Applicant claims priority under 35 U.S.C. §119 of German Application No. 10 2006 012 611.4 filed Mar. 20, 2006.
The invention relates to a cylinder head of an internal combustion engine having a camshaft bearing mechanism arranged on the cylinder head.
With known combustion engines, so-called blow-by gases containing oil droplets are drawn into a hollow camshaft in the crankcase and centrifuged there, resulting in deposition of the oil dissolved in the blow-by gases on the inside wall of the camshaft. The oil droplets thereby deposited on the inside wall of the camshaft form an oil film which is conveyed to an outlet based on the gas flow prevailing in the camshaft. One disadvantage of the known systems is that they have so far required complex and therefore expensive designs in the area where the oil and gas components must be removed separately from one another in emerging from the camshaft.
The present invention therefore relates to the problem of improving upon a generic cylinder head of an internal combustion engine, i.e., an engine with a camshaft designed as an oil droplet separator, in comparison with the state of the art known in the past, such that it can be manufactured more easily on the whole and therefore less expensively.
This problem is solved by a cylinder head having all the features of Patent claim 1.
Advantageous and expedient embodiments are the subject of the subclaims.
The invention is based on the general idea of forming and/or limiting an oil collection space that has previously had a complex design composed of numerous individual parts along with the channel leading out of this oil collection space for the gas from which the oil has been removed, so that it now has a structurally simple design due to a specially designed rocker cover accordingly and/or a multichannel mechanism such that the oil collection space is sealed with respect to the valve space on the one hand, while on the other hand the gas discharge channel is either integrated directly into the rocker cover or runs inside the latter. The cylinder head has a camshaft bearing mechanism arranged thereon in which there is a rotatably mounted hollow camshaft that forms a vent for blow-by gases containing oil and is thus designed as an oil droplet separator, in particular a centrifugal oil droplet separator. The camshaft passes axially through a valve space which contains the bearing mechanism and in which the individual cams of the camshaft are arranged. The rocker cover or the multichannel device, each having an essentially coaxially connected channel on the hollow space of the camshaft, is arranged on at least one axial e n d area of the camshaft, forming an axial gap so that the blow-by gases from which the oil droplets have been removed can be vented from the camshaft through this coaxial channel due to the reduced pressure.
As mentioned above, the rocker cover or the multichannel device is designed so that it at least partially surrounds the oil separation space, which is separated from the valve space of the internal combustion engine. This offers the great advantage that the rocker cover or the multichannel device now serves to form the oil separation space, so that separate components that were previously required for bordering the oil separation space can now be omitted so that the multiplicity of parts can be reduced and therefore the internal combustion engine and/or the cylinder head can be manufactured more easily and less expensively on the whole. The gas vent channel (cleaned blow-by gas) can be molded directly in the rocker cover or can at least run inside the rocker cover.
According to a preferred embodiment of the inventive approach, the rocker cover is in sealing contact with the cylinder head on the one end and with the camshaft or the camshaft bearing mechanism on the other hand. On the basis of this approach, it is already clearly discernible that it is possible to use different rocker covers which are adapted to the particular type of internal combustion engine and take into account the particular design characteristics while having in common the fact that they separate the oil separation space from the valve space with a seal. The design of the rocker cover may also be based on possible maintenance work to be performed, so it is conceivable for the rocker cover to be designed to allow particularly easy access to the valve space and/or the oil separation space when the rocker cover is removed, so that ease of maintenance is increased and maintenance costs can be reduced.
The rocker cover is expediently made of plastic and may have a metallic insert in the area of the seals. Manufacturing the rocker cover of plastic allows virtually any shaping with a high design freedom at the same time and can also be implemented inexpensively. A rocker cover made of plastic also has a noise suppression effect, which has an especially favorable effect on the noise emission by the internal combustion engine. The metallic insert provided in the area of the seal ensures a reliable and therefore tight contact for the seal on the one hand while on the other hand increasing the lifetime of the rocker cover because it is designed to be wear resistant in the area of seals due to the metallic insert.
Advantageous exemplary embodiments that are explained in greater detail below are depicted schematically in each of the drawings.
The drawings show in schematic diagrams:
According to
As shown in
After reaching the axial gap 9, the oil film 7 deposited on the inside wall 6 of the hollow space 5 escapes into the oil separation space 12 due to its radial acceleration and is collected there. Since the oil separation space 12 is closed with respect to the valve space 11, the same reduced pressure prevails there as in the hollow space 5, so the oil film 7 is not prevented from flowing out of the axial gap 9.
According to
As also shown in
For aligning the camshaft 3, it has an adjustment mechanism 19, namely a hexagon head here, situated in the oil separation space 12 according to
In addition, the camshaft bearing mechanism 2 is designed in at least two parts and has at least one upper section 20 and lower bearing 21. The bearings 21 may be connected fixedly or in one piece to the cylinder head 1 or connected in one piece to a separate part, namely a lower camshaft bearing mechanism. The upper section 20 of the camshaft bearing mechanism 2 is designed to be removable so that simple access to the camshaft 3 is ensured. A bulkhead wall 22 is provided between the valve space 11 and the oil collecting space 12. In the area situated beneath the camshaft 3, a lower part of the bulkhead wall 22 separates the oil separation space 12 from the valve space 11, which according to this invention should not usually have any bearing function in support of the camshaft 3. Instead, a radial gap (not shown in
In contrast with
In contrast with
According to
According to
Furthermore, the multichannel device 27 includes an immersion pipe 28 that forms the outlet channel, whereby the immersion pipe 28 is connected at one end to the multichannel device 27 and at the other end to the rocker cover 13. The immersion pipe 28 is inserted into the rocker cover 13 and is connected to it tightly via another gasket 16′.
All the features described in the description and in the following claims may be essential to the invention either individually or in any combination.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 012 611 | Mar 2006 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4651704 | Sekiguchi | Mar 1987 | A |
5027784 | Osawa et al. | Jul 1991 | A |
6854454 | Obayashi et al. | Feb 2005 | B2 |
7117858 | Nonaka et al. | Oct 2006 | B2 |
7219629 | Miyake et al. | May 2007 | B2 |
Number | Date | Country |
---|---|---|
199 31 740 | Jan 2001 | DE |
102 26 695 | Dec 2003 | DE |
2 868 468 | Oct 2005 | FR |
1 122443 | May 1989 | JP |
1 148009 | Oct 1989 | JP |
7 150923 | Jun 1995 | JP |
8 284634 | Oct 1996 | JP |
Number | Date | Country | |
---|---|---|---|
20070215075 A1 | Sep 2007 | US |