined deactivation patterns includes an indicator for each of the next M events of a predetermined firing order of the cylinders. M is an integer that may less than, equal to, or greater than the total number of cylinders of the engine 102. For example only, M may be 20, 40, 60, 80, a multiple of the total number of cylinders of the engine, or another suitable number. M may be calibratable and set based on, for example, the engine speed, the torque request, and/or the total number of cylinders of the engine 102.


Each of the M indicators indicates whether the corresponding cylinder in the predetermined firing order should be activated or deactivated. For example only, the N predetermined deactivation patterns may each include an array including M (number of) zeros and/or ones. A zero may indicate that the corresponding cylinder should be activated, and a one may indicate that the corresponding cylinder should be deactivated, or vice versa.


The following deactivation patterns are provided as examples of predetermined deactivation patterns:

    • (1) [0 1 0 1 0 1 . . . 0 1]
    • (2) [0 0 1 0 0 1 . . . 0 0 1]
    • (3) [0 0 0 1 0 0 0 1 . . . 0 0 0 1]
    • (4) [0 0 0 0 0 0 . . . 0 0]
    • (5) [1 1 1 1 1 1 . . . 1 1]
    • (6) [0 1 1 0 1 1 . . . 0 1 1]
    • (7) [0 0 1 1 0 0 1 1 . . . 0 0 1 1]
    • (8) [0 1 1 1 0 1 1 1 . . . 0 1 1 1]


      Pattern (1) corresponds to a repeating pattern of one cylinder in the predetermined firing order being activated, the next cylinder in the predetermined firing order being deactivated, the next cylinder in the predetermined firing order being activated, and so on. Pattern (2) corresponds to a repeating pattern of two consecutive cylinders in the predetermined firing order being activated, the next cylinder in the predetermined firing order being deactivated, the next two consecutive cylinders in the predetermined firing order being activated, and so on. Pattern (3) corresponds to a repeating pattern of three consecutive cylinders in the predetermined firing order being activated, the next cylinder in the predetermined firing order being deactivated, the next three consecutive cylinders in the predetermined firing order being activated, and so on. Pattern (4) corresponds to all of the cylinders being activated, and Pattern (5) corresponds to all of the cylinders being deactivated. Pattern (6) corresponds to a repeating pattern of one cylinder in the predetermined firing order being activated, the next two consecutive cylinders in the predetermined firing order being deactivated, the next cylinder in the predetermined firing order being activated, and so on. Pattern (7) corresponds to a repeating pattern of two consecutive cylinders in the predetermined firing order being activated, the next two consecutive cylinders in the predetermined firing order being deactivated, the next two consecutive cylinders in the predetermined firing order being activated, and so on. Pattern (8) corresponds to a repeating pattern of one cylinder in the predetermined firing order being activated, the next three consecutive cylinders in the predetermined firing order being deactivated, the next cylinder in the predetermined firing order being activated, and so on.


While the 8 example deactivation patterns have been provided above, the N predetermined deactivation patterns may include numerous other deactivation patterns. Also, while repeating patterns have been provided as examples, one or more non-repeating deactivation patterns may be included. While the N predetermined deactivation patterns have been discussed as being stored in arrays, the N predetermined deactivation patterns may be stored in another suitable form.


A pattern selection module 308 selects one of the N predetermined deactivation patterns and sets the desired cylinder activation/deactivation pattern 252 to the selected one of the N predetermined deactivation patterns. The cylinders of the engine 102 are activated or deactivated according to the desired cylinder activation/deactivation pattern 252 in the predetermined firing order. The desired cylinder activation/deactivation pattern 252 is repeated until a different one of the N predetermined deactivation patterns is selected.


The pattern selection module 308 includes a candidate pattern determination module 312 and a pattern comparison module 316. The candidate pattern determination module 312 communicates with the pattern database 304 to determine a primary candidate pattern and at least one alternate candidate pattern based in part on the factors described in FIG. 2. For example, the candidate pattern determination module 312 selects the primary candidate pattern, a first alternate candidate pattern, and a second alternate candidate pattern from the N predetermined deactivation patterns. The candidate pattern determination module 312 may select the primary and alternate candidate patterns based on a ranking of the N predetermined deactivation patterns. For example only, the N predetermined deactivation patterns may be ranked as described in Provisional Patent Application No. 61/693,057, filed on Aug. 24, 2012, which is incorporated herein in its entirety.


