The present disclosure relates to door locks and, in particular, to door locks having a lock status indicator.
Door locks can take a number of different forms, including cylindrical locks and mortise locks. In certain instances, the door may be placed in a locked state to limit ingress and egress by a lock function. It may be advantageous to signal to occupants or those outside of a space secured by a door that the door lock maintains the locked condition, limiting ingress and/or egress. However, cylindrical locks present unique challenges for transmitting a lock status between ingress and egress sides of a door.
The present disclosure provides lock indicators useable to signal the locked or unlocked state of a lock at one or both sides of a door selectively secured by the lock. Throughout this document, “inside” will be used to reference the side of a door and lock actuator available to occupants of an area secured by the lock, while “outside” will be used to reference the side of a door and lock actuator available to those seeking ingress to the secured area.
In an exemplary embodiment of the present disclosure, a cylindrical lock having a first side and a second side is provided, the lock including a latch bolt moveable between an engaged position operable to limit ingress and egress and a disengaged position operable to permit ingress and egress; a first actuator operable to receive a first operator input motion to actuate the first actuator to move the latch bolt from the engaged position to the disengaged position, the first actuator being on the first side of the cylindrical lock; a second actuator operable to receive a second operator input motion to actuate the second actuator to move the latch bolt from the engaged position to the disengaged position, the second actuator being positioned on the second side of the cylindrical lock; a first locking lug actuatable between a locked position and an unlocked position, the locked position of the first locking lug corresponding to the cylindrical lock in a locked condition blocking the first operator input motion from actuating the first actuator to move the latch bolt from the engaged position to the disengaged position; a magnet holder having at least one permanent magnet, the magnet holder selectively operably coupled to the first locking lug such that the magnet holder moves with the first locking lug between the locked position and the unlocked position when the magnet holder and the first locking lug are operably coupled; and a flag having a lock signal signaling the locked position of the first locking lug and an unlock signal signaling the unlocked position of the first locking lug, the flag selectively displaying only one of the lock signal and the unlock signal, the flag being magnetically-driven by the at least one permanent magnet of the magnet holder between a lock signal position displaying the lock signal and an unlock signal position displaying the unlock signal.
In an example thereof, the locking lug undergoes a movement with the first actuator input motion when the locking lug is in the unlocked position, the movement of the locking lug decoupling the locking lug and the magnet holder.
In an example thereof, the cylindrical lock further comprises a first hub on the first side of the cylindrical lock and a second hub on the second side of the cylindrical lock, wherein in the locked position of the first locking lug, the first hub blocks a movement of the first locking lug and thereby blocks the first operator input motion from actuating the first actuator to move the latch bolt from the engaged position to the disengaged position; and a second locking lug operably coupled to the first locking lug and operable to transition between a first position associated with the engaged position of the first locking lug and a second position associated with the disengaged position.
In a further example thereof, the at least one permanent magnet of the magnet holder includes a coupling permanent magnet operable to selectively couple with the second locking lug, and thereby with the first locking lug, and transition with the second locking lug between the first position and the second position.
In a further example thereof, the cylindrical lock further comprises a cuff positioned coaxially with the second hub, the cuff operable to transition between a locked status position and an unlocked status position.
In a further example thereof, the cuff includes a first extension portion and a second extension portion, the first extension portion and the second extension portion including a plurality of permanent magnets forming a first magnetic field and a second magnetic field, wherein when the magnet holder is in the first position the magnet holder interacts with the first magnetic field driving the cuff to the locked status position and when the magnet holder is in the second position the magnet holder interacts with the second magnetic field resulting in driving the cuff to the unlocked status position.
In a further example thereof, the indicator is operably coupled to the cuff and operable to move with the cuff between the locked status position and the unlocked status position.
In yet another example thereof, the cylindrical lock further comprises a cuff positioned coaxially with the second hub, the cuff operable to transition between a locked status position and an unlocked status position.
In an example thereof, the cuff includes a first extension portion and a second extension portion, the first extension portion and the second extension portion including a plurality of permanent magnets forming a first magnetic field and a second magnetic field, wherein when the magnet holder is in the first position the magnet holder interacts with the first magnetic field driving the cuff to the locked status position and when the magnet holder is in the second position the magnet holder interacts with the second magnetic field resulting in driving the cuff to the unlocked status position.
In an example thereof, the flag is operably coupled to the cuff and operable to move with the cuff between the locked status position corresponding to the lock signal position of the flag, and the unlocked status position corresponding to the unlock signal position of the flag.
