The present disclosure relates to a cylinder head for an internal combustion engine, and more particularly to portions of the cylinder head which undergo laser peening.
Some portions of a cylinder head, such as, for example, valve guides and injector bores of an Internal Combustion (IC) engine are subjected to high tensile stresses during combustion events occurring within cylinders of the IC engine. In order to resist these tensile stresses, the valve guides and injector bores are subjected to surface engineering processes, such as, shot peening, in order to induce compressive stresses in these areas. However, a magnitude of the compressive stresses so induced may not be high enough to resist failures during engine operation. Further, an effective depth to which the compressive stresses are induced within the cylinder head is also limited. Hence, the valve guides and injector bores may not be able to sustain high tensile stresses during the combustion events, and are therefore prone to damage or failure. High costs may be associated with repair or replacement, thereby affecting service life and overall efficiency of the system.
U.S. Pat. No. 4,617,070 describes a method of using a laser on a cylinder wall to improve a cylinder liner surface. In order to prevent the formation of fissures or tears in the walls of cylinders of an internal combustion engine (ICE), hardening tracks generated by a carbon dioxide laser, are placed parallel to each other at an angle of inclination with respect to the axis of the wall of the cylinder or cylinder liner, and spaced from each other by a distance which is greater than twice the distance between the maxima of tension resulting in the operation of the ICE from the edges of the hardening track.
In one aspect of the present disclosure, a cylinder head for an internal combustion engine system is disclosed. The cylinder head has at least one fuel injector to deliver fuel from the cylinder head. Further, the cylinder head has at least one valve reciprocally moveable with at least one valve guide disposed within the cylinder head. The cylinder head includes a portion. The portion of the cylinder head defines an injector mount surface. The cylinder head also includes at least one injector bore disposed within the cylinder head. The injector bore is structured and arranged to receive the injector therein. The cylinder head also includes a peening area being defined on the injector mount surface of the cylinder head. The peening area defines a region being laser peened, such that a compressive stress of around 300 MPa to 600 MPa is induced in the peening area. The compressive stress is induced to an effective depth of approximately up to 2 mm from the injector mount surface.
Other features and aspects of this disclosure will be apparent from the following description and the accompanying drawings.
Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or the like parts. Referring to
The engine block includes a plurality of cylinders (not shown) and each cylinder includes a piston (not shown) and a liner (not shown) disposed within the cylinder. An engine may have multiple cylinders for exemplary purposes the present disclosure illustrates an engine block and the cylinder head 100 associated with a six cylinder engine commonly referred to as an inline configuration. Alternatively, the present disclosure cylinder head 100 may include fewer or more valve and injector sets associated with less than 6 cylinders or more than 6 cylinders, such as, for example an 8 cylinder V-configuration engine. The engine may be configured for any suitable application, such as, work machines, locomotives or marine engines, and in stationary applications, such as, electrical power generators.
Each of the cylinders (not shown) includes the piston (not shown) and a connecting rod assembly (not shown). During a combustion event of the mixture of air and the fuel, high pressure is generated within the cylinders which cause an increase in the temperature of the mixture resulting in combustion. In turn, combustion acts on the piston head (not shown) and forces the piston to translate within the cylinder. As is customary the connecting rod is configured to convert the translatory motion of the piston to a rotary motion of the crankshaft.
Referring now to
The valve train 106 also includes a camshaft (not shown), a tappet (not shown), a push-rod (not shown) and a rocker arm (not shown). The camshaft may be disposed within the cylinder head 100 of the engine. Alternatively, the camshaft may be disposed within the engine block of the engine. The camshaft may be configured to operate the tappet of the valve train 106, followed by the push rod, the rocker arm, the valve stem 112, and thereafter the valves 108, 110.
In order to supply the fuel that the engine combusts during the combustion event, a fuel system (not shown) is operatively associated with the engine. A fuel line (not shown) may be provided as a component of the fuel system to carry the fuel from a tank (not shown) to the engine. A fuel pump (not shown) may be provided in the fuel line to pressurize and force the fuel through the fuel line.
Further, in order to introduce the fuel into the cylinders, the fuel system (not shown) may include multiple fuel injectors 122 each being operably connected to an actuator 120 (see
As best shown in
Laser peening may be carried out using known laser peening equipment. Laser peening equipment may include, for example, but not limited to, a laser beam, a target provided over the portion 118, and a confining media. In one example, the laser beam may include a Neodymium glass (Nd) laser. Further, the high energy pulsed laser beam in association with the target and the confining media may produce an intense shock wave on the portion 118 to induce a strong localized compressive stress within the portion 118. Different combinations of the parameters, namely, the laser beam, the target, and the confining media may be used based on system requirements.
As shown in
Referring to
The cylinder head of internal combustion engine are subjected to high tensile stresses on account of the combustion events occurring within the cylinders. In order to resist these tensile stresses, certain surfaces are subjected to laser peening which has the effect of creating deeper compressive stress penetration of the material. The present disclosure describes the laser peening of the peening area 128 in order to induce compressive stresses within the peening area 128 of the portion 118 to the depth, “D” which may be approximately 2 mm. By using laser peening, it is possible to achieve compressive stress levels of up to 2 to 3 times higher than that of shot peening process. In some examples, the compressive stress values induced in the cylinder head 100 may be between 300 to 600 MPa. Also, the compressive stresses may be pushed deeper into the portion 118, creating a thicker layer of pre-stressed material within the portion 118, thereby increasing fatigue strength of the portion 118.
Further, the injector bore 124, the threaded bore 126, and the valve guides 116 may be less susceptible to stress fractures or cracking caused by the induced tensile stresses. Hence, the cylinder head 100 may not require frequent remanufacturing, thereby reducing a cost associated with the remanufacturing of the cylinder head 100. The use of laser peening may also provide an improved surface finish on the portion 118 of the cylinder head 100. Further, no residual shot material may need be cleaned from the peening area 128, thereby decreasing time associated with manufacturing of the cylinder head 100.
While aspects of the present disclosure have been particularly shown and described with reference to the embodiments above, it will be understood by those skilled in the art that various additional embodiments may be contemplated by the modification of the disclosed machines, systems and methods without departing from the spirit and scope of what is disclosed. Such embodiments should be understood to fall within the scope of the present disclosure as determined based upon the claims and any equivalents thereof.