The present invention relates to a cylinder device including a rotation mechanism.
The following Patent Literatures disclose cylinder devices including a mechanism configured to rotate a shaft member housed in a cylinder body.
Japanese Patent Laid-Open No. 2011-69384 discloses a rotary drive motor (brushless DC motor) configured to rotate a shaft member.
In Japanese Patent Laid-Open No. 2017-133593, a rotation drive portion is provided to rotate a shaft member at a predetermined angle. The rotation drive portion includes a rotary motor such as a stepping motor or a servo motor.
In Japanese Patent Laid-Open No. 2017-9068, a rotation drive portion is attached to a shaft member. The rotation drive portion includes a rotor and a stator surrounding a periphery of the rotor. A magnet is disposed on the rotor, and a coil is disposed on the stator. The shaft member is rotationally driven by an electromagnetic action.
However, there are problems that power consumption is increased and compactification cannot be appropriately achieved in the conventional configuration in which the shaft member is rotated by a motor or the like. In other words, heat is generated by use of the motor, and thus power consumption easily increases. Further, since the shaft member is mechanically rotated, a rotation mechanism becomes complicated, and compactification cannot be appropriately achieved. In addition, rotation unevenness is required to be prevented.
The present invention has been made in view of the above circumstances, and has an object to provide a cylinder device capable of preventing rotation unevenness while reducing power consumption and achieving compactification.
The present invention is to provide a cylinder device including: a cylinder body; and a shaft member supported in the cylinder body, wherein the cylinder body is provided with a rotation mechanism portion including a rotation chamber and configured to rotate the shaft member based on an action of a fluid, and at least rotation ports communicating with the rotation chamber are provided at a front end and a rear end of the rotation mechanism portion.
In the present invention, preferably, the rotation ports provided at the front end and the rear end of the rotation mechanism portion, respectively, are used to supply the fluid, and a rotation port communicating with the rotation chamber is provided on an outer circumferential part of the rotation mechanism portion and is used for a fluid discharge. At this time, preferably, a rotating body is connected to the shaft member, the rotating body is disposed in the rotation chamber, and the rotating body includes: a first rotating body that is capable of receiving the fluid supplied from the front end of the rotation mechanism portion to the rotation chamber and is capable of sending the fluid to the rotation port used for the fluid discharge; and a second rotating body that is capable of receiving the fluid supplied from the rear end of the rotation mechanism portion to the rotation chamber and is capable of sending the fluid to the rotation port used for the fluid discharge.
In the present invention, one of the rotation ports provided at the front end and the rear end of the rotation mechanism portion may be used to supply the fluid, and the other rotation port may be used to discharge the fluid. At this time, preferably, a rotating body is connected to the shaft member, the rotating body is disposed in the rotation chamber, and the rotating body has a structure capable of receiving the fluid supplied from one of the rotation ports and allowing the fluid to pass toward the other rotation port.
In the present invention, preferably, the shaft member is supported to be capable of stroke.
In the present invention, preferably, a stroke mechanism portion including a cylinder chamber is divided from the rotation mechanism portion in the cylinder body, and the stroke mechanism portion is provided with a stroke port communicating with the cylinder chamber and allowing the shaft member to be stroked by a supply and discharge of the fluid.
In the present invention, the shaft member preferably includes a fluid bearing, the shaft member being supported in a state of floating in the cylinder body.
According to the cylinder device of the present invention, it is possible to prevent rotation unevenness while reducing power consumption and achieving compactification.
Embodiments (hereinafter, abbreviated as “embodiments”) of the present invention will be described in detail below.
A cylinder device 1 includes a cylinder body 2 and a shaft member 3 supported by the cylinder body 2.
In the first embodiment, the shaft member 3 is rotatably supported. On the other hand, a stroke of the shaft member 3 is arbitrary. In other words, the cylinder device 1 of the first embodiment may be configured to enable only rotation of the shaft member 3, or may be configured to enable both rotation and stroke of the shaft member 3. The same applies to a second embodiment to be described below. However, a description will be made below with respect to the cylinder device 1 in which the shaft member 3 is stroked in a shaft direction while rotating.
