This application claims priority to German Patent Application No. 10 2012 211 866.7, filed Jul. 6, 2012, and International Patent Application No. PCT/EP2013/064296, filed Jul. 5, 2013, both of which are hereby incorporated by reference in their entirety.
The present invention relates to a cylinder liner of gray cast iron for integrally casting into an engine block of an internal combustion engine according to the preamble of claim 1. The invention also relates to an engine block fitted with at least one such cylinder liner and to a method for producing such an engine block.
DE 198 59 098 C1 discloses a cylinder liner of the generic type of gray cast iron for integrally casting into an engine block consisting of cast light metal of an internal combustion engine. A means designed for strengthening the bond of the gray cast iron of the cylinder liner to the cast light metal of the engine block is provided at least on the outer lateral surface of the cylinder liner. The means is formed here by a metallic semifinished product that encloses the outer lateral surface, does not melt during the casting operation and is designed in such a way that on the outer lateral surface there are formed free zones that are not covered by the semifinished product. The described connection between the cylinder liner and the engine block is also intended to have the effect of reducing the risk of undesired crack formation between the cylinder liner and the engine block.
DE 10 2006 021 176 A1 discloses a crankcase for an internal combustion engine with a cylindrical tube of a light metal, on the running surface of which a piston is guided. Integrally cast into the cylindrical tube is a strengthening part, which comprises a knitted-gauze or grid structure and extends over virtually the entire height of the cylindrical tube. It is intended in particular to avoid undesired deformation of the cylindrical tube over the entire running height of the piston.
DE 100 26 290 B4 discloses a method for producing a cylinder crankcase for an internal combustion engine, a main body consisting of a first material and cylinder walls consisting of a second material, and a grid-like reinforcement being provided between the two materials. The grid-like reinforcement is in this case placed into a casting mold for the cylinder crankcase, whereupon the two materials are then introduced into the casting mold. It is intended in this way that an internal combustion engine with an easily machinable main body and wear-resistant cylinder running surfaces can be produced easily and at low cost.
DE 10 2004 005 458 B4 discloses a lining-free cylinder block of a light metal alloy cast in a metallic permanent mold for an internal combustion engine and having a locally strengthened cylinder running surface, the local strengthening being formed by a separate molded part. The separate molded part is in this case formed by a liner of one or more layers that is formed by wound-on wire.
DE 31 34 771 A1 discloses a cylinder liner for internal combustion engines which, to even out the radial thermal expansion, is surrounded by a covering that undergoes lower thermal expansion in the radial direction than the cylinder liner, the repression of the expansion caused by the covering varying over the length of the cylinder liner and the covering consisting of a fiber composite material. In this way it is intended to provide a cylinder liner that has a constant thermal radial expansion over its longitudinal axis that is in particular adapted to the radial expansion of a piston.
Further internal combustion engines with cylinder liners are disclosed for example by JP 61155646 A, JP 61180633 A and GB 601,894.
The present invention is concerned with the problem of providing an improved embodiment for a cylinder liner of the generic type that is distinguished in particular by an improved connection between the cylinder liner and a cast engine block. The invention is additionally concerned with the problem of providing an improved method for producing an internal combustion engine with at least one such cylinder liner.
This problem is solved according to the invention by the subjects of the independent claims. Advantageous embodiments are the subject of the dependent claims.
The present invention is based on the general concept of providing a cylinder liner of gray cast iron at least in certain regions on its outer circumferential surface, that is to say on its outer lateral surface, with a means for strengthening the bond of the cylinder liner to the cast material of an engine block and welding this means at least in certain regions to the cylinder liner. The means is formed here as a wire mesh or wire grid that does not melt during the casting operation of the engine block and is preferably welded to the cylinder liner by way of welding spots. Particularly at the welding spots connecting the means, that is to say the wire mesh or the wire grid, to the cylinder liner, there form undercuts, which during the later encapsulation of the cylinder liner placed into a casting mold of the engine block are encapsulated by the casting material of the engine block, and in this way a particularly high bonding force between the cylinder liner and the engine block is produced. With the wire grid or wire mesh arranged on the outer circumferential surface, there can consequently be much improved anchoring of the cylinder liner in the cast material of the engine block, and also improved heat flow between the cylinder liner and the engine block, whereby the cylinder liner can also be cooled better and, because of this fact, under some circumstances can be arranged at a greatly reduced distance from the adjacent cylinder liner. A closer arrangement of the individual cylinders makes it possible in particular to build the engine smaller and more compact, and as a result also much lighter, which in turn brings with it advantages regarding the fuel consumption of the internal combustion engine, in particular if it is used in a motor vehicle.
In the case of an advantageous development of the solution according to the invention, the means is stretched over the outer circumferential surface of the cylinder liner. The means, that is to say therefore the wire mesh or the wire grid, is consequently first firmly attached at a starting edge to the cylinder liner by way of corresponding welding spots, whereupon the wire mesh or the wire grid is then stretched over the circumference, that is to say over the outer lateral surface, of the cylinder liner. In this stretched state, further welding spots for connecting the means to the cylinder liner are then arranged up to a respective ending edge of the means. In this case, the means, that is to say therefore the wire mesh or the wire grid, may enclose the cylinder liner over the entire outer circumferential surface or else be arranged only in the manner of a segment of a circle, for example over 90° in each case. By being stretched, the means bears against the outer lateral surface of the cylinder liner with a high pressing force, whereby optimal anchoring of the cylinder liner in the cast material of the engine block away from the actual welding spots can also be achieved.
