Claims
- 1. A cylinder lock comprising:
- a shell, said shell having a plurality of pin tumbler receiving chambers, said shell further having an interior surface which defines a core receiving chamber having a longitudinal axis, said shell pin tumbler receiving chambers each extending to said shell interior surface and having an axis, said shell interior surface being provided with at least a first recess, said first recess having a depth and being in part defined by a side wall and a camming surface which extends from said side wall and merges with said shell interior surface, said shell being mounted with a fixed orientation in the use environment of said lock;
- a core cooperating with said shell to form the relatively rotatable component of said lock, said core having an exterior surface and being disposed within said core receiving chamber of said shell for rotation about said longitudinal axis, said core including a longitudinally extending keyway, said keyway having oppositely disposed first and second sides and defining a plane in which said longitudinal axis lies, said core also having a plurality of pin tumbler receiving chambers, each of said core pin tumbler receiving chambers having an axis, each of said core pin tumbler receiving chambers being located so as to be axially alignable with an associated one of said shell pin tumbler receiving chambers when said lock is in the locked state, said core pin tumbler receiving chambers extending between said keyway and said exterior surface of said core, a shear line for said lock being defined by the interface between said interior surface of said shell and said exterior surface of said core, said core further having at least a first auxiliary locking pin receiving chamber which has an axis, said auxiliary locking pin receiving chamber axis extending linearly between said first side of said keyway and said core exterior surface, said first auxiliary locking pin receiving chamber axis being in registration with said shell first recess when said pin tumbler receiving chambers of said shell and core are in axial alignment;
- a plurality of pin tumblers, said pin tumblers each having at least a bottom pin and a driver pin, said pins each having an axis and said pins of each of said pin tumblers being in axial alignment when said core and shell pin tumbler receiving chambers are in axial alignment whereby said pin tumblers are reciprocally movable as units when said lock is in the locked state, said pin tumblers each further including a first spring for urging said driver pins in the direction of said keyway whereby at least one of said pins of at least some of said pin tumblers normally extends across said shear line so as to be partly disposed in an aligned shell pin tumbler receiving chamber and core pin tumbler receiving chamber;
- an auxiliary locking pin having first and second oppositely disposed end portions, said auxiliary locking pin being in part disposed in said core auxiliary locking pin receiving chamber for reciprocal motion, said auxiliary locking pin defining an axis, said first end portion of said auxiliary locking pin including a shaped head, said shaped head at all times extending into said keyway through said first side of said keyway, said second end portion of said auxiliary locking pin extending across said shear line and being received in said first recess in said shell interior surface when said lock is in the locked state, said shaped head of said auxiliary locking pin including a reaction surface against which a force directed axially with respect to said auxiliary locking pin may be exerted, said reaction surface facing generally toward said second end portion of said auxiliary locking pin, said auxiliary locking pin first end portion also including an extension of said shaped head, said extension projecting beyond said reaction surface toward said second side of said keyway, said auxiliary locking pin second end portion including a cam surface shaped to cooperate with said shell recess defining camming surface to impart axial motion to said auxiliary locking pin; and
- an auxiliary locking pin spring for applying an axial resilient bias force to said auxiliary locking pin to urge said auxiliary locking pin toward said shell interior surface whereby said auxiliary locking pin will normally extend across said shear line and said second end portion thereof will be received in said shell first recess, said auxiliary locking pin cooperating with said shell first recess defining sidewall to prevent rotation of said core relative to said shell in the absence of the application of forces to said auxiliary locking pin which are in a direction opposite to and in excess of said resilient bias force.
- 2. The cylinder lock of claim 1 wherein each of said shell first recess and said locking pin second end portion is provided with a rotation prevention wall surface, said wall surfaces being oriented generally parallelly with respect to said auxiliary locking pin axis when said auxiliary locking pin is received in said shell first recess under the influence of said auxiliary locking pin spring, said shell first recess rotation prevention wall surface comprising a portion of said recess defining side wall, the length of said shell rotation prevention wall surface being less than the depth of said shell first recess, said rotation prevention wall surfaces coacting to prevent rotation of said core relative to said shell in the locked state of said lock.
- 3. The cylinder lock of claim 1 wherein said head of said auxiliary locking pin in part defines a flaring tenon.
- 4. The cylinder lock of claim 2 wherein said head of said auxiliary locking pin in part defines a flaring tenon.