The primary candidate pattern may correspond to a highest ranked (i.e., most desirable) deactivation pattern based on the APC, RPC, engine speed, torque request, etc. The second alternate candidate pattern and the third alternate candidate pattern may correspond to a second and third highest ranked deactivation patterns, respectively. The candidate pattern determination module 312 provides the primary and alternative candidate patterns to the pattern comparison module 316.


The pattern comparison module 316 compares each of the primary and alternative candidate patterns to the current deactivation pattern (i.e., the desired cylinder activation/deactivation pattern 252 that is currently being implemented). The pattern comparison module 316 selects one of the primary and alternative candidate patterns as the next deactivation pattern to be output as the desired cylinder activation/deactivation pattern 252 based on the comparison. For example only, the pattern comparison module 316 compares respective pattern lengths, cylinder firing patterns, and/or the last cylinder(s) fired in the patterns and selects the next deactivation pattern accordingly.


For example, the pattern comparison module 316 may attempt to compare a last portion of the desired cylinder activation/deactivation pattern 252 to respective first portions of each of the candidate patterns to determine which of the candidate patterns most closely resembles the desired cylinder activation/deactivation pattern 252, and select the next deactivation pattern accordingly. In this manner, transition between the (current) desired cylinder activation/deactivation pattern 252 and the next pattern to be used as the desired cylinder activation/deactivation pattern 252 is facilitated. For example only, a last cylinder (or the last 2, 3, 4, or more cylinders) fired in the desired cylinder activation/deactivation pattern 252 and a first cylinder (or the first 2, 3, 4, or more cylinders) fired in the next deactivation pattern may be given more weight in the comparison than remaining cylinders. In other words, a last P events in the desired cylinder activation/deactivation pattern 252 may be compared to the first P events of each of the primary and alternate candidate patterns. The pattern comparison module 316 selects the candidate pattern that has the greatest number of the first P events that match the last P events of the desired cylinder activation/deactivation pattern 252. The pattern comparison module 316 outputs the desired cylinder activation/deactivation pattern 252 according to the selected next deactivation pattern.


Alternatively, the pattern comparison module 316 may compare any sequence of P events of the desired cylinder activation/deactivation pattern 252 to any sequence of P events of each of the candidate patterns to determine the best match between any portion of the desired cylinder activation/deactivation pattern 252 and any portion of the candidate patterns. The pattern comparison module 316 then selects the candidate pattern having the greatest number of any sequence of P events that match any sequence of P events of the desired cylinder activation/deactivation pattern 252.


Referring now to FIG. 4, a cylinder deactivation pattern matching method 400 begins at 404. At 408, the method 400 determines a primary candidate deactivation pattern and first and second alternate candidate deactivation patterns. At 412, the method 400 determines whether any of the candidate deactivation patterns is the same as the current deactivation pattern. If true, the method 400 continues to 416. If false, the method 400 continues to 420. At 416, the method 400 selects and continues to use the current deactivation pattern, and the method 400 continues with 436.


At 420, the method 400 compares the current deactivation pattern to the primary candidate pattern to determine a best match (e.g., a greatest number of matches between any sequence of P events in the primary candidate pattern and any sequence of P events in the current deactivation pattern) between the primary candidate pattern and the current deactivation pattern. Or, the method 400 may simply determine a number of matched events in the first P events of the primary candidate pattern and the last P events in the current deactivation pattern. At 424, the method 400 compares the current deactivation pattern to the first alternate candidate pattern to determine a best match between the first alternate candidate pattern and the current deactivation pattern. At 428, the method 400 compares the current deactivation pattern to the second alternate candidate pattern to determine a best match between the second alternate candidate pattern and the current deactivation pattern. At 432, the method 400 selects the next deactivation pattern based on the candidate pattern having the best match with the current deactivation pattern. At 436, the method 400 controls cylinder deactivation/activation according to the selected next deactivation pattern. The method 400 ends at 440. While the method 400 is shown and discussed as ending, FIG. 4 may be illustrative of one control loop and control loops may be performed at a predetermined rate.


The foregoing description is merely illustrative in nature and is in no way intended to limit the disclosure, its application, or uses. The broad teachings of the disclosure can be implemented in a variety of forms. Therefore, while this disclosure includes particular examples, the true scope of the disclosure should not be so limited since other modifications will become apparent upon a study of the drawings, the specification, and the following claims. For purposes of clarity, the same reference numbers will be used in the drawings to identify similar elements. As used herein, the phrase at least one of A, B, and C should be construed to mean a logical (A or B or C), using a non-exclusive logical OR. It should be understood that one or more steps within a method may be executed in different order (or concurrently) without altering the principles of the present disclosure.