The individual welding spots of the spot-welded connection are expediently arranged linearly, in particular in the axial direction of the cylinder liner. The individual welding spots are consequently preferably arranged one behind the other in the axial direction from a first longitudinal end up to an opposite second longitudinal end, the welding spot lines that are formed by the welding spots being provided at least at a starting edge and an ending edge of the wire mesh or the wire grid. It is of course also conceivable that at least four, preferably even eight or more, welding spot lines are provided, spaced apart from one another in the circumferential direction and aligned in the axial direction of the cylinder liner. The more welding spots or welding spot lines are provided here, the more undercuts that are flowed around by the later cast material of the engine block, and thereby form a solid undercut connection, can be formed. Apart from the described welding spot lines extending in the axial direction, welding spot lines arranged obliquely to the axis of the cylinder liner or just individual welding spots are of course also conceivable. However, the welding spot lines extending in the axial direction offer the advantage that the wire mesh or the wire grid can be stretched uniformly in the circumferential direction over the outer lateral surface of the cylinder liner and, as a result of the individual welding spot lines, the tensioning in the portions of the wire grid or wire mesh that lie in between extends in a uniformly distributed manner.
In the case of an advantageous development of the solution according to the invention, the engine block is produced from a light metal, in particular from aluminum. The use of light metal makes a considerable weight saving possible, which has advantageous effects on fuel consumption, in particular when such an engine block is used in a motor vehicle.
Further important features and advantages of the invention emerge from the subclaims, from the drawings and from the associated description of the figures on the basis of the drawings.
It goes without saying that the features mentioned above and still to be explained below can be used not only in the combination respectively specified, but also in other combinations or on their own without departing from the scope of the present invention.
Preferred exemplary embodiments of the invention are represented in the drawings and are explained in more detail in the description that follows, the same reference numerals referring to components that are the same or similar or are functionally the same.
In the drawings:
As shown in
The individual welding spots 5 of the spot-welded connection are preferably formed linearly here, in particular in the axial direction of the cylinder liner 1, as represented for example in particular in the case of the cylinder liner as shown on the left in
Apart from a strictly axial alignment of the individual welding spot lines 8, an oblique alignment of the welding spot lines 8 or else an arbitrary punctiform welding of the means 3 onto the cylinder liner 1 is of course also conceivable. However, the welding spot lines 8 extending in the axial direction offer the advantage that the tensioning of the means 3 between two adjacent welding spot lines is equal, since the distance between the individual welding spots 5 of two adjacent welding spot lines 8 is always equal.
After arranging and securely welding the means 3 on the outer lateral surface 2, the cylinder liner 1 according to the invention is placed into a casting mold for casting the engine block 4, the cylinder liner 1 subsequently being encapsulated by the cast material of the engine block 4, for example a light metal, in particular aluminum. Undercuts 9 (compare
As shown in
With the method according to the invention and with the engine block 4 according to the invention, a much closer arrangement of the individual cylinder liners 1, and as a consequence a much closer arrangement of the individual cylinders in the engine block 4, can be achieved, whereby the engine block can be built smaller, and in particular also lighter. During the casting of the engine block 4, the undercuts 9 that are formed particularly at the welding spots 5 are encapsulated by the cast material of the engine block, and thus produce an extremely secure connection between the cylinder liner 1 and the engine block 4. The close bond of the cylinder liner 1 to the engine block 4 also has the effect in particular of avoiding air gaps between these components 1, 4, which may lead to reduced heat transmission, whereby better cooling and at the same time also a closer arrangement of the individual cylinders are made possible.
Number | Date | Country | Kind |
---|---|---|---|
10 2012 211 866 | Jul 2012 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/064296 | 7/5/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/006199 | 1/9/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4546048 | Guenther | Oct 1985 | A |
6044821 | Weng | Apr 2000 | A |
6082436 | Divecha et al. | Jul 2000 | A |
6123052 | Jahn | Sep 2000 | A |
6182629 | Gobbels et al. | Feb 2001 | B1 |
20050025894 | Ren et al. | Feb 2005 | A1 |
20140102401 | Issler | Apr 2014 | A1 |
Number | Date | Country |
---|---|---|
3134771 | Mar 1983 | DE |
3507601 | Sep 1985 | DE |
19845347 | Mar 2000 | DE |
19859098 | Mar 2000 | DE |
19859098 | Mar 2000 | DE |
10026290 | Nov 2001 | DE |
10235910 | Feb 2004 | DE |
10324030 | Dec 2004 | DE |
102004005458 | Sep 2005 | DE |
102006021176 | Nov 2007 | DE |
102011102203 | Nov 2012 | DE |
2151568 | Feb 2010 | EP |
601894 | May 1948 | GB |
60-29445 | Feb 1985 | JP |
61-155646 | Jul 1986 | JP |
61-180633 | Aug 1986 | JP |
54-59661 | Apr 2014 | JP |
WO-2011011488 | Jan 2011 | WO |
Entry |
---|
English abstract for JP61-180633. |
English abstract for JP61-155646. |
English abstract for DE-3134771. |
English abstract for DE-19859098. |
English abstract for DE-102006021176. |
English abstract for DE-102004005458. |
English abstract for DE-10026290. |
English abstract for DE-10324030. |
English abstract DE-10235910. |
English abstract for JP60-029445. |
English abstract for JP54-59661. |
Number | Date | Country | |
---|---|---|---|
20150152806 A1 | Jun 2015 | US |