This application is a 371 application of International Application No. PCT/KR2009/005897, filed Oct. 14, 2009, which in turn claims priority from Korean Patent Application No. 10-2008-0111037, filed Nov. 10, 2008, each of which is incorporated herein by reference in its entirety.
The present invention relates to a cylinder driving apparatus using air pressure, and in particular to a cylinder driving apparatus using air pressure which a plurality of expansion tubes each connected to a crank shaft are filled with high pressure air and are alternately expanded by means of expansion energy and elevate, thus obtaining a rotational force by driving a crank shaft, and friction can be minimized, and gravitational force generated by self-weight can be offset, which force might interfere with an elevating movement, thus maximizing the efficiency that expansion energy of compressed air is converted into rotational movement.
Conventional motors are driven by fossil energy such as gasoline, coal, gas, etc. the reciprocation movement of a piston of which generated by means of explosion is converted into a rotational movement via a crank.
However, the fossil energy source runs out because the amount of fossil energy is very limited in nature and serves to contaminate environment when in use.
Accordingly, it is an object of the present invention to provide a cylinder driving apparatus using high pressure air which makes it possible to significantly reduce the use of fossil energy to an extent of astonishing level while maximizing the efficiency of energy conversion. In particular, the present invention is directed to improving the structures of the relevant references 1 and 2 granted to the same applicant as the present invention, and the energy loss due to structural friction can be minimized, thus maximizing the efficiency of energy conversion into driving force energy to an extent of revolution, which leads to providing a new structure having an important value as alternative energy resource.
To achieve the above objects, there is provided a cylinder driving apparatus using air pressure which comprises a flexible tube repeatedly expanded and contracted by means of compressed air, and an assistant tube connected with the flexible tube and assisting elevation by supplementing pressure. The present invention is drawn from the Korean patent registration numbers 0041791 and 0210368 granted to the same applicant as the present invention by largely improving the above patents, thus providing a new energy resource by installing an assistant tube as a creative member.
According to the present invention, a connecting rod fixed at each of a plurality of flexible tubes is connected to a crank shaft, thus obtaining a reliable rotational movement, and the flexible tubes filled with compressed air expand and elevate with the aid of air injection of high pressure air by the descending force of other flexible tubes and the compression force of the assistant tubes, so the expansion energy of air generating in the plurality of the flexible tubes serves to rotate the crank shaft with the aid of inter-operations, thus maximizing the efficiency of energy conversion.
The improvement of the energy efficiency helps reduce fossil energy, which results in the protection of the environment along with the application as clean energy with the aid of increased use of compressed air energy, thus obtaining a large effect in the energy field. The present invention might serve to provide a large value as an alternative energy and exchangeable energy resource.
In the conventional art, driving source is obtained using various fossil fuels, but the present invention makes it possible to provide environmentally friendly new energy resource to mankind along with obtaining stable life and economical developments while terminating energy problems due to high oil price, and the present invention might help change to all conventional energy sources or substitute the same.
The present invention will become better understood with reference to the accompanying drawings which are given only by way of illustration and thus are not limitative of the present invention, wherein;
The cylinder driving apparatus using air pressure according to the present invention is directed to improving the constructions consisting of a plurality of flexible tubes 2 installed in the interior of a casing 1 and being flexible with the aid of high pressure air, a connecting rod 3 which is fixed each flexible tube 2 and passes through the upper side of the casing 1, a crank shaft which is sequentially engaged to the connecting rod 3 and rotates with the aid of an elevation operation of the connecting rod 3, and a high pressure tank 6 supplying high pressure air to the flexible tube 2 via an air line 5.
Namely, the present invention is directed to more efficiently utilizing the expansion energy of compression air by providing a flexible tube 2 and an assistant tube 7 of
As shown in
As shown in
As shown in
As shown in
As shown in
In the above construction, a compression spring 16a is disposed between the valve slide 13 and the assistant tube side 15, and a compression spring 16b is installed between the assistant tube slide 15 and the upper portion of the flexible tube 2. It is preferred that the compression spring 16a has smaller spring constant value than that of the compression spring 16b. So, the link mechanism 14a starts operating earlier than the link mechanism 14b.
As shown in
The force decreasing due to the self-weight of the flexible tube 2 serves to move the rack gear 20b upwards with the aid of the rack gear 20a and the pinion gear 19, thus maintaining a stable position, namely, a balanced force in upward and downward directions.
In addition, a releasing apparatus 21 is provided for the purposes that a certain constant height in upward and downward directions is maintained so that the flexible tube 2 is not fully expanded, and the flexible tube 2 can operate like instantly popping by instantly releasing the expansion energy of air, thus repeating the above operations. As shown in
There is provided a height fixing apparatus 27 so that the height of the flexible tube 2 is fixed in a state that the flexible tube 2 is not fully compressed, but remains with a certain margin for compression, thus allowing the air to have expansion energy even in compressed state.
As shown in
There is provided a restriction apparatus for fixing the maximum height so as to prevent the maximum expansion of the flexible tube 2. As show in
A connecting rod 3 is vertically installed in the interior of the flexible tube 2 and has a length to an extent that it does not reach the floor surface when the flexible tube 2 is compressed. A guide tube 31a is installed at the bottom of the flexible tube 2 for guiding elevation with the lower side of the connecting rod 3 being inserted. The through hole 33a is formed at the lower side of the guide tube 31a, thus preventing energy loss due to the resistance of inner air when the connecting rod 3 moves in the guide tube 31a.