- 5. The cylinder lock of claim 2 wherein said shell rotation prevention wall surface ends at said camming surface at a first side of said first recess whereby said shell rotation prevention and camming surfaces cooperate to define a first side of said shell first recess in a first direction of rotation of said core relative to said shell and wherein said auxiliary locking pin cam surface at least in part defines an end face of said second end portion of said auxiliary locking pin, said end face extending angularly from said auxiliary locking pin rotation prevention wall surface and intersecting said auxiliary locking pin axis at an angle.
- 6. The cylinder lock of claim 5 wherein said head of said auxiliary locking pin in part defines a flaring tenon.
- 7. The cylinder lock of claim 1 wherein said auxiliary locking pin second end portion cam surface comprises at least a part of an end face of said auxiliary locking pin, said cam surface intersecting said auxiliary locking pin axis at an angle.
- 8. The lock of claim 1 wherein said auxiliary locking pin axis is oriented substantially transverse to said keyway defined plane and intersects said plane at a point offset from said longitudinal axis.
- 9. The cylinder lock of claim 8 wherein said auxiliary locking pin second end portion cam surface comprises at least a part of an end face of said auxiliary locking pin, said cam surface intersecting said auxiliary locking pin axis at an angle.
- 10. The cylinder lock of claim 9 wherein each of said shell first recess and said locking pin second end portion is provided with a rotation prevention wall surface, said wall surfaces being oriented generally parallelly with respect to said auxiliary locking pin axis when said auxiliary locking pin is received in said shell first recess under the influence of said auxiliary locking pin spring, said shell first recess rotation prevention wall surface comprising a portion of said recess defining side wall, the length of said shell rotation prevention wall surface being less than the depth of said shell first recess, said auxiliary locking pin rotation prevention wall surface extending from a first end of said auxiliary locking pin cam surface, said rotation prevention wall surfaces coacting to prevent rotation of said core relative to said shell in the locked state of said lock.
- 11. The cylinder lock of claim 10 wherein said head of said auxiliary locking pin in part defines a flaring tenon, at least a portion of said tenon comprising said reaction surface.
- 12. A cylinder lock system comprising:
- a shell, said shell defining a plurality of pin tumbler receiving chambers, said shell further having an interior surface which defines a core receiving chamber having a longitudinal axis, said shell pin tumbler receiving chambers each having an axis and communicating with said interior surface, said shell interior surface being provided with at least a first recess having a side wall, said shell being mounted with a fixed orientation in the use environment of the lock of said system;
- a core cooperating with said shell to form the relatively rotatable component of the lock of said system, said core having an exterior surface and being disposed within said core receiving chamber of said shell for rotation about said longitudinal axis, said core including a longitudinally extending keyway, said keyway having oppositely disposed first and second sides and defining therebetween a plane in which said longitudinal axis lies, said core also having a plurality of pin tumbler receiving chambers, said core pin tumbler receiving chambers each having an axis, each of said core pin tumbler receiving chambers being axially alignable with an associated one of said shell pin tumbler receiving chambers, said core pin tumbler receiving chambers extending between said keyway and said exterior surface of said core, a shear line for the lock of said system being defined by the interface between the interior surface of said shell and said exterior surface of said core, said core further having at least a first auxiliary locking pin receiving chamber which has an axis, said auxiliary locking pin receiving chamber axis extending linearly between said first side of said keyway and said core exterior surface, said auxiliary locking pin receiving chamber axis being in registration with said shell first recess when said pin tumbler receiving chambers of said shell and core are in axial alignment;
- a plurality of pin tumblers, said pin tumblers each having at least a bottom pin and a driver pin, said pins each having an axis, said pin tumblers being disposed in said pin tumbler receiving chambers with the pins of each pin tumbler being in axial alignment when said core and shell pin tumbler receiving chambers are in axial alignment, reciprocal motion of said pin tumblers as units being permitted by axial alignment of the pins thereof, at least one of said pins of each of said pin tumblers extending across said shear line so as to be partly disposed in an aligned shell pin tumbler receiving chamber and core pin tumbler receiving chamber in the absence of a properly bitted key in said keyway, said pin tumblers each further including a spring for urging said driver pins in the direction of said keyway whereby said bottom pins extend into said keyway for cooperation with a key;