In an exemplary embodiment of the present disclosure, a lock indicator assembly for a cylindrical lock having a first side and a second side, the lock indicator assembly comprising: a first locking lug positioned on the first side of the cylindrical lock and actuatable between a locked position and an unlocked position, the locked position of the locking lug positioning the cylindrical lock in a locked condition; a shaft extending from the first side of the cylindrical lock to the second side of the cylindrical lock and actuatable between a first shaft position associated with the locked position of the locking lug and a second shaft position associated with the unlocked position of the locking lug; a second locking lug positioned on the second side of the cylindrical lock and operably coupled to the first locking lug via the shaft and actuatable between a corresponding locked position associated with the locked position of the first locking lug and a corresponding unlocked position associated with the unlocked position of the first locking lug; a cuff positioned on the second side of the cylindrical lock, the cuff actuatable between a locked status position associated with the locked position of the first locking lug, the first shaft position, and the corresponding locked position of the second locking lug, and an unlocked status position associated with the unlocked position of the first locking lug, the second shaft position, and the corresponding unlocked position of the second locking lug; and a flag operably coupled to the cuff such that the flag moves with the cuff, the flag operable to display a locked status when the cuff is in the locked status position and an unlocked status when the cuff is in the unlocked status position.
In an example thereof, the cylindrical lock further comprises a magnet holder with at least one permanent magnet positioned on the second side of the cylindrical lock and operably and selectively coupled with the second locking lug and operable to transition between a first position associated with the locked position of the first locking lug and a second position associated with the unlocked position of the first locking lug, the magnet holder with at least one permanent magnet operable to drive the cuff.
In another example thereof, the lock indicator assembly for a cylindrical lock further includes: a first hub positioned on the first side of the cylindrical lock, the first hub having a lock channel, said first locking lug occupying said lock channel in the locked position, the lock channel blocking a movement of the first locking lug needed to actuate the cylindrical lock; and a second hub positioned on the second side of the cylindrical lock, the second locking lug having an interior space, the second locking lug moving between the corresponding locked position and the corresponding unlocked position within the interior space of the second hub.
In yet another example thereof, the lock indicator assembly further comprises a magnet holder with at least one magnet holder permanent magnet, the magnet holder positioned on the second side of the cylindrical lock and operably and selectively coupled with the second locking lug and operable to transition between a first magnet holder position associated with the locked position of the first locking lug and a second magnet holder position associated with the unlocked position of the first locking lug, the at least one magnet holder permanent magnet operable to magnetically drive the cuff between the locked status position and the unlocked status position.
In a further example thereof, the cuff includes a first extension portion and a second extension portion, the first extension portion and the second extension portion including a plurality of cuff permanent magnets forming a first magnetic field and a second magnetic field, the magnet holder magnetically engaging the first magnetic field of the cuff in the first magnet holder position to position the cuff in the locked status position, the magnet holder magnetically engaging the second magnetic field of the cuff in the second magnet holder position to position the cuff in the unlocked status position.
In a further example thereof, the first extension portion of the cuff is circumferentially spaced from the second extension portion of the cuff.
In a further example thereof, the cuff and the flag are operable to rotate between the locked status position and the unlocked status position.
In a further example thereof, the flag includes a lock status indicator and an unlocked status indicator.
In a further example thereof, the plurality of cuff permanent magnets includes a first cuff permanent magnet positioned with the first extension portion at a first longitudinal position relative to the cuff and a second cuff permanent magnet positioned with the second extension portion at the first longitudinal position relative to the cuff, the first and second cuff permanent magnets forming the first magnetic field, and wherein the plurality of permanent magnets includes a third cuff permanent magnet positioned with the first extension portion at a second longitudinal position relative to the cuff and a fourth cuff permanent magnet positioned with the second extension portion at the second longitudinal position relative to the cuff, the third and fourth permanent magnets forming the second magnetic field.
In a further example thereof, the first and second cuff permanent magnets are oriented such that north poles are substantially facing toward each other, and wherein the third and fourth cuff permanent magnets are oriented such that south poles are substantially facing toward each other.
In a further example thereof, the at least one magnet holder permanent magnet comprises at least two magnet holder permanent magnets operable to selectively magnetically interact with the first and second magnetic fields formed by the plurality of cuff permanent magnets, the at least two magnet holder permanent magnets each having opposite poles oriented in substantially the same direction.