As used herein, the term module may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC); an electronic circuit; a combinational logic circuit; a field programmable gate array (FPGA); a processor (shared, dedicated, or group) that executes code; other suitable hardware components that provide the described functionality; or a combination of some or all of the above, such as in a system-on-chip. The term module may include memory (shared, dedicated, or group) that stores code executed by the processor.


The term code, as used above, may include software, firmware, and/or microcode, and may refer to programs, routines, functions, classes, and/or objects. The term shared, as used above, means that some or all code from multiple modules may be executed using a single (shared) processor. In addition, some or all code from multiple modules may be stored by a single (shared) memory. The term group, as used above, means that some or all code from a single module may be executed using a group of processors. In addition, some or all code from a single module may be stored using a group of memories.


The apparatuses and methods described herein may be implemented by one or more computer programs executed by one or more processors. The computer programs include processor-executable instructions that are stored on a non-transitory tangible computer readable medium. The computer programs may also include stored data. Non-limiting examples of the non-transitory tangible computer readable medium are nonvolatile memory, magnetic storage, and optical storage.

Claims
  • 1. A cylinder control system of a vehicle, comprising: a cylinder control module that: selects one of N predetermined cylinder activation/deactivation patterns as a desired cylinder activation/deactivation pattern for cylinders of an engine, wherein N is an integer greater than two, each of the N predetermined cylinder activation/deactivation patterns including P indicators for the next P cylinder events, each of the P indicators indicating whether to activate or deactivate a corresponding cylinder, and P is an integer greater than a total number of cylinders of the engine;activates opening of intake and exhaust valves of first ones of the cylinders that are to be activated based on the desired cylinder activation/deactivation pattern; anddeactivates opening of intake and exhaust valves of second ones of the cylinders that are to be deactivated based on the desired cylinder activation/deactivation pattern; anda fuel control module that provides fuel to the first ones of the cylinders and that disables fueling to the second ones of the cylinders,wherein the cylinder control module further: determines M possible ones of the N cylinder activation/deactivation patterns, wherein M is an integer greater than or equal to one;selectively compares portions of the M possible cylinder activation/deactivation patterns, respectively, with a portion of the desired cylinder activation/deactivation pattern; andselectively updates the desired cylinder activation/deactivation pattern to one of the M possible cylinder activation/deactivation patterns based on the comparisons.
  • 2. The cylinder control system of claim 1 wherein the cylinder control module includes a pattern database that stores the N predetermined cylinder activation/deactivation patterns.
  • 3. The cylinder control system of claim 1 wherein the portion of the desired cylinder activation/deactivation pattern corresponds to the last Q indicators for the last Q events of the desired cylinder activation/deactivation pattern, and wherein the portions of each of the M possible cylinder activation/deactivation patterns correspond to the first Q indicators of the first Q events of the M possible cylinder activation/deactivation patterns, wherein Q is an integer greater than one and less than or equal to P.
  • 4. The cylinder control system of claim 1 wherein the cylinder control module determines the M possible cylinder activation/deactivation patterns based on engine speed.
  • 5. The cylinder control system of claim 1 wherein the cylinder control module determines the M possible cylinder activation/deactivation patterns based on a requested torque output of the engine.
  • 6. The cylinder control system of claim 1 wherein the cylinder control module determines the M possible cylinder activation/deactivation patterns based on a gear ratio of a transmission.
  • 7. The cylinder control system of claim 1 wherein the cylinder control module determines the M possible cylinder activation/deactivation patterns based on an amount of air per cylinder.
  • 8. The cylinder control system of claim 1 wherein the cylinder control module determines the M possible cylinder activation/deactivation patterns based on an amount of residual exhaust per cylinder.
