The present invention relates to cylinder heads for combustion engines, and in particular, but not exclusively to cylinder heads for four-stroke internal combustion engines.
In a conventional four-stroke internal combustion engine, a power piston is disposed for reciprocating movement within a cylinder. The top of the cylinder is closed by a cylinder head that carries one or more induction poppet valves and one or more exhaust poppet valves. The induction poppet valve is timed so as to open as the power piston moves down the cylinder and, with the resultant partial vacuum, draws a combustible gas past the open poppet valve and into the cylinder. In respect of pressurised induction systems, the partial vacuum becomes positive pressure being forced into the negative pressure part of the cylinder as the piston moves down the cylinder. The induction poppet valve is then timed so as to close at the point when the piston is near the lowest point of its travel, thereby trapping a cylinder full of combustible gas. As the power piston is pushed back up the cylinder, by virtue of being connected to a crank that continues to rotate, it compresses the gas. At a point near the top of this cycle, called the compression stroke, a spark plug, which has been designed into the cylinder head, is sparked, causing the gas to ignite and rapidly expand as it explodes, pushing the piston down. As the piston comes back up again, the exhaust poppet valve (or valves) is (or are) timed to open, allowing the gases to escape.
Poppet valves have been used in internal combustion engines for many years, but display some disadvantages. Poppet valves are relatively expensive to manufacture and incorporate into cylinder heads of combustion chambers, due to the fine machining required to effect tolerances required for use of the valves in the hostile environment within the cylinder head.
Poppet valves, although fairly robust in construction, and although they initially create fluid-tight seals, restrict the flow of fuel and gases into and out of the engine, as the fuel and gas must flow around the valve and its associated stem. Poppet valves are also a source of vibration and noise through the effects of metal to metal contact with the cylinder head of the engine. Furthermore, as revolutions of the engine increase, the ability of poppet valves to open and close in time decreases in efficiency to the point where power output cannot increase further. Poppet valves are also a large source of friction, as is the camshaft and spring loaded follower generally used to open and close the valve.
There are known engines which do not comprise poppet valves, such as rotary engines and two-stroke piston engines, but such engines are generally inefficient in fuel consumption and costly to maintain.
It is therefore an aim of preferred embodiments of the present invention to overcome or mitigate a problem of the prior art, whether expressly mentioned hereinabove or not.
According to the present invention there is provided a cylinder head for mounting on a cylinder of a combustion engine, the cylinder head comprising a guideway in which is located a rotatable valve comprising a fluid port operable to effect fluid communication between a cylinder and a fluid manifold in the guideway, whereby rotation of the valve effects alignment of the fluid port with the combustion chamber of a cylinder to enable fluid flow between the valve and a cylinder, and wherein the cylinder head further comprises a seal which, in use, is movable from a first, non-sealing position in which the seal is biased away from the valve, and a second, sealing position in which the seal is biased onto the valve by gaseous pressure from within a cylinder.
Preferably there is a single rotatable valve which comprises two fluid ports comprising a fluid inlet and a fluid outlet, cooperable with corresponding inlet and outlet manifolds in the guideway.
The fluid inlet may be diametrically opposite to the fluid outlet on the rotatable valve. Preferably however the fluid inlet is axially spaced apart from the fluid outlet along the rotatable valve.
Alternatively the cylinder head may comprise a first rotatable valve located in a first guideway, and a second rotatable valve, located in a second guideway, the first valve comprising a fluid inlet and the second valve comprising a fluid outlet.
Preferably the rotatable valve comprises a rotatable shaft or bar, and more preferably comprises a rotatable shaft or bar having a substantially circular cross-section.
Suitably the fluid port of the rotatable valve comprises a cut-out portion of the valve.
Preferably the fluid port of the rotatable valve comprises an aperture or slot extending diametrically through the valve such that rotation of the valve effects movement between an open position in which the aperture or slot is substantially aligned with a cylinder and the fluid manifold in the guideway, and a closed position in which the slot or aperture is substantially aligned with the surface of the guideway.
Preferably the seal is in fluid communication with a cylinder.
Suitably the seal comprises a resilient biasing means, the resilient biasing means being arranged to bias the seal to the first non-sealing position, until such a time in the combustion cycle of the combustion engine when the build-up of exhaust gases effects sufficient pressure to effect movement of the seal against the resilient biasing means to the second, sealing position.
Suitably the resilient biasing means is a spring, preferably a helical spring.
Preferably the seal is located in a port or duct in the cylinder head which at one end opens into a cylinder and at the other end opens into the guideway of the cylinder head. Preferably the seal, in the first position, is located substantially within the port or duct, and in the second position extends from the port or duct into the guideway to effect abutment with the rotary valve.