In an exemplary embodiment of the present disclosure, an access device operable to selectively block and permit access through a barrier, comprising: an actuator operable to receive an operator input motion to rotate the actuator to allow access through the barrier, the actuator extending from a first side of the barrier; a lock actuatable between a locked position and an unlocked position, the locked position of the lock positioning the lock in a locked condition blocking the operator input motion from rotating the actuator to allow access through the barrier, the lock comprising: a first hub having a lock channel; a first locking lug, the first locking lug occupying the lock channel of the first hub in the locked position of the lock and thereby blocking the operator input motion from rotating the actuator to allow access through the barrier, the first locking lug rotating with the actuator with the operator input motion in the unlocked position of the lock; and an indicator having a lock signal signaling the locked position of the lock and an unlock signal signaling the unlocked position of the lock, the indicator selectively displaying only one of the lock signal and the unlock signal, the indicator having a lock signal display position in which the lock signal is displayed and an unlock signal display position in which the unlock signal is displayed; the first locking lug selectively magnetically coupled to the indicator so that a transition of the lock from the unlocked position to the locked position positions the indicator in the lock signal display position and a transition of the lock from the locked position to the unlocked position positions the indicator in the unlock signal display position, in the unlocked position of the lock the first locking lug decoupled from the indicator, with the indicator maintaining the unlock signal display position throughout the operator input motion to rotate the actuator and the lug.
In an example thereof, the access device further comprises: a magnet holder, the magnet holder selectively magnetically coupling the first locking lug to the indicator, the magnet holder operable to magnetically actuate the indicator between the lock signal display position and the unlock signal display position.
In an example thereof, the indicator comprises a flag, the access device further comprising: a cuff coupling the magnet holder and the flag.
In an example thereof, the lock further comprises: a second hub, the first hub positioned through a first side of the barrier, the second hub positioned through a second side of the barrier; a shaft extending between the first hub and the second hub; and a second locking lug, the shaft coupling the first locking lug and the second locking lug, the second hub having an interior space, the second locking lug moving within the interior space of the second hub when the first locking lug moves, the shaft and the second locking lug selectively magnetically coupling the first locking lug to the indicator.
In an exemplary embodiment, lock indicator mechanism for a lock on a door comprising: a first lug having an engagement portion transitionable between a locked position and an unlocked position, the engagement portion limiting movement of the first lug when in the locked position; a second lug that is transitionable between a corresponding locked position and a corresponding unlocked position; a shaft extending between the first lug and the second lug such that linear movement of one of the first or second lock inputs results in linear movement of both the first and second lock inputs; a cuff rotatably positioned with the second lock input, the cuff including a plurality of cuff magnets defining a first magnetic field and a second magnetic field; a magnet holder including at least one magnet holder magnet, the magnet holder operably coupled to the second lug such that when the second lug is positioned in the corresponding locked position, the at least one magnet holder magnet interacts with the first magnetic field causing the cuff to rotate to a first cuff position, and such that when the second lug is positioned in the corresponding unlocked position, the at least one magnet holder magnet interacts with the second magnetic field causing the cuff to rotate to a second cuff position; and a lock indicator operably coupled with the cuff such that the lock indicator rotates with the cuff and is operable to display a locked status and an unlocked status.
In an example thereof, the magnet holder includes a first permanent magnet operable to removably couple to the second lug and a second magnet operable to interact with the first and second magnetic fields.
In an example thereof, the lock indicator mechanism further includes a hub forming a magnet holder channel extending longitudinally and within which the magnet holder is operable to longitudinally transition.
In an example thereof, the hub forms cuff channels extending at circumferentially and within which portions of the cuff are operable to circumferentially transition as the cuff rotates.
The above-mentioned and other features and advantages of this disclosure, and the manner of attaining them, will become more apparent and will be better understood by reference to the following description of exemplary embodiments taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate exemplary embodiments of the invention and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
For the purposes of promoting an understanding of the principles of the present disclosure, reference is now made to the embodiments illustrated in the drawings, which are described below. The embodiments disclosed herein are not intended to be exhaustive or limit the present disclosure to the precise form disclosed in the following detailed description. Rather, the embodiments are chosen and described so that others skilled in the art may utilize their teachings. Therefore, no limitation of the scope of the present disclosure is thereby intended. Corresponding reference characters indicate corresponding parts throughout the several views.
The terms “couples”, “coupled”, “coupler” and variations thereof may be used to include both arrangements wherein the two or more components are in direct physical contact and arrangements wherein the two or more components are not in direct contact with each other (e.g., the components are “coupled” via at least a third component), but yet still cooperate or interact with each other.
In some instances throughout this disclosure and in the claims, numeric terminology, such as first, second, third, and fourth, may be used in reference to various components or features. Such use is not intended to denote an ordering of the components or features. Rather, numeric terminology is used to assist the reader in identifying the component or features being referenced and should not be narrowly interpreted as providing a specific order of components or features.