- an auxiliary locking pin having first and second oppositely disposed end portions, said auxiliary locking pin being reciprocally disposed in said core auxiliary locking pin receiving chamber, said auxiliary locking pin defining an axis, said first end portion of said auxiliary locking pin extending into said keyway through said first side thereof, said second end portion of said auxiliary locking pin being sized and shaped to be received in said first recess in said shell interior surface, said first end portion of said auxiliary locking pin including a reaction surface against which a force directed axially with respect to said auxiliary locking pin may be exerted, said reaction surface facing generally toward said keyway first side, said first end portion of said auxiliary locking pin further including a shaped extension which projects beyond said reaction surface toward said second side of said keyway, said shaped extension having a length and defining the first end of said auxiliary locking pin,
- an auxiliary locking pin spring for applying an axial resilient bias force to said auxiliary locking pin, said auxiliary locking pin spring causing at least part of said second end portion of said auxiliary locking pin to extend across said shear line and be received in said shell first recess when said core and shell pin tumbler chambers are in axial alignment, said receipt of said auxiliary locking pin second end portion in said shell recess under the influence of said auxiliary locking pin spring establishing interference between said auxiliary locking pin second end portion and said recess side wall, said interference preventing rotation of said core relative to said shell in the absence of the application of an axial force to said auxiliary locking pin reaction surface which is in a direction opposite to and in excess of said resilient bias force; and
- a key, said key comprising a bow and a blade which extends longitudinally from said bow to a blade tip, said blade having a pair of spatially displaced opposite side surfaces which are at least in part substantially parallel, at least one of said side surfaces being provided with a longitudinal slot extending from the vicinity of said tip toward said bow, said longitudinal slot having an open end which faces away from said bow, said slot being in part defined by a base and a force transmission wall which is spacially displaced from said base, said force transmission wall being at least in part generally complementary in shape to at least a portion of said auxiliary locking pin reaction surface, said auxiliary locking pin first end portion being received in said open end of said longitudinal slot, the spacing between said force transmission wall of said slot and said slot base permitting relative longitudinal movement between said blade and said auxiliary locking pin, the average spacing between said force transmission wall of said slot and said keyway first side defining a first slot operational depth at said blade tip and defining a second slot operational depth in a linear section of said slot which is displaced from said blade tip, said section of said slot having said second operational depth being in registration with said auxiliary locking pin when said key blade is fully inserted in said keyway, the operational depth of said slot transitioning smoothly from said first operational depth to said second operational depth, the spacing between said force transmission wall of said slot and said slot base being commensurate with said length of said auxiliary locking pin shaped extension at least in said linear section having said second slot operational depth, said blade further having at least a first aperture in said base of said slot in said linear slot section having said second slot operational depth, said aperture being sized and shaped to receive said auxiliary locking pin shaped extension, insertion of said key blade into said keyway with said locking pin first end portion received in said slot to the point where said slot has transitioned to said second operational depth causing said auxiliary locking pin second end portion to be partially withdrawn from said shell recess, said partial withdrawal interrupting said rotation preventing interference.
- 13. The lock system of claim 12 wherein said axis of said auxiliary locking pin is oriented generally transversely with respect to said keyway defined plane and said auxiliary locking pin axis intersects said plane at a point displaced from said longitudinal axis.
- 14. The lock system of claim 12 wherein said first end portion of said auxiliary locking pin in part defines a flaring tenon, said tenon defining said reaction surface.
- 15. The lock system of claim 12 wherein said auxiliary locking pin second end portion includes a cam surface and said shell first recess side wall is in part defined by a camming surface which is shaped to coact with said camming surface to impart axial motion to said auxiliary locking pin, and wherein said auxiliary locking pin second end portion is further provided with a wall surface which is oriented generally parallelly with respect to said auxiliary locking pin axis and said shell recess side wall has a further surface which extends in a direction parallel to said auxiliary locking pin axis, the length of said further surface being commensurate with the difference between said key blade slot first and second operational depths, said auxiliary locking pin and shell recess parallel wall surfaces coacting to establish said interference and prevent rotation of said core relative to said shell prior to partial withdrawal of said auxiliary locking pin from said first recess, said shell camming surface and said auxiliary locking pin cam surface cooperating to impart axial motion to said auxiliary locking pin in response to relative rotation between said shell and core subsequent to said partial withdrawal of said auxiliary locking pin from said shell first recess, said imparted axial motion being permitted by reception of said shaped extension of said auxiliary locking pin first end portion in said key blade aperture.
- 16. The lock system of claim 13 wherein said first end portion of said auxiliary locking pin in part defines a flaring tenon, said tenon defining said reaction surface.
