The present invention refers to cylinder heads for internal combustion engines of the type having:
a body with an upper face, a lower face, two end faces and two lateral faces,
said body integrating in a single cast piece, the engine exhaust manifold,
said exhaust manifold being defined by a plurality of conduits for the exhaust gases provided in the body of the head and forming separate subgroups of exhaust conduits merging into manifold portions superimposed and spaced apart from each other which terminate on a lateral face of the head,
a lower cooling jacket and an upper cooling jacket provided in the body of the head, substantially below and above conduits defining the exhaust manifold, and an intermediate cooling jacket interposed between the abovementioned manifold portions which are superimposed and spaced apart from each other,
said intermediate jacket communicating with the lower and upper jackets through two interconnection conduits arranged adjacent to said lateral face, at the two sides of the outlet area of the exhaust manifold.
A cylinder head of the previously described type is for example illustrated in US2010/0083920 A1, equivalent to EP 2 172 635 A1. Cylinder heads with integrated exhaust manifold and superimposed exhaust manifold portions have been however known over time (DE-A-25 08 952). Cylinder heads of this type are also illustrated in JP 2006-083756, JP 2007-285168 and US 2009/0241526 A1.
The integration of the exhaust manifold in the cylinder head allows a construction simplification and also a reduction of the manufacturing costs, given that in the conventional engines with separate exhaust manifold the latter must be made of precious steel to bear the high operating temperatures, while in the cylinder heads with integrated manifold the material constituting the head and the manifold is typically aluminium, and the problem deriving from the high temperatures of the exhaust gases is resolved by providing a liquid cooling for the manifold and the head, through the abovementioned cooling jackets. The provision of an exhaust manifold integrated with manifold portions which are superimposed and spaced apart from each other allows advantages in terms of improved and more uniform cooling of the conduits also avoiding the gas dynamic interaction between the conduits.
In the abovementioned solution known from US2010/0083920 A1, the cylinder head has conduits provided parallel with respect to each other, to take the fluid coming from the cooling circuit of the engine block both directly to the abovementioned lower cooling jacket and directly to the abovementioned upper cooling jacket. The intermediate cooling jacket extends only in the central part of the head, on the exhaust side and communicates with the lower and upper jacket by means of the two interconnection conduits arranged at the two sides of the gas exhaust area. A drawback of the previously described prior art solutions lies in the fact that the lower and upper cooling jackets are substantially traversed each by a longitudinal flow of a cooling fluid, from one end of the head to the other, which does not guarantee an ideal and uniform cooling of all the portions of the head associated to engine cylinders. Furthermore the prior art solution provides for separate outlets for the abovementioned exhaust manifold portions.
The object of the present invention is that of providing a cylinder head of the type indicated at the beginning of the present description where the abovementioned drawback is overcome and particularly where an optimal and uniform cooling of the portions of the head is guaranteed and in particular the cooling of the various portions of the exhaust manifold, associated to the various engine cylinders.
A further object of the invention is that of reducing the overheating to which the exhaust conduits associated to the engine cylinders are subjected to and the non-uniformities of such overheating between different exhaust conduits to the maximum.
With the aim of attaining such object, the invention aims at providing a cylinder head of the type indicated at the beginning of the present description and characterised in that:
said conduits of the exhaust manifold merge into a common outlet terminating on said lateral face of the head,
the lower cooling jacket is longitudinally divided into a plurality of separate transverse chambers associated to various engine cylinders, and terminating in a longitudinal continuous portion of said lower jacket, extended along the exhaust side of the head,
the intermediate cooling jacket is extended over the entire longitudinal extension of the head, it has conduits for communication with the abovementioned chambers of the lower jacket and an outlet at one end of the head, for the exit of the cooling fluid from the head,
the upper cooling jacket has a first portion at the centre of the head, above the upper portion of the exhaust manifold, and a second portion extended longitudinally from said first portion up to said end of the head, where it forms an auxiliary outlet adjacent to said main outlet.