  • 9. The cylinder control system of claim 1 wherein the cylinder control module determines the M possible cylinder activation/deactivation patterns based on engine speed, a requested torque output of the engine, a gear ratio of a transmission, an amount of air per cylinder, and an amount of residual exhaust per cylinder.
  • 10. A cylinder control method for a vehicle, the method comprising: selecting one of N predetermined cylinder activation/deactivation patterns as a desired cylinder activation/deactivation pattern for cylinders of an engine, wherein N is an integer greater than two, each of the N predetermined cylinder activation/deactivation patterns including P indicators for the next P cylinder events, each of the P indicators indicating whether to activate or deactivate a corresponding one cylinder, and P is an integer greater than a total number of cylinders of the engine;activating opening of intake and exhaust valves of first ones of the cylinders that are to be activated based on the desired cylinder activation/deactivation pattern;deactivating opening of intake and exhaust valves of second ones of the cylinders that are to be deactivated based on the desired cylinder activation/deactivation pattern;providing fuel to the first ones of the cylinders;disabling fueling to the second ones of the cylinders;determining M possible ones of the N cylinder activation/deactivation patterns, wherein M is an integer greater than or equal to one;comparing portions of the M possible cylinder activation/deactivation patterns, respectively, with a portion of the desired cylinder activation/deactivation pattern; andselectively updating the desired cylinder activation/deactivation pattern to one of the M possible cylinder activation/deactivation patterns based on the comparisons.
  • 11. The cylinder control method of claim 10 further comprising retrieving the N predetermined cylinder activation/deactivation patterns from a pattern database.
  • 12. The cylinder control method of claim 10 wherein the portion of the desired cylinder activation/deactivation pattern corresponds to the last Q indicators for the last Q events of the desired cylinder activation/deactivation pattern, and wherein the portions of each of the M possible cylinder activation/deactivation patterns correspond to the first Q indicators of the first Q events of the M possible cylinder activation/deactivation patterns, wherein Q is an integer greater than one and less than or equal to P.
  • 13. The cylinder control method of claim 10 further comprising determining the M possible cylinder activation/deactivation patterns based on engine speed.
  • 14. The cylinder control method of claim 10 further comprising determining the M possible cylinder activation/deactivation patterns based on a requested torque output of the engine.
  • 15. The cylinder control method of claim 10 further comprising determining the M possible cylinder activation/deactivation patterns based on a gear ratio of a transmission.
  • 16. The cylinder control method of claim 10 further comprising determining the M possible cylinder activation/deactivation patterns based on an amount of air per cylinder.
  • 17. The cylinder control method of claim 10 further comprising determining the M possible cylinder activation/deactivation patterns based on an amount of residual exhaust per cylinder.
  • 18. The cylinder control method of claim 10 further comprising determining the M possible cylinder activation/deactivation patterns based on engine speed, a requested torque output of the engine, a gear ratio of a transmission, an amount of air per cylinder, and an amount of residual exhaust per cylinder.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 61/693,005, filed on Aug. 24, 2012. The disclosure of the above application is incorporated herein by reference in its entirety. Ser. No. 13/798,451 filed on Mar. 13, 2013, Ser. No. 13/798,586 filed on Mar. 13, 2013, Ser. No. 13/798,590 filed on Mar. 13, 2013, Ser. No. 13/798,536 filed on Mar. 13, 2013, Ser. No. 13/798,435 filed on Mar. 13, 2013, Ser. No. 13/798,471 filed on Mar. 13, 2013 , Ser. No. 13/798,737 filed on Mar. 3, 2013, Ser. No. 13/798,701 filed on Mar. 13, 2013, Ser. No. 13/78,518 filed on Mar. 13, 2013 , Ser. No. 13/799,129 filed on Mar. 13, 2013, Ser. No. 13/798,540 filed on Mar. 13, 2013, Ser. No. 13/798,574 filed on Mar. 13, 2013, Ser. No. 13/799,181 filed on Mar. 13, 2013, Ser. No. 13/799,116 filed on Mar. 13, 2013, Ser. No. 13/798,624 filed on Mar. 13, 2013, Ser. No. 13/798,384 filed on Mar. 13, 2013, Ser. No. 13/798,755 filed on Mar. 13, 2013, and Ser. No. 13/798,400 filed on Mar. 13, 2013. The entire disclosures of the above application are incorporated herein by reference.

