1. Technical Field
The present disclosure generally relates to cylinders, and particularly to a cylinder with rotating and linearly sliding functions.
2. Description of Related Art
Cylinders are widely used for conveying workpieces during industrial manufacturing process, or applying to position or drive other devices or mechanisms as a driver. A commonly used cylinder generally includes a cylinder body defining a receiving chamber, and a piston assembly slidably assembled within the receiving chamber of the cylinder body. One end of the piston assembly is exposed outside of the cylinder body for being connected to a pre-driven device or mechanism. Such that, the pre-driven device or mechanism is driven to move linearly relative to the cylinder body as in use. However, the existing cylinder is merely capable of fulfilling linear and retractable movements. In some automatic apparatuses, there often needs some cylinders having rotatable and retractable functions to fulfill rotatable and retractable movements.
Therefore, there is room for improvement within the art.
The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present disclosure.
Referring to
The cylinder body 10 includes a cylinder barrel 11 and an end cover 13 detachably mounted to one end of the cylinder barrel 11. The cylinder barrel 11 defines a receiving hole 111 therethrough axially, for assembling the corresponding piston assembly 50. The end cover 13 covers one end of the receiving hole 111 of the cylinder barrel 11. An air input hole 113 and an air output hole 115 are defined through a peripheral wall of the cylinder barrel 11 to communicate with the receiving hole 111. The air input hole 113 and the air output hole 115 are respectively connected to two outer air sources (not shown), thereby providing air pressure for the cylinder body 10 via the air input hole 113, and exhausting the air in the cylinder body 10 via the air output hole 115.
Also referring to
The piston assembly 50 includes a piston 51, an assembling ring 53, and two roll balls 55. The piston 51 is coaxially sleeved on the guiding body 31 of the guiding member 30 via the assembling ring 53 and the two roll balls 55. The piston 51 is substantially hollow and cylindrical, and includes a base body 511 and an assembling flange 513 coaxially formed at one end of the base body 511. The assembling ring 53 is coaxially assembled within the assembling flange 513 of the piston 51 and sleeved on the corresponding guiding body 31 of the guiding member 30 via the two roll balls 55. The assembling ring 53 defines a plurality of mounting holes 531 along a circumferential direction thereof. The two roll balls 55 are oppositely assembled into two mounting holes 531 of the assembling ring 53 and partially engage into guiding body 31 of the guiding member 30. The two roll balls 55 are rotatably sandwiched between the assembling flange 513 of the piston 51 and the guiding body 31 of the guiding member 30, and are capable of sliding within the axial sliding grooves 311, the rotating grooves 313 and the positioning grooves 315, thereby guiding and driving the piston 51 to slide and rotate relative to the guiding member 30.
The two guiding rods 70 are both substantially cylindrical, and are oppositely mounted to the distal end of the cylinder body 10, away from the end cover 13, and are positioned parallel to an axial direction of the receiving hole 111 of the cylinder body 10.
The revolving arm 80 is fixed to a distal end of the piston assembly 50, and sleeved on the two guiding rods 70. The revolving arm 80 defines a fixing hole 81 through a substantially central portion thereof, corresponding to the piston 51, and two positioning holes 83 positioned at two sides of the fixing hole 81, oppositely, corresponding to the two guiding rods 70.
Also referring to
In use, the air input hole 113 and the air output hole 115 of the cylinder body 10 are respectively connected with two outer air sources (not shown) for driving the cylinder 100 to work. The piston 51 is firstly driven to slide axially relative to the cylinder body 10, meanwhile, the roll balls 55 rotatably engage with the axial sliding groove 311 and slide along the axial sliding groove 311 toward the guiding rod 70. The revolving arm 80 is driven to disengage with the guiding rods 70. When the roll balls 55 slide into the rotating grooves 313, the revolving arm 80 together with the piston 51 is driven to rotate about 90 degrees relative to the guiding member 30. The roll balls 55 are finally driven to slide into the positioning grooves 315, thereby stopping the piston 51, such that, the revolving arm 80 together with the piston 51 is positioned at a preset position.
During a backward stroke of the piston 51, the roll balls 55 are driven to slide out from the positioning grooves 315 of the guiding body 30, and then move into the rotating grooves 313 of the guiding body 30. Meanwhile, the revolving arm 80 together with the piston 51 is driven to rotate relative to the guiding member 30, reversely about 90 degrees. When the roll balls 55 is driven to slide into the axial sliding grooves 311 of the guiding member 31, the roll balls 55 are then driven to engage within the axial sliding groove 311 and slide along the axial sliding groove 311 backwardly, toward the end cover 13. The piston 51 together with the revolving arm 80 is driven to slide axially toward the end cover 13, the positioning holes 83 of the revolving arm 80 are align with the corresponding guiding rods 70, and the revolving arm 80 is finally sleeved on the guiding rods 70.
In one embodiment, the roll balls 55 and the assembling ring 53 may be omitted, and replaced by a bearing.
Finally, while various embodiments have been described and illustrated, the disclosure is not to be construed as being limited thereto. Various modifications can be made to the embodiments by those skilled in the art without departing from the true spirit and scope of the disclosure as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
201110292352.5 | Sep 2011 | CN | national |