Due to the abovementioned characteristics, the head according to the invention ensures that the cooling fluid does not traverse the abovementioned lower cooling jacket longitudinally from one end of the head to the other, but it is at least partly forced to flow according to directions transverse to the longitudinal direction of the head, parallel in the various chambers associated to different engine cylinders, hence ensuring a correct translation velocity of the cooling fluid, as well as—above all—a substantial cooling uniformity between the various portions of the cylinder head, and in particular of the exhaust manifold, associated to various engine cylinders. The upper cooling jacket does not receive fluid directly from the engine block, but only from said chambers of the lower jacket as well as, through the above-mentioned interconnection conduits, from the lower jacket and from the intermediate jacket. Furthermore, the latter is not limited to a central portion of the head, but it is extended over the entire longitudinal dimension of the head and forms the main outlet of the cooling fluid from the head.
Further characteristics and advantages of the invention will be clear from the following description with reference to the attached drawings, provided purely by way of non-limiting example, wherein:
The illustrated example refers to the case of the cylinder head of a turbocharged internal combustion engine, with four in-line cylinders. It is however clear that the present invention may be applied to any other type of engine, with any number of cylinders and both in cases where a turbo-supercharger unit is provided for and in cases where such unit is not provided for.
Referring to
Cavities 7 (see
As clearly observable in
As observable in
As observable in
With particular reference to
In the drawings, reference number 21 indicates the conduits provided in the cylinder head for mounting the spark plugs associated to various engine cylinders, while reference number 22 indicates further conduits provided in the head to allow mounting injectors associated to the various cylinders.
Referring to
The chambers 180 terminate in a longitudinal continuous portion 185 of said lower jacket 18, extended along the exhaust side of the head (also see
Due to the previously described arrangement, the cooling liquid coming from the engine block is forced to pass through the lower cooling jacket 18 traversing—parallel—the four transverse chambers 180, according to directions orthogonal to the longitudinal direction of the head. Thus, the cooling liquid which passes through the transverse chambers 180 reaches the exhaust side of the cylinder head cooling the walls of the subgroup 17 of exhaust conduits passing below of such subgroup.
The cooling liquid passes from the lower cooling jacket 18 to the upper cooling jacket 19 both by means of conduits 184 (
As clearly observable in
In
Due to such arrangement, in the cylinder head according to the invention the cooling liquid coming from the lower cooling jacket 18 arrives in the upper cooling jacket 19 through the abovementioned conduits 190, and through the conduits 184, which respectively communicate with the separate chambers 180 of the lower jacket 18. The cooling liquid exits from the lower jacket 18 in the direction of the arrows F of
Referring to
Referring to
As clear from the description above, the cylinder head according to the invention has the exhaust manifold integrated therein and comprises separate subgroups 16, 17 of exhaust conduits merging into manifold portions which are superimposed and spaced apart from each other. Furthermore, a lower cooling jacket which receives cooling liquid from the engine block through a plurality of openings distributed over the entire longitudinal dimension of the head is provided for so as to supply the cooling liquid to a plurality of separate transverse chambers 180 which are passed through—parallel—by the cooling liquid, transversely to the longitudinal direction of the head. The cooling liquid thus passes from the lower cooling jacket to the upper and intermediate cooling jackets. The latter are passed through both transversely and longitudinally, up to the exit of the cooling liquid at the outlets 201 and 198 at an end of the cylinder head.
The cylinder head according to the invention allows, due to the above-mentioned characteristics, combining the advantages of an exhaust manifold formed by superimposed and spaced subgroups of exhaust conduits, with the advantages in terms of more efficient cooling deriving from the specific configuration and arrangement of the cooling jackets. Simultaneously, the cylinder head according to the invention can be obtained in a relatively simple manner and at relatively low costs by providing the cores configured as described above.
Obviously, without prejudice to the principle of the invention, the construction details and embodiments may widely vary with respect to what has been described and illustrated purely by way of example, without departing from the scope of protection of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
11157678.1 | Mar 2011 | EP | regional |