The term “rotation” means that the shaft member 3 rotates about a shaft center O which is the center of rotation (see
As shown in
As shown in
As shown in
Further, as shown in
As shown in
As shown in
In addition, as shown in
As shown in
As shown in
Further, the first rotation ports 12 and the second rotation ports 13 are preferably formed to face each other in the front-rear direction (X1-X2 direction), but may be shifted from each other in the circumferential direction.
In
As shown in
The first rotation ports 12 and the second rotation ports 13 are used to supply a fluid such as air or water. On the other hand, the third rotation ports 14 are used to discharge the fluid. In the present embodiment, the fluid is supplied from the front and rear of the rotation chamber 9d through the first rotation ports 12 and the second rotation ports 13. For example, the fluid is compressed air, and the rotating body 11 receives the compressed air from both the front and rear sides and rotates. The compressed air, which hits the rotating body 11, diffuses sidewards, and is discharged from the third rotation ports 14 to the outside. As the rotating body 11 rotates, the shaft member 3 connected to the rotating body 11 can rotate about the shaft center O which is the center of rotation.
As shown in
As shown in
The cylinder chamber 15 is a substantially cylindrical space having a diameter slightly larger than the diameter of the piston 4. Further, the cylinder chamber 15 is formed to have a length dimension in the front-rear direction (X1-X2 direction) longer than the length dimension L1 of the piston 4. Therefore, the piston 4 is movably housed in the cylinder chamber 15 in the shaft direction (X1-X2 direction).
In the state of
As shown in
The cylinder device 1 of the present embodiment is, for example, an air bearing-type cylinder device, and is provided with a plurality of air bearings 21, 22, and 23. As shown in
Although not being limited, an example of each of the air bearings 21 to 23 can include an air bearing in which a porous material using sintered metal or carbon is formed in a ring shape or an orifice throttle-type air bearing.
As shown in
The compressed air is supplied to each of the air bearing pressurizing ports 27 to 29, and thus the compressed air uniformly blows onto surfaces of the piston 4, the first piston rod 5, and the second piston rod 6 through the each of the air bearings 21 to 23. Thereby, each of the piston 4, the first piston rod 5, and the second piston rod 6 is supported in a state of floating in the cylinder chamber 15 and the insertion portion 16.
In the cylinder device 1 of the present embodiment, as described above, the fluid is supplied from the front and rear of the rotating body 11 and is discharged from the side, and thus the rotating body 11 and the shaft member 3 can rotate about the shaft center O which is the center of rotation. A rotational angle is not finite, and a rotational frequency or a rotational speed can be adjusted by the amount of fluid.
In the present embodiment, since the cylinder device has the air bearing-type configuration, the piston 4 of the shaft member 3 is supported in the state of floating in the cylinder chamber 15 of the cylinder body 2. In the present embodiment, accordingly, the shaft member 3 can rotate in the state of floating in the cylinder body 2. Since the shaft member 3 and the cylinder body 2 are not in contact with each other, a rotational resistance can be reduced and the rotation can be made with high accuracy. Further, a differential pressure between the first fluid chamber 17 and the second fluid chamber 18 is generated using a supply and discharge of the compressed air from the stroke ports 25 and 26 communicating with the cylinder chamber 15 in the state where the shaft member 3 floats in the cylinder body 2. Thereby, the piston 4 can be stroked in the shaft direction (X1-X2 direction). Although not shown, a cylinder control pressure can be appropriately adjusted by servo valves that communicate with the stroke ports 25 and 26, respectively.
From the state of
A front wall 40 is provided between the cylinder chamber 15 and the insertion portion 16, and the piston 4 is regulated so as not to move forward from the front wall 40. Further, although not shown, the front wall 40 is preferably provided with an elastic ring. The elastic ring acts as a buffer material when the piston 4 comes into contact with the front wall 40.