As illustrated in
Referring to
Lock indicator assembly 20 transitions between displaying a locked status and an unlocked status corresponding to the locked or unlocked state of door lock 12 established by either an interior lock input or an exterior lock input of door lock 12 (for example, interior or exterior lock inputs may include keyed lock inputs, thumb-turn inputs, and push button inputs). As seen in
An overview of components of interior and exterior lock assemblies 30, 40 is provided to facilitate an understanding of how lock indicator assembly 20 functions with respect to interior and/or exterior lock assemblies 30, 40. A description of the lock indicator assembly 20 will follow. Finally, a description of the interaction between lock indicator assembly 20 and interior and exterior lock assemblies 30, 40 will be provided. Although the following discussion may at times designate interior lock assembly 30 as having certain components or features and exterior lock assembly 40 as having certain components or features, in some embodiments those components or features may be exchanged. For example, those components and features associated with interior lock assembly 30 as discussed may be implemented on exterior lock assembly 40 and those components or features associated with exterior lock assembly 40 as discussed may be implemented on interior lock assembly 30. Stated otherwise, door lock 12 may be implemented to prevent ingress while allowing egress, or alternatively prevent egress while allowing ingress. For example, the below disclosure discusses a classroom or “intruder” function door lock, whereas the components may be reversed to provide the opposite function for the door lock (e.g., used in interrogation rooms).
Referring now to
Referring to
Referring still to
Referring to
As exterior lug carrier 46, and consequently exterior lug 48, moves between a first linear position and a second linear position, the lock status of exterior lock assembly 40 changes. Exterior lug carrier 46 and exterior lug 48 move linearly with respect to exterior hub 80. Hub 80 selectively restricts or allows rotational movement of exterior lug 48 relative to exterior hub 80, which correspond to locked and unlocked conditions, respectively. When exterior lug carrier 46 is positioned toward interior lock assembly 30 within exterior cam sleeve 44, exterior lock assembly 40 is in an unlocked state and allows rotational movement of exterior lug 48 and exterior release cam 42 relative to exterior hub 80. When exterior lug carrier 46 is positioned away from interior lock assembly 30 within exterior cam sleeve 44, exterior lock assembly 40 is in a locked state and exterior lug 48, and consequently exterior release cam 42, is restricted from rotational movement relative to exterior hub 80. The locked state is achieved by exterior lug carrier 46, exterior lug 48, and exterior release cam 42 being restricted in rotational movement, which blocks operator input motion (which seeks to rotate the associated release cam) from actuating latch bolt 18. For example, exterior lock assembly 40 includes exterior lug 48 which engages with adjacent structure of exterior hub 80 to restrict rotational movement of the aforementioned components. In one embodiment, lock channel engagement portion 49 of exterior lug 48 selectively engages exterior hub 80 when lock channel engagement portion 49 is positioned within lock channel 82 of exterior hub 80 (
Referring to
Referring to
Turning to a discussion of interior hub 60, in some embodiments, interior hub 60 is shaped such that lock indicator engagement portion 39 of interior lug 38 is able to freely move within interior space 67 (
Referring to
Interior hub 60 further includes cuff channel 70 positioned at one of the longitudinal ends of interior hub 60. Cuff channel 70 receives a portion of a cuff as will be described hereafter. Cuff channel 70 is positioned coaxially with shaft 50 and formed to allow cuff 24 to travel a predefined distance within cuff channel 70. Cuff channel 70 includes an arcuate groove defined within the body of interior hub 60. In some embodiments, cuff channel 70 includes first cuff channel 70a and second cuff channel 70b positioned such that first and second cuff channels 70a, 70b are positioned on each side of magnet holder channel 66. For example, first cuff channel 70a is positioned proximate a first side of magnet holder channel 66 and second cuff channel 70b is positioned proximate a second side of magnet holder channel 66.
Turning now to a discussion of lock indicator assembly 20, lock indicator assembly 20 is mechanically actuated by components of interior and/or exterior lock assemblies 30, 40. More specifically, lock indicator assembly 20 is driven by mechanical input received from the components of interior and exterior assemblies 30, 40 resulting in the lock and unlock conditions of door lock 12.
As shown in
As previously discussed with respect to
Referring to
Permanent magnets 106, 108 of first and second extension portions 102, 104 form a first magnetic field disposed at a first longitudinal position and a second magnetic field at a second longitudinal position. The first magnetic field is significantly generated by permanent magnets positioned with first and second extension portions 102, 104 at a first longitudinal position. For example, first permanent magnet 106a and second permanent magnet 106b generate the first magnetic field at the first longitudinal position. First and second permanent magnets 106a, 106b each have north and south poles, wherein the like poles are oriented toward each other along the arcuate path. The second magnetic field is generated by permanent magnets positioned with first and second extension portions 102, 104 at a second longitudinal position. For example, third permanent magnet 108a and fourth permanent magnet 108b form the second magnetic field at the second longitudinal position. Third and fourth permanent magnets 108a, 108b each have north and south poles, with the like poles oriented toward each other along the arcuate path such that the poles that are oriented toward each other are different from the poles of first and second permanent magnets 106 of the first magnetic field. The first and second magnetic fields are described in more detail below with relation to magnet holder 26 and interior hub 60.
Referring to
Interior hub