US Referenced Citations (274)
Number Name Date Kind
3596640 Bloomfield Aug 1971 A
4129034 Niles et al. Dec 1978 A
4172434 Coles Oct 1979 A
4377997 Staerzl Mar 1983 A
4434767 Kohama et al. Mar 1984 A
4489695 Kohama et al. Dec 1984 A
4509488 Forster et al. Apr 1985 A
4535744 Matsumura Aug 1985 A
4770148 Hibino et al. Sep 1988 A
4887216 Ohnari et al. Dec 1989 A
4974563 Ikeda et al. Dec 1990 A
4987888 Funabashi et al. Jan 1991 A
5042444 Hayes et al. Aug 1991 A
5094213 Dudek et al. Mar 1992 A
5226513 Shibayama Jul 1993 A
5278760 Ribbens et al. Jan 1994 A
5357932 Clinton et al. Oct 1994 A
5374224 Huffmaster et al. Dec 1994 A
5377631 Schechter Jan 1995 A
5423208 Dudek et al. Jun 1995 A
5465617 Dudek et al. Nov 1995 A
5540633 Yamanaka et al. Jul 1996 A
5553575 Beck et al. Sep 1996 A
5584266 Motose et al. Dec 1996 A
5669354 Morris Sep 1997 A
5692471 Zhang Dec 1997 A
5720257 Motose et al. Feb 1998 A
5813383 Cummings Sep 1998 A
5884605 Nagaishi et al. Mar 1999 A
5909720 Yamaoka et al. Jun 1999 A
5931140 Maloney Aug 1999 A
5934263 Russ et al. Aug 1999 A
5941927 Ptitz Aug 1999 A
5975052 Moyer Nov 1999 A
5983867 Stuber et al. Nov 1999 A
6125812 Garabedian Oct 2000 A
6158411 Morikawa Dec 2000 A
6244242 Grizzle et al. Jun 2001 B1
6247449 Persson Jun 2001 B1
6272427 Wild et al. Aug 2001 B1
6286366 Chen et al. Sep 2001 B1
6295500 Cullen et al. Sep 2001 B1
6332446 Matsumoto et al. Dec 2001 B1
6334425 Nagatani et al. Jan 2002 B1
6355986 Kato et al. Mar 2002 B1
6360724 Suhre Mar 2002 B1
6363316 Soliman et al. Mar 2002 B1
6371075 Koch Apr 2002 B2
6385521 Ito May 2002 B1
6520140 Dreymuller et al. Feb 2003 B2
6546912 Tuken Apr 2003 B2
6619258 McKay et al. Sep 2003 B2
6622548 Hernandez Sep 2003 B1
6694806 Kumagai et al. Feb 2004 B2
6754577 Gross et al. Jun 2004 B2
6760656 Matthews et al. Jul 2004 B2
6850831 Buckland et al. Feb 2005 B2
6909961 Wild et al. Jun 2005 B2
6978204 Surnilla et al. Dec 2005 B2
6980902 Nakazawa Dec 2005 B2
6981492 Barba et al. Jan 2006 B2
6983737 Gross et al. Jan 2006 B2
7003390 Kaga Feb 2006 B2
7024301 Kar et al. Apr 2006 B1
7028661 Bonne et al. Apr 2006 B1
7032545 Lewis et al. Apr 2006 B2
7032581 Gibson et al. Apr 2006 B2
7044101 Duty et al. May 2006 B1
7063062 Lewis et al. Jun 2006 B2
7066121 Michelini et al. Jun 2006 B2
7066136 Ogiso Jun 2006 B2
7069718 Surnilla et al. Jul 2006 B2
7069773 Stempnik et al. Jul 2006 B2
7086386 Doering Aug 2006 B2
7100720 Ishikawa Sep 2006 B2
7111612 Michelini et al. Sep 2006 B2
7140355 Michelini et al. Nov 2006 B2
7159568 Lewis et al. Jan 2007 B1
7174713 Nitzke et al. Feb 2007 B2
7174879 Chol et al. Feb 2007 B1
7200486 Tanaka et al. Apr 2007 B2
7203588 Kaneko et al. Apr 2007 B2
7231907 Bolander et al. Jun 2007 B2
7278391 Wong et al. Oct 2007 B1
7292231 Kodama et al. Nov 2007 B2
7292931 Davis et al. Nov 2007 B2
7319929 Davis et al. Jan 2008 B1
7363111 Vian et al. Apr 2008 B2
7367318 Moriya et al. May 2008 B2
7415345 Wild Aug 2008 B2
7440838 Livshiz et al. Oct 2008 B2
7464676 Wiggins et al. Dec 2008 B2
7472014 Albertson et al. Dec 2008 B1
7497074 Surnilla et al. Mar 2009 B2
7499791 You et al. Mar 2009 B2
7503312 Surnilla et al. Mar 2009 B2