Suitably, in the second position the seal is arranged to extend partway into the rotary valve fluid port when said fluid port is in substantial alignment with the seal.
The cylinder head may be dimensioned to be mounted on a plurality of cylinders and the rotary valve may comprise a fluid port for each cylinder, wherein rotation of the valve effects temporally separate alignment of each fluid port with the combustion chamber of a prescribed cylinder. Suitably the guideway comprises a fluid manifold for each fluid port of the rotary valve. The rotary valve may comprise two fluid ports for each cylinder, comprising a fluid inlet and fluid outlet, cooperable with corresponding fluid manifolds in the guideway. Preferably the cylinder head further comprises at least one cylinder isolation seal, which extends substantially around the rotary valve between the valve and the interior of the guideway, each isolation seal arranged to prevent fluid from flowing through the guideway between adjacent cylinders.
Suitably the rotary valve is arranged to be operably connected to a crankshaft of a combustion engine when the cylinder head is mounted on a cylinder, such that the rotary valve is rotated relative to the crankshaft at one quarter of the speed of the crankshaft.
According to a second aspect of the present invention there is provided a cylinder head for mounting on a cylinder of a combustion engine, the cylinder head comprising a single guideway in which is located a rotary valve comprising a fluid inlet and a fluid outlet, operable to effect fluid communication between a cylinder and a corresponding inlet manifold and outlet manifold in the guideway, wherein rotation of the valve effects alignment of the fluid inlet and fluid outlet with a combustion chamber of a cylinder to enable, in use, fluid flow between the valve and a cylinder, and wherein the fluid inlet and fluid outlet are axially spaced along the rotary valve.
Preferably the rotatable valve comprises a rotatable shaft or bar, and more preferably comprises a rotatable shaft or bar having a substantially circular cross-section.
Suitably the fluid inlet and fluid outlet comprise cut-out portions of the valve.
Preferably the fluid inlet and fluid outlet comprise an aperture or slot extending diametrically through the valve such that rotation of the valve effects movement between an open position in which the aperture or slot of the inlet or outlet is substantially aligned with a cylinder and the corresponding inlet manifold or outlet manifold in the guideway, and a closed position in which the aperture or slot is substantially aligned with the surface of the guideway.
Suitably movement of the fluid inlet between the open and closed position is effected at a different time to movement of the fluid outlet between the open and closed position, and this may be effected by providing a fluid inlet and outlet which each comprise an aperture or slot extending diametrically through the valve at an angle to one another.
Suitably the rotary valve is arranged to be operably connected to a crankshaft of a combustion engine when the cylinder head is mounted on a cylinder, such that the rotary valve is rotated relative to the crankshaft at one quarter of the speed of the crankshaft.
The cylinder head may further comprise one or more seals as described hereinabove for the first aspect of the invention. The cylinder head may be dimensioned to be mounted on a plurality of cylinders and the rotary valve may comprise a fluid inlet and fluid outlet for each cylinder, wherein rotation of the valve effects temporally separate alignment of each fluid inlet and fluid outlet with the combustion cylinder of a prescribed cylinder.
According to a third aspect of the invention there is provided a combustion engine comprising a cylinder head of the first or second aspects of the invention, mounted to a cylinder. Preferably the combustion engine is an internal combustion engine and is more preferably a four-stroke engine.
For a better understanding of the various aspects of the invention, and to show how embodiments of the same may be put into effect, preferred embodiments of the invention will now be described with reference to the accompanying drawings, in which:
Referring firstly to
The cylinder head comprises two rotary valves 10 and 12. The rotary valve 10 comprises a port in the form of an inlet 14 which is a cut-out portion of the rotary valve extending diametrically therethrough.
The rotary valve 12 comprises a port in the form of an outlet 16 which is a cut-out portion of the rotary valve 12 extending diametrically therethrough.
The rotary valves 10 and 12 are linked to the crankshaft 8 by means well known to persons skilled in the art, such that they are arranged to rotate at one quarter the speed of the crankshaft 8.
The cylinder head 2 also includes a spark plug 18 which is in communication with the combustion chamber 5 of the cylinder 4.
We turn to
The rotary valve 12 is mounted in a similar guideway (not shown) which includes a manifold outlet, and the cylinder head 2 comprises two further seals 20 which are mounted in ducts in fluid communication between the rotary valve 12 and the combustion chamber 5.
