This invention relates to a lock and key combination whereby, during insertion of the key into the lock, a moveable element within the key blade is moved into engagement with a slider to thereby move the slider and release an operatively interrelated sidebar from a locked position of the sidebar to an unlocked position.
A cylinder lock includes a cylinder or plug rotatably disposed within a bore formed in a shell or housing. A keyway formed axially in the plug accepts a key having a blade shaped and warded to correspond to grooves and ridges of the keyway. Rotation of the cylinder within the shell may be controlled by one or more tumbler pin assemblies, whereby bitting formed on the key blade elevates each tumbler pin assembly to align the assembly with the shear line between the cylinder and the shell to enable the cylinder to rotate. As an alternative to tumbler pins or in addition to tumbler pins, a sidebar may be disposed in the cylinder and configured for radial movement relative to the cylinder. The sidebar includes knife edge that, when the sidebar is radially extended with respect to the cylinder, extends into an axial groove formed in the wall of the shell bore to prevent rotation of the cylinder. A slider is disposed within the cylinder and includes a sidebar-blocking portion that engages a corresponding portion of the sidebar to prevent the sidebar from moving radially inwardly and retracting from the axial groove. The slider includes a portion that extends into the keyway, and a properly configured key will contact the slider and, as the key is inserted into the keyway, will move the slider into a position whereby the corresponding blocking portions of the slider and the sidebar are not engaged, thereby enabling the sidebar to move radially inwardly to withdraw from the axial groove and permit the cylinder to rotate.
Exemplary locks and associated keys having various configurations of tumbler pins, sidebars, and sliders are described in U.S. Pat. Nos. 6,477,875; 6,945,082; and 7,797,973, the respective disclosures of which are hereby incorporated by reference.
Aspects of the invention are embodied in a lock and key combination that comprises a cylinder rotatably mounted within a shell and having a keyway formed therein. A sidebar is mounted within the cylinder for movement with respect to the cylinder between a locked position engaging the shell to prevent rotation of the cylinder with respect to the shell and an unlocked position disengaged from the shell so as to allow rotation of the cylinder with respect to the shell. A slider mounted within the cylinder and is configured for movement within the cylinder between a first position blocking movement of the sidebar from the locked position to the unlocked position and a second position not blocking movement of the sidebar from the locked position to the unlocked position. A key has a blade configured to be inserted into the keyway, and the blade includes a first side and a second side. The slider is mounted within the cylinder adjacent to a side of the keyway corresponding to the first side of the blade of a key inserted into the keyway. A slider-actuating element is mounted within the blade for movement with respect to the blade between a first position projecting from the first side of the blade and a second position projecting from the second side of the blade. A cam element within the keyway is configured to engage the slider-actuating element as the blade is inserted into the keyway and move the slider-actuating element to the first position whereby the slider-actuating element projects from the first side of the blade and engages the slider to move the slider from the first position blocking movement of the sidebar from the locked position to the unlocked position to the second position not blocking movement of the sidebar from the locked position to the unlocked position.
According to further aspects of the invention, the slider-actuating element comprises a pin disposed within a bore formed transversely through the keyway.
According to further aspects of the invention, the cam element comprises a ramp formed on a surface of the keyway that engages a portion of the slider-actuating element projecting from the second side of the blade when the slider-actuating element is in the second position and moves the slider-actuating element to the first position as the blade is inserted into the keyway.
According to further aspects of the invention, the slider includes a recess configured to receive a portion of the slider-actuating element projecting from the first side of the blade when the slider-actuating element is in the first position.
According to further aspects of the invention, the sidebar includes a knife-edge that extends into an groove formed in the shell when the sidebar is in the locked position and is withdrawn from the groove when the sidebar is in the unlocked position.
According to further aspects of the invention, the pin comprises a generally cylindrical pin having a collar of enlarged diameter surrounding an intermediate portion of the pin, thereby defining a first end and a second end on either side of the collar and having diameters that are less than the diameter of the collar.
According to further aspects of the invention, the pin comprises a generally cylindrical shank and an enlarged head at one end of the shank.
Other features and characteristics of the present invention, as well as the methods of operation, functions of related elements of structure and the combination of parts, and economies of manufacture, will become more apparent upon consideration of the following description and the appended claims with reference to the accompanying drawings, all of which form a part of this specification, wherein like reference numerals designate corresponding parts in the various figures.
The accompanying drawings, which are incorporated herein and form part of the specification, illustrate various, non-limiting embodiments of the present invention. In the drawings, common reference numbers indicate identical or functionally similar elements.
Unless defined otherwise, all terms of art, notations and other technical terms or terminology used herein have the same meaning as is commonly understood by one of ordinary skill in the art to which this disclosure belongs. All patents, applications, published applications and other publications referred to herein are incorporated by reference in their entirety. If a definition set forth in this section is contrary to or otherwise inconsistent with a definition set forth in the patents, applications, published applications, and other publications that are herein incorporated by reference, the definition set forth in this section prevails over the definition that is incorporated herein by reference.
Unless otherwise indicated or the context suggests otherwise, as used herein, “a” or “an” means “at least one” or “one or more.”