7509201 Bolander et al. Mar 2009 B2
7577511 Tripathi et al. Aug 2009 B1
7581531 Schulz Sep 2009 B2
7614384 Livshiz et al. Nov 2009 B2
7620188 Inoue et al. Nov 2009 B2
7621262 Zubeck Nov 2009 B2
7634349 Senft et al. Dec 2009 B2
7685976 Marriott Mar 2010 B2
7785230 Gibson et al. Aug 2010 B2
7836866 Luken Nov 2010 B2
7849835 Tripathi et al. Dec 2010 B2
7886715 Tripathi et al. Feb 2011 B2
7930087 Gibson et al. Apr 2011 B2
7946263 O'Neill et al. May 2011 B2
7954474 Tripathi et al. Jun 2011 B2
8050841 Costin et al. Nov 2011 B2
8099224 Tripathi et al. Jan 2012 B2
8108132 Reinke Jan 2012 B2
8131445 Tripathi et al. Mar 2012 B2
8131447 Tripathi et al. Mar 2012 B2
8135410 Forte Mar 2012 B2
8145410 Berger et al. Mar 2012 B2
8146565 Leone et al. Apr 2012 B2
8272367 Shikama et al. Sep 2012 B2
8473179 Whitney et al. Jun 2013 B2
8616181 Sahandiesfanjani et al. Dec 2013 B2
8646430 Kinoshita Feb 2014 B2
8646435 Dibble et al. Feb 2014 B2
8701628 Tripathi et al. Apr 2014 B2
8706383 Sauve et al. Apr 2014 B2
8833058 Ervin et al. Sep 2014 B2
8833345 Pochner et al. Sep 2014 B2
8869773 Tripathi et al. Oct 2014 B2
8979708 Burtch Mar 2015 B2
9140622 Beikmann Sep 2015 B2
9222427 Matthews et al. Dec 2015 B2
20010007964 Poljansek et al. Jul 2001 A1
20020039950 Graf et al. Apr 2002 A1
20020156568 Knott et al. Oct 2002 A1
20020162540 Matthews Nov 2002 A1
20020189574 Kim Dec 2002 A1
20030116130 Kisaka et al. Jun 2003 A1
20030123467 Du et al. Jul 2003 A1
20030131820 Mckay et al. Jul 2003 A1
20030172900 Boyer et al. Sep 2003 A1
20040007211 Kobayashi Jan 2004 A1
20040034460 Folkerts et al. Feb 2004 A1
20040069290 Bucktron et al. Apr 2004 A1
20040122584 Muto et al. Jun 2004 A1
20040129249 Kondo Jul 2004 A1
20040206072 Surnilla Oct 2004 A1
20040258251 Inoue et al. Dec 2004 A1
20050016492 Matthews Jan 2005 A1
20050056250 Stroh Mar 2005 A1
20050098156 Ohtani May 2005 A1
20050131618 Megli et al. Jun 2005 A1
20050197761 Bidner et al. Sep 2005 A1
20050199220 Ogiso Sep 2005 A1
20050204726 Lewis Sep 2005 A1
20050204727 Lewis et al. Sep 2005 A1
20050205028 Lewis et al. Sep 2005 A1
20050205045 Michelini et al. Sep 2005 A1
20050205060 Michelini et al. Sep 2005 A1
20050205063 Kolmanovsky et al. Sep 2005 A1
20050205069 Lewis et al. Sep 2005 A1
20050205074 Gibson et al. Sep 2005 A1
20050235743 Stempnik et al. Oct 2005 A1
20060107919 Nishi et al. May 2006 A1
20060112918 Persson Jun 2006 A1
20060130814 Bolander et al. Jun 2006 A1
20060178802 Bolander et al. Aug 2006 A1
20070012040 Nitzke et al. Jan 2007 A1
20070042861 Takaoka et al. Feb 2007 A1
20070100534 Katsumata May 2007 A1
20070101969 Lay et al. May 2007 A1
20070107692 Kuo et al. May 2007 A1
20070131169 Ahn Jun 2007 A1
20070131196 Gibson et al. Jun 2007 A1
20070135988 Kidston et al. Jun 2007 A1
20070235005 Lewis Oct 2007 A1
20080000149 Aradi Jan 2008 A1
20080041327 Lewis et al. Feb 2008 A1
20080066699 Michelini et al. Mar 2008 A1
20080098969 Reed et al. May 2008 A1
20080121211 Livshiz et al. May 2008 A1
20080154468 Berger et al. Jun 2008 A1
20080254926 Schuseil et al. Oct 2008 A1
20080262698 Lahti et al. Oct 2008 A1
20080288146 Beechie et al. Nov 2008 A1