In use the engine is started as is known to persons skilled in the art. The engine runs through a four-stroke cycle as shown in
As the cycle reaches the induction stroke as shown in
During the induction stroke the outlet 16 is not in fluid communication with the combustion chamber 5. After the fuel, or fuel and air, has been injected, the crankshaft 8 continues to rotate, which in turn rotates the valves 10 and 12. As the crankshaft 8 rotates, the cylinder moves to the compression stroke as shown in
At the end of the compression stroke the spark plug 18 is activated to create a spark in the combustion chamber and ignite the fuel or fuel/air mixture. The resultant combustion within the combustion chamber 5 drives the piston downwardly, rotating the crankshaft 6 and thus the valves 10 and 12. During this power stroke, as illustrated in
When the piston has reached its most downward point, further rotation of the crankshaft 8 pushes the piston towards the cylinder head 2 in the exhaust stroke, as illustrated in
We turn now to
In use, when sufficient gas has built up within the combustion chamber 5, usually during the exhaust stroke, the seals 20 are activated to prevent fluid flow between the valves 10 and 12 and the guideways.
As gas builds up within the combustion chamber 5, gaseous pressure builds up in the ducts 24 until the pressure is sufficient to overcome the bias of springs 26 and push the sealing members 22 on to the valves 10 and 12, thereby forming a seal across their associated guideways in which the valves 10 and 12 are located.
As shown in
As the four-strike cycle continues and the gaseous pressure drops within the combustion chamber 5, the drop in pressure in the ducts 24 allows the springs 26 to bias against the lowered pressure and pull the sealing member 22 away from the valves 10 and 12 and allow unrestricted rotation of the valves, as illustrated in
Turning now to
In this embodiment the cylinder head 2 comprises only one rotary valve 28 which comprises two ports in the form of an inlet 30 and outlet 32. The inlet 30 and outlet 32 are axially spaced apart, one behind the other, along the rotary valve 28 and each comprises a cut-out portion of the valve 28 extending diametrically therethrough.
The valve 28 is located in a guideway 34 in the cylinder head 2, as shown in
The inlet 30 and outlet 32 of the valve 28 extend diametrically through the valve 28 at a different angle to each other such that when the valve 28 is rotated, the inlet 30 and outlet 32 are in fluid communication between the combustion chamber 5 and their respective manifold inlet and outlet at different times in the combustion cycle.
The cylinder head further comprises four seals 20. Two seals are provided in the cylinder head adjacent to the guideway 34 axially parallel with the location of the inlet 30 of the valve 28 located in the guideway as shown in
In use the combustion cycle is repeated as for the embodiment of
When the engine enters the induction stroke the valve 28 is rotated such that the outlet 32 moves out of fluid communication between the combustion chamber 5 and the outlet manifold 40 of the guideway 34. At the same time the inlet 30 is rotated to effect fluid communication between the combustion chamber 5 and the inlet manifold of the guideway 34, such that fuel or fuel and air, is injected into the combustion chamber.
During the compression and power strokes of the combustion cycle, the valve 18 is rotated such that neither the inlet 30 and outlet 32 are in fluid communication with the combustion chamber 5, as shown in
The seals 20 work in substantially the same way as do the seals of the embodiment of
We turn now to
The rotary valve 10 which is located in a guideway (not shown) in the cylinder head, is connected to the cylinder head by bearings 36 located at either end of the valve 10. The valve 10 is a cylindrical member having four pairs of inlet and outlets (not shown), each pair being spaced apart axially along the valve 10 and each inlet and outlet of a pair being spaced apart axially of each other.
The cylinder head is mounted on top of a four cylinder engine block such that each of the pairs of inlets and outlets of the valve 10 is located aligned over a cylinder 4A-4D.
The valve 10 is connected to the crankshaft of the engine and arranged to rotate at one quarter of the speed of the eligine. The inlets and outlets of the valve 10 are as described for the embodiment of
Each pair of inlets and outlets are oriented off-set to each of the other pairs, such that each of the four cylinders will separately be in one of the four-strokes of the combustion cycle at any one time.
The rotary valve 10 also comprises split seal gaskets 38 extending substantially around the valve 10 within the guideway, located at either end of the guideway and between each of the cylinders 4A to 4D. The split seal gaskets 38 are dimensioned to contact both the valve 10 and guideway and create a seal therebetween. Thus any gas or fluid which may escape into the guideway of the cylinder head will be retained in a prescribed section of the guideway between two of the gaskets 38 and thus prevented from escaping into another cylinder of inlet or outlet of the valve 10.
The split seal gaskets 38 may be used on the valve 28 of the embodiment of the cylinder head 2 described for
The reader's attention is directed to all papers and documents which are filed concurrently with or previous to this specification in connection with this application and which are open to public inspection with this specification, and the contents of all such papers and documents are incorporated herein by reference.
All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive.
Each feature disclosed in this specification (including any accompanying claims, abstract and drawings), may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.
The invention is not restricted to the details of the foregoing embodiments( ). The invention extend to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.
Number | Date | Country | Kind |
---|---|---|---|
0130903.8 | Dec 2001 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB02/04672 | 7/10/2003 | WO |