Alternatively, from the state of
A rear wall 42 of the cylinder chamber 15 is a regulatory surface that regulates the movement of the piston 4 to the rear side (X2), and the piston 4 can hardly move rearward from the rear wall 42. Further, although not shown, the rear wall 42 is preferably provided with an elastic ring. The elastic ring acts as a buffer material when the piston 4 comes into contact with the rear wall 42.
The rotating body 11 of the first embodiment will be described. As shown in
As shown in
The second rotating body 11b includes a plurality of vanes 33 disposed on a back surface 30c of the support body 30. Although not shown, similarly to the vanes 32 forming the first rotating body 11a, each of the vanes 33 is inclined diagonally from the outer circumferential surface of the tubular portion 31 toward the back surface 30c of the support body 30, and the vanes 33 adjacent to each other are disposed so as to partially overlap each other.
In the rotating body 11 shown in
The second piston rod 6 is passed through the tubular portion 31, and the rotating body 11 is fixedly supported on the outer circumferential surface of the second piston rod 6.
The fluid supplied from the first rotation port 12 into the rotation chamber 9d hits the vane 32 of the first rotating body 11a. Further, the fluid supplied from the second rotation port 13 into the rotation chamber 9d hits the vane 33 of the second rotating body 11b. At this time, since the vane 32 of the first rotating body 11a and the vane 33 of the second rotating body 11b are disposed to be in plane symmetry, rotational forces thereof are generated in the same direction, and thus the rotating body 11 can rotate with high accuracy. At this time, if each of the first rotation ports 12 and each of the second rotation ports 13 are formed at positions facing each other in the front-rear direction (X1-X2 direction), when the fluid acts on each of the first rotating body 11a and the second rotating body 11b through each of the rotation ports 12 and 13, it is possible to efficiently generate the rotational force while canceling the force applied to the first rotating body 11a and the second rotating body 11b in the shaft direction and it becomes difficult to apply an unnecessary force in the shaft direction.
Further, the diameter T1 (the width in the direction orthogonal to the front-rear direction) of the rotation chamber 9d shown in
In the present embodiment, the fluids, which hit the first rotating body 11a and the second rotating body 11b, are diffused sidewards and are discharged to the outside from the third rotation port 14. Due to a centrifugal force caused by the rotating body 11 and an inclination of each of the vanes 32 and 33 forming the first rotating body 11a and the second rotating body 11b, the fluids can be appropriately diffused sidewards.
In the present embodiment, as described above, for example, using the structure of the rotating body 11 shown in
As shown in
In the present embodiment, a position of the piston 4 can be measured by the sensor 50 disposed in the hole 8. An example of the sensor 50 can include an existing sensor such as a magnetic sensor, an eddy-current sensor, or an optical sensor.
Position information measured by the sensor 50 is transmitted to a control unit (not shown). Based on the position information measured by the sensor 50, the cylinder control pressures of the first fluid chamber 17 and the second fluid chamber 18 can be adjusted to control the amount of protrusion of the first piston rod 5 from the front end surface 2a.
Further, the sensor 50 can also measure a rotational frequency or a rotational speed of the shaft member 3. Based on rotation information measured by the sensor 50, a rotation pressure can be adjusted to control a rotational frequency or a rotational speed of the rotating body 11.
Hereinafter, differences from the cylinder device 1 of the first embodiment will be mainly described. The members having the same structure as the cylinder device 1 of the first embodiment are denoted by the same reference numerals. As shown in
The cylinder body 62 is divided into a rotation mechanism portion 69 and a stroke mechanism portion 10. As shown in
As shown in
In the second embodiment, any one of the first rotation port 72 and the second rotation port is used for a fluid supply, and the other is used for a fluid discharge.
A rotating body 71 connected to a rear end of a second piston rod 6 of the shaft member 3 includes, for example, a ring portion 83, a cylindrical portion 81 located at a center of the ring portion 83, and a plurality of vanes 82 through which the cylindrical portion 81 and the ring portion 83 are radially connected to each other, as shown in
The second piston rod 6 passes through the cylindrical portion 81, and the rotating body 71 is fixedly supported on a rear end side of the second piston rod 6.