- 17. The lock system of claim 15 wherein said first end portion of said auxiliary locking pin in part defines a flaring tenon, said tenon defining said reaction surface.
- 18. The lock system of claim 12 wherein said longitudinal slot in said key blade defines a mortise.
- 19. The lock system of claim 15 wherein said longitudinal slot in said key blade defines a mortise.
- 20. The lock system of claim 19 wherein said mortise includes said force transmission wall.
- 21. The lock system of claim 20 wherein said first end portion of said auxiliary locking pin in part defines a flaring tenon, said tenon defining said reaction surface, and wherein said force transmission wall of said mortise is generally complementary in shape to said reaction surface.
- 22. The lock system of claim 21 wherein said axis of said auxiliary locking pin is oriented generally transversely with respect to said keyway defined plane, and wherein said auxiliary locking pin axis intersects said plane at a point displaced from said longitudinal axis.
- 23. A key blank for use with a cylinder lock having at least a first resiliently biased auxiliary locking pin, the lock having a keyway with oppositely disposed and spacially separated sides and the locking pin having a shaped head portion which extends into the lock keyway from a first side thereof, the shaped head portion being at a first end of the auxiliary locking pin and including a reaction surface which generally faces the keyway first side, said key blank comprising:
- a bow;
- a blade longitudinally extending from said bow and terminating at a tip, said blade having first and second spatially displaced sides, said blade also having a pair of oppositely disposed and spaced edges which interconnect said sides, said first and second sides being at least in part substantially parallel to one another;
- a slot extending longitudinally along a substantial portion of the length of at least a first of said blade sides from the vicinity of said blade tip in the direction of said bow, said slot defining a mortise sized and shaped to receive an auxiliary locking pin head portion whereby an auxiliary locking pin head portion may be inserted in said slot at said open end and captured therein, said mortise having a base and including a force transmission wall which is spaced from said base and faces generally in the direction of said second of said blade sides, said mortise force transmission wall being at least in part complementary in shape to a portion of the reaction surface of the auxiliary locking pin head portion, said slot having an operational depth defined by the spacing between said blade first side and said force transmission wall, said slot having a first linear section with an average first operational depth, said slot first linear section extending from said slot open end, said slot operational depth transitioning smoothly from said first operational depth to a second operational depth occurring in a second slot linear section, said force transmission wall of said mortise following the operational depth profile of said slot, said second linear section of said slot being located in a longitudinal region along said blade which is displaced from said tip by said first slot section; and
- at least a first aperture in said base of said slot, said aperture being located in said second linear slot section.
- 24. The key blank of claim 23 wherein said slot further has a third linear section disposed between said first and second linear sections, wherein said operational depth is substantially constant along said first linear section and wherein said operational depth transitions from said first to second depths in said third linear section.
- 25. The key blank of claim 23 wherein the spacing between said slot base and said force transmission wall is commensurate with the extension of the locking pin head portion into the keyway at least in said second linear slot section whereby displacement of the auxiliary locking pin head portion reaction surface away from said mortise force transmission wall may occur only when the locking pin head portion is in registration with said first aperture.
- 26. The key blank of claim 23 wherein said force transmission wall is angularly inclined relative to said slot base.
- 27. The key blank of claim 23 wherein said slot continues past said second linear section to define a further linear slot section extending toward said bow from said second section, the average operational depth of said slot in said further linear section being less than said second operational depth.
- 28. The key blank of claim 24 wherein said force transmission wall is angularly inclined relative to said slot base.
- 29. The key blank of claim 24 wherein said slot continues past said second linear section to define a further linear slot section extending toward said bow from said second section, the average operational depth of said slot in said further linear section being less than said second operational depth.
- 30. The key blank of claim 28 wherein said slot continues past said second linear section to define a further linear slot section extending toward said bow from said second section, the average operational depth of said slot in said further linear section being less than said second operational depth.
CROSS REFERENCE TO RELATED APPLICATION
This application is a continuation-in-part of application Ser. No. 789,395 filed Jan. 29, 1997.
US Referenced Citations (13)
Foreign Referenced Citations (4)
Number |
Date |
Country |
563276 |
Jan 1958 |
BEX |
3038318 |
Jun 1981 |
DEX |
3225952 |
Jan 1984 |
DEX |
4035934 |
Jun 1991 |
DEX |
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
789395 |
Jan 1997 |
|