A guide bar 32 is vertically installed at a lower side of the flexible tube 2, and a guide tube 31b is installed at the inner floor for guiding elevation as the guide bar 32 is inserted. The through hole 33b is formed at a lower axial surface of the guide tube 31b, thus eliminating the resistance due to air pressure when the guide bar 32 elevates.
As shown in
The flexible tube 2 filled with high pressure air moves upwards with the aid of the rotation of the crank shaft 4 on the basis of the downward movement of the connecting rod 3 of another flexible tube 2. The upward movement of the flexible tube 2 allows the fixed assistant tube 7 and the rack gear 20a to move upwards concurrently. The upward movement of the rack gear 20a serves to rotate the pinion gear 19 in clockwise direction, thus moving downward the rack gear 20b.
The elevating assistant apparatus 17 serves to prevent the downward moment due to the self-weight of the flexible tube 2, maintaining a balance, which is obtained by means of the operation of the rack and the pinion. So, the upward movement of the flexible tube 2 can be smoothly performed with the aid of the above operation.
While the flexible tube 2 is being elevated, the valve slide 13 inserted in the connecting rod 3 elevates and collides with the upper lower surface of the casing 1, and the flexible tube 2 can elevate a little more following the above operation with the aid of the compression springs. The assistant tube slide 15 sequentially moves upwards, and comes into contact with the compression spring 16a compressed at the lower side of the valve slide 13, and the compression sprig 16b comes into contact with the upper end portion of the flexible tub 2 and is compressed.
What the flexible tube 2 elevates is obtained sine the connecting rod 3 fixing the flexible tube 2 elevates by means of the crank shaft 4.
The valve slide 13 elevates along with the rise of the flexible tube 2, thus operating the link mechanism 14a connected thereto. As shown in
The air having moved toward the assistant tube 7 serves to extend the assistant tube 7, and the assistant tube 7 is extended with the aid of the operation of the link mechanism 14b on the basis of the rise of the flexible tube 2, so the assistant tube 7 can be more easily extended with the aid of two operations.
The tensile spring 9a installed in the interior of the assistant tube 7 serves to perform its inherent functions in the next stage, which will be described later.
While the flexible tube 2 is elevating, its movement is guided in a state that the lower end portion of the connecting rod 3 is inserted in the guide tube 31a installed at the bottom of the flexible rube 2. A through hole 33a is formed for the elevation guide of the connecting rod 3 not to be interfered with by inner pressure or negative pressure. The inner pressure of the guide tube 31a always keeps same as the inner pressure of the flexible tube 2, so it is not interfered with by the elevation of the connecting rod 3.
The guide bar 32 installed at a lower side of the flexible tube 2 is inserted in the guide tube 31b installed at an inner lower surface of the casing 1 and elevates, but its movement is not interfered with by any other factors since the though hole 33b is formed at the guide tube 31b.
As shown in
When the flexible tube 2 reaches the top dead point and then moves downward, and the downward movement of the flexible tube 2 is performed along with the rack gear 20a, and the downward movement of the rack gear 20a serves to rotate the pinion gear 19 in the counterclockwise direction, by means of which the rack gear 20b moves upwards. At this time, the tensile spring 9b is extended and has an elastic force, the energy of which is used as an elevating energy of the flexible tube 2 in the next stage.
The downward movement of the flexible tube 2 serves to recover the valve slide 13 and the assistant tube slide 15 in a free state. With the aid of the compression spring 16b having a relatively larger spring constant value, the link mechanism 14b starts operating earlier than the link mechanism 14a being affected by the compression spring 16a having relatively smaller spring constant value. So, the assistant tube 7 operates first, and the assistant tube 7 is quickly compressed by the spring of the tensile spring 9a installed therein, along with the link mechanism 14b.
The compression air residing in the interior of the assistant tube 7 moves toward the flexible tube 2, and the valve 8 is shut by means of the operation of the link mechanism 14a on the basis of the operation of the compression spring 16a, and the inner state of the flexible tube 2 returns to its initial high pressure state.
As shown in
A plurality of the flexible tubes 2 sequentially operate by means of the expansion energy of compressed air, thus alternately and repeatedly performing ascending and descending operations, thus obtaining a driving force by rotating the crank shaft 4.
Number | Date | Country | Kind |
---|---|---|---|
10-2008-0111037 | Nov 2008 | KR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/KR2009/005897 | 10/14/2009 | WO | 00 | 5/10/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/053263 | 5/14/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3974744 | Hedger | Aug 1976 | A |
4170166 | Reed | Oct 1979 | A |
4171618 | Aegerter | Oct 1979 | A |
Number | Date | Country |
---|---|---|
10-0210368 | Apr 1999 | KR |
10-1999-0062360 | Jul 1999 | KR |
10-2005-0110566 | Nov 2005 | KR |
Entry |
---|
International Search Report for PCT/KR2009/005897 Mailed on Jun. 1, 2010. |
Written Opinion of the International Searching Authority for PCT/KR2009/005897. |
International Preliminary Report on Patentability. |
Number | Date | Country | |
---|---|---|---|
20110214562 A1 | Sep 2011 | US |