20090007877 Raiford Jan 2009 A1
20090013667 Winstead Jan 2009 A1
20090013668 Winstead Jan 2009 A1
20090013669 Winstead Jan 2009 A1
20090013969 Winstead Jan 2009 A1
20090018746 Miller et al. Jan 2009 A1
20090030594 You et al. Jan 2009 A1
20090042458 Kinoshita Feb 2009 A1
20090118914 Schwenke et al. May 2009 A1
20090118968 Livshiz et al. May 2009 A1
20090118975 Murakami et al. May 2009 A1
20090118986 Kite May 2009 A1
20090177371 Reinke Jul 2009 A1
20090204312 Moriya Aug 2009 A1
20090241872 Wang et al. Oct 2009 A1
20090248277 Shinagawa et al. Oct 2009 A1
20090248278 Nakasaka Oct 2009 A1
20090292435 Costin et al. Nov 2009 A1
20100006065 Tripathi et al. Jan 2010 A1
20100010724 Tripathi et al. Jan 2010 A1
20100012072 Leone et al. Jan 2010 A1
20100030447 Smyth et al. Feb 2010 A1
20100036571 Han et al. Feb 2010 A1
20100042308 Kobayashi et al. Feb 2010 A1
20100050993 Zhao et al. Mar 2010 A1
20100059004 Gill Mar 2010 A1
20100100299 Tripathi et al. Apr 2010 A1
20100107630 Hamama et al. May 2010 A1
20100192925 Sadakane Aug 2010 A1
20100211299 Lewis et al. Aug 2010 A1
20100222989 Nishimura Sep 2010 A1
20100282202 Luken Nov 2010 A1
20100318275 Borchsenius et al. Dec 2010 A1
20110005496 Hiraya et al. Jan 2011 A1
20110030657 Tripathi et al. Feb 2011 A1
20110048372 Dibble et al. Mar 2011 A1
20110088661 Sczomak et al. Apr 2011 A1
20110094475 Riegel et al. Apr 2011 A1
20110107986 Winstead May 2011 A1
20110144883 Rollinger et al. Jun 2011 A1
20110178693 Chang et al. Jul 2011 A1
20110208405 Tripathi et al. Aug 2011 A1
20110213540 Tripathi et al. Sep 2011 A1
20110213541 Tripathi et al. Sep 2011 A1
20110251773 Sahandiesfanjani et al. Oct 2011 A1
20110264342 Baur et al. Oct 2011 A1
20110265454 Smith et al. Nov 2011 A1
20110265771 Banker et al. Nov 2011 A1
20110295483 Ma et al. Dec 2011 A1
20110313643 Lucatello et al. Dec 2011 A1
20120029787 Whitney et al. Feb 2012 A1
20120055444 Tobergte et al. Mar 2012 A1
20120103312 Sasai et al. May 2012 A1
20120109495 Tripathi et al. May 2012 A1
20120116647 Pochner et al. May 2012 A1
20120143471 Tripathi et al. Jun 2012 A1
20120180759 Whitney et al. Jul 2012 A1
20120221217 Sujan et al. Aug 2012 A1
20120285161 Kerns et al. Nov 2012 A1
20130092127 Pirjaberi et al. Apr 2013 A1
20130092128 Pirjaberi et al. Apr 2013 A1
20130184949 Saito et al. Jul 2013 A1
20130289853 Serrano Oct 2013 A1
20140041625 Pirjaberi et al. Feb 2014 A1
20140041641 Carlson et al. Feb 2014 A1
20140053802 Rayl Feb 2014 A1
20140053803 Rayl Feb 2014 A1
20140053804 Rayl et al. Feb 2014 A1
20140053805 Brennan et al. Feb 2014 A1
20140069178 Beikmann Mar 2014 A1
20140069374 Matthews Mar 2014 A1
20140069375 Matthews et al. Mar 2014 A1
20140069376 Matthews et al. Mar 2014 A1
20140069377 Brennan et al. Mar 2014 A1
20140069378 Burleigh et al. Mar 2014 A1
20140069379 Beikmann Mar 2014 A1
20140069381 Beikmann Mar 2014 A1
20140090623 Beikmann Apr 2014 A1
20140090624 Verner Apr 2014 A1
20140102411 Brennan Apr 2014 A1
20140190448 Brennan et al. Jul 2014 A1
20140190449 Phillips Jul 2014 A1
20140194247 Burtch Jul 2014 A1
20140207359 Phillips Jul 2014 A1
20150240671 Nakamura Aug 2015 A1