In the present embodiment, a diameter T3 (a width in a direction orthogonal to a front-rear direction) of a rotation chamber 69d shown in
In the second embodiment, for example, compressed air is set into the rotation chamber 69d through the second rotation port 73. The compressed air hits the vanes 82, and the rotating body 71 rotates. The compressed air is discharged to the outside from the first rotation port 72 through the spaces A formed between the vanes 82.
As described above, since the diameter T3 of the rotation chamber 69d is substantially equal to the diameter T4 of the rotating body 71, most of the fluid supplied into the rotation chamber 69d can be applied to the rotation of the rotating body 71, and rotation efficiency on the supply amount of the fluid can be increased. Since the diameter T4 of the rotating body 71 is set to be slightly smaller than the diameter T3 of the rotation chamber 69d, the rotating body 71 can rotate in a floating state without sliding on a wall surface of the rotation chamber 69d.
Similarly to the cylinder device 1 of the first embodiment, since the cylinder device 61 of the second embodiment has also an air bearing-type configuration, the shaft member 3 can be supported in a state of floating inside the cylinder body 2. Then, a differential pressure is generated in the cylinder chamber 15 using a supply and discharge of the compressed air from stroke ports 25 and 26 communicating with the cylinder chamber 15 in the state where the shaft member 3 floats in the cylinder body 62, thereby the piston 4 can be stroked in the shaft direction (X1-X2 direction). Thus, the first piston rod 5 is protruded from the front end surface 62a toward a front (in an X1 direction) as shown in
The present embodiments relate to the cylinder device 1 or 61 including the cylinder body 2 or 62 and the shaft member 3 supported in the cylinder body 2 or 62, and the cylinder body 2 or 62 is provided with the rotation mechanism portion 9 or 69 including the rotation chamber 9d or 69d and configured to rotate the shaft member 3 based on the action of the fluid. Then, at least the rotation ports 12 and 13 or 72 and 73 communicating with the rotation chamber 9d or 69d are provided with at the front end 9a or 69a and the rear end 9b or 69b of the rotation mechanism portion 9 or 69.
In the present embodiments, as described above, the rotation ports 12 and 13 or 72 and 73 communicating with the rotation chamber 9d or 69d are disposed in the front-rear direction (X1-X2 direction) which is the shaft direction of the shaft member 3. In the present embodiment, the shaft member 3 can rotate due to the action of the fluid supplied into the rotation chamber 9d or 69d. According to such a configuration, it is possible to reduce power consumption and achieve compactification as compared with the conventional configuration using a rotary motor such as a stepping motor or a servo motor.
In the configuration in which the shaft member 3 rotates due to the action of the fluid as in the present embodiments, rotation unevenness can be prevented. In particular, according to the present embodiments, the fluid can act along the shaft direction, eccentricity hardly occurs in the shaft member 3 during the rotation, and rotation unevenness can be effectively prevented.
In the cylinder device 1 of the first embodiment, the first rotation port 12 and the second rotation port 13, which are provided at the front end 9a and the rear end 9b of the rotation mechanism portion 9, respectively, are used for a fluid supply. The third rotation port 14 communicating with the rotation chamber 9d is provided on the outer circumferential part 9c of the rotation mechanism portion 9 and is used for the fluid discharge. Thus, the rotation mechanism can be configured in which the fluid is supplied into the rotation chamber 9d in the front-rear direction (X1-X2 direction) and is discharged from the side, so that the fluid can be appropriately supplied and discharged. Thereby, rotation unevenness can be effectively prevented. Further, due to such a fluid flow, it is possible to appropriately prevent the generation of thrust in the shaft direction (X1-X2 direction) for the shaft member 3.
The rotating body 11 of the first embodiment is embodied by the structure shown in
As described above, since the rotating body 11 has the structure in which the fluid is received from both the front and rear, even when the position of the rotating body 11 changes in the rotation chamber 9d, the generation of thrust in the shaft direction (X1-X2 direction) can be prevented. The amount of fluid to be supplied from the first rotation port 12 and the second rotation port 13 can be adjusted depending on the position of the rotating body 11, and the generation of thrust can be effectively prevented.