This description may use relative spatial and/or orientation terms in describing the position and/or orientation of a component, apparatus, location, feature, or a portion thereof. Unless specifically stated, or otherwise dictated by the context of the description, such terms, including, without limitation, top, bottom, above, below, under, on top of, upper, lower, left of, right of, in front of, behind, next to, adjacent, between, horizontal, vertical, diagonal, longitudinal, transverse, etc., are used for convenience in referring to such component, apparatus, location, feature, or a portion thereof in the drawings and are not intended to be limiting.
Furthermore, unless otherwise stated, any specific dimensions mentioned in this description are merely representative of an exemplary implementation of a device embodying aspects of the invention and are not intended to be limiting.
A sidebar 30 is positioned in a cavity formed in the side of the plug 20. The sidebar 30 has a beveled projection 33 with a knife edge that extends into an axial sidebar groove 12 formed in the sidewall of the axial bore 11 in the shell 10. The sidebar 30 is urged radially outwardly from the rotational axis of the plug 20, for example, by springs 38, so that the beveled projection 33 is urged into engagement with the sidebar groove 12. The plug 20 cannot be rotated to unlock the lock until the sidebar 30 is moved radially toward the rotational axis of the plug 20, and the beveled projection 33 is disengaged from the sidebar groove 12.
In the context of this disclosure, the term “engage”—or engages, engaged, engagement, engaging, or engageable—when referring to two more components or portions thereof means a direct or indirect physical or other cooperative interaction between the components or portions thereof that causes or facilitates a structural or functional result, such as coupling the components together, that would not occur but for the interaction between the components.
A slider 40 is positioned adjacent the sidebar 30 and has sidebar-blocking elements, such as at least one tab 41 that is engaged by a side 34 of the sidebar 30 to prevent the sidebar 30 from moving radially out of engagement from the sidebar groove 12. The slider 40 is biased axially, for example, by a spring 48, toward the front end of the plug 20. A proper key inserted into a keyway 36 has a projection that engages a contact surface 42 on the slider 40 to move the slider 40 axially so as to align slider opening(s) 32 formed in the side 34 of the sidebar with the tab(s) 41 of the slider 40.
As the plug 20 is turned under control of the key, the beveled projection 33 of the sidebar 30 moves in the sidebar groove 12, and this action forces the sidebar 30 to move radially into the plug 20. The radial movement of the sidebar 30 with respect to the slider 40 and the plug 20 is enabled by the alignment of the slider opening(s) 32 with the tab(s) 41.
As shown in
As shown in
While the subject matter of this disclosure has been described and shown in considerable detail with reference to certain illustrative embodiments, including various combinations and sub-combinations of features, those skilled in the art will readily appreciate other embodiments and variations and modifications thereof as encompassed within the scope of the present invention. Moreover, the descriptions of such embodiments, combinations, and sub-combinations is not intended to convey that the inventions requires features or combinations of features other than those expressly recited in the claims. Accordingly, the scope of this disclosure is intended to include all modifications and variations encompassed within the scope of the following appended claims.
This application claims the benefit under 35 U.S.C. §119(e) of the filing date of provisional patent application Ser. No. 61/886,388 filed Oct. 3, 2013, the disclosure which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
947913 | Jenkins | Feb 1910 | A |
1567979 | Northrop | Dec 1925 | A |
2438435 | Gagnon | Mar 1948 | A |
2440428 | Best | Apr 1948 | A |
3486355 | Halfyard | Dec 1969 | A |
3877267 | Harris, Jr. | Apr 1975 | A |
4377082 | Wolter | Mar 1983 | A |
4545226 | Urrestarazu-Borda | Oct 1985 | A |
4662200 | Borda | May 1987 | A |
4667495 | Girard et al. | May 1987 | A |
5076081 | Boris, Jr. | Dec 1991 | A |
5170651 | Errani | Dec 1992 | A |
5437176 | Keller | Aug 1995 | A |
5457974 | Keller | Oct 1995 | A |
5520035 | Eizen et al. | May 1996 | A |
5778712 | Wallden | Jul 1998 | A |
5784910 | Eizen et al. | Jul 1998 | A |
5839308 | Eizen et al. | Nov 1998 | A |
6477875 | Field et al. | Nov 2002 | B2 |
6681609 | Preddey | Jan 2004 | B1 |
6945082 | Field et al. | Sep 2005 | B2 |
7797973 | Field et al. | Sep 2010 | B2 |
9157256 | Hiscocks | Oct 2015 | B2 |
20130298621 | Clifford | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
0431550 | Jun 1991 | EP |
431550 | Jun 1991 | EP |
Entry |
---|
International Search Report and Written Opinion in International Patent Application No. PCT/US2014/058817, 10 pages (Dec. 18, 2014). |
International Preliminary Report on Patentability issued in International Application No. PCT/US2014/058817, 8 pages (Apr. 14, 2016). |
Number | Date | Country | |
---|---|---|---|
20150096342 A1 | Apr 2015 | US | |
20150315814 A2 | Nov 2015 | US |
Number | Date | Country | |
---|---|---|---|
61886388 | Oct 2013 | US |