20150260112 Liu et al. Sep 2015 A1
20150260117 Shost et al. Sep 2015 A1
20150354470 Li et al. Dec 2015 A1
20150361907 Hayman et al. Dec 2015 A1
Foreign Referenced Citations (10)
Number Date Country
1573916 Feb 2005 CN
1888407 Jan 2007 CN
101220780 Jul 2008 CN
101353992 Jan 2009 CN
101476507 Jul 2009 CN
101586504 Nov 2009 CN
102454493 May 2012 CN
1489595 Dec 2004 EP
2010223019 Oct 2010 JP
2011149352 Aug 2011 JP
Non-Patent Literature Citations (41)
Entry
U.S. Appl. No. 13/798,351, filed Mar. 13, 2013, Rayl.
U.S. Appl. No. 13/798,384, filed Mar. 13, 2013, Burtch.
U.S. Appl. No. 13/798,518, filed Mar. 13, 2013, Beikmann.
U.S. Appl. No. 13/799,116, filed Mar. 13, 2013, Brennan.
U.S. Appl. No. 13/798,701, filed Mar. 13, 2013, Burleign et al.
U.S. Appl. No. 13/798,129, filed Mar. 13, 2013, Beikmann.
U.S. Appl. No. 14/734,619, filed Jun. 9, 2015, Matthews.
International Search Report and Written Opinion dated Jun. 17, 2015 corresponding to International Application No. PCT/US2015/019496, 14 pages.
U.S. Appl. No. 13/798,400, filed Mar. 13, 2013, Phillips.
U.S. Appl. No. 13/798,540, filed Mar. 13, 2013, Brennan et al.
U.S. Appl. No. 13/798,574, filed Mar. 13, 2013, Verner.
U.S. Appl. No. 13/798,624, filed Mar. 13, 2013, Brennan et al.
U.S. Appl. No. 13/798,775, filed Mar. 13, 2013, Phillips.
U.S. Appl. No. 13/799,129, filed Mar. 13, 2013, Beikmann.
U.S. Appl. No. 13/799,181, filed Mar. 13, 2013, Beikmann.
U.S. Appl. No. 14/143,267, filed Dec. 30, 2013, Gehringer et al.
U.S. Appl. No. 14/211,389, filed Mar. 14, 2014, Liu et al.
U.S. Appl. No. 14/300,469, filed Jun. 10, 2014, Li et al.
U.S. Appl. No. 14/310,063, filed Jun. 20, 2014, Wagh et al.
U.S. Appl. No. 14/449,726, filed Aug. 1, 2014, Hayman et al.
U.S. Appl. No. 14/734,619, filed Mar. 4, 2015, Shost et al.
U.S. Appl. No. 13/798,451, filed Mar. 13, 2013, Rayl.
U.S. Appl. No. 13/798,586, filed Mar. 13, 2013, Rayl et al.
U.S. Appl. No. 13/798,590, filed Mar. 13, 2013, Brennan et al.
U.S. Appl. No. 13/798,536, filed Mar. 13, 2013, Matthews et al.
U.S. Appl. No. 13/798,435, filed Mar. 13, 2013, Matthews.
U.S. Appl. No. 13/798,471, filed Mar. 13, 2013, Matthews et al.
U.S. Appl. No. 13/798,737, filed Mar. 13, 2013, Beikmann.
U.S. Appl. No. 13/798,701, filed Mar. 13, 2013, Burleigh et al.
U.S. Appl. No. 14/548,501, filed Nov. 20, 2014, Beikmann et al.
U.S. Appl. No. 61/952,737, filed Mar. 13, 2014, Shost et al.
U.S. Appl. No. 13/798,518, Beikmann, filed Mar. 13, 2013.
U.S. Appl. No. 13/799,129, Beikmann, filed Mar. 13, 2013.
U.S. Appl. No. 13/798,540, Brennan et al., filed Mar. 13, 2013.
U.S. Appl. No. 13/798,574, Verner, filed Mar. 13, 2013.
U.S. Appl. No. 13/799,181, Beikmann, filed Mar. 13, 2013.
U.S. Appl. No. 13/799,116, Brennan, filed Mar. 13, 2013.
U.S. Appl. No. 13/798,624, Brennan et al., filed Mar. 13, 2013.
U.S. Appl. No. 13/798,384, Burtch, filed Mar. 13, 2013.
U.S. Appl. No. 13/798,775, Phillips, filed Mar. 13, 2013.
U.S. Appl. No. 13/798,400, Phillips, filed Mar. 13, 2013.
Related Publications (1)
Number Date Country
20140053802 A1 Feb 2014 US
Provisional Applications (1)
Number Date Country
61693005 Aug 2012 US