In the cylinder device 61 of the second embodiment, one rotation port provided at the front end 69a and the rear end 69b of the rotation mechanism portion 69 is used to supply the fluid, and the other rotation port is used to discharge the fluid. Thereby, the fluid can be appropriately supplied and discharged along the shaft direction (X1-X2 direction), and rotation unevenness can be effectively prevented.
The rotating body 71 of the second embodiment is embodied by the structure shown in
In both of the first and second embodiments, the shaft member 3 is preferably supported to be capable of stroke. Thereby, the shaft member 3 can be stroked while rotating.
In the cylinder body 2 or 62, the stroke mechanism portion 10 including the cylinder chamber 15 is divided from the rotation mechanism portion 9 or 69, and the stroke mechanism portion 10 is preferably provided with the stroke ports 25 and 26 communicating with the cylinder chamber 15. Thereby, it is possible to manufacture the cylinder device 1 or 61 in which the fluid supplied to the cylinder chamber 15 of the stroke mechanism portion 10 and the fluid supplied to the rotation chamber 9d or 69d of the rotation mechanism portion 9 or 69 can be prevented from interfering with each other and the shaft member 3 can be stroked while rotating with a simple structure. The fluid acting on the stroke mechanism portion 10 and the fluid acting of the rotation mechanism portion 9 or 69 may be the same as or different from each other. For example, the compressed air can act on both the stroke mechanism portion 10 and the rotation mechanism portion 9 or 69.
In the present embodiments, the shaft member 3 preferably includes a fluid bearing, and the shaft member 3 is preferably supported in the state of floating in the cylinder body. Thereby, sliding resistance during the stroke and rotation can be reduced, and the stroke and rotation can be performed with high accuracy. The air bearing is preferably used as the fluid bearing.
The present invention is not limited to the above embodiments, and can be modified in various ways. In the above embodiments, the size and shape shown in the accompanying drawings can be appropriately changed within the range, in which the effects of the present invention are exhibited, without limitation. In addition, the above embodiments can be appropriately modified and implemented without deviating from the scope of the object of the present invention.
For example, the sensor 50 is not disposed as shown in
However, when the sensor 50 is disposed in the hole 8 formed at the rear end of the second piston rod 6, the sensor 50 can be disposed, without any difficulty, on the second piston rod 6 in a non-contact manner, compactification can be promoted, and the accuracy of position and rotation measurement can be improved.
The cylinder body 2 or 62 may be formed in such a manner that a plurality of divided cylinder bodies are assembled or integrated.
The cylinder body 2 or 62 and the shaft member 3 are made of, for example, an aluminum alloy, but the material can be variously changed depending on the intended use, installation locations and the like without limitation.
As described above, according to the present embodiments, since the cylinder device 1 or 61 can be driven by the action of a fluid other than air, for example, a hydraulic cylinder can be exemplified in addition to the air bearing-type cylinder, as the cylinder device.
According to the present invention, it is possible to realize a cylinder device capable of preventing rotation unevenness while reducing power consumption and promoting compactification. The present invention may be either of a cylinder device capable of only rotation or a cylinder device capable of both rotation and stroke. According to the present invention, it is possible to obtain excellent rotation accuracy and rotational stroke accuracy. In this way, when the cylinder device of the present invention is applied to a use that requires high rotational accuracy and rotational stroke accuracy or the like, it is possible to reduce power consumption and promote compactification in addition to high accuracy.
While the present disclosure has been illustrated and described with respect to a particular embodiment thereof, it should be appreciated by those of ordinary skill in the art that various modifications to this disclosure may be made without departing from the spirit and scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2018-227979 | Dec 2018 | JP | national |
This application is a National Stage application of International Patent Application No. PCT/JP2019/047151 filed on Dec. 3, 2019, which claims priority to Japanese Patent Application No. JP2018-227979 filed on Dec. 5, 2018, each of which is hereby incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2019/047151 | 12/3/2019 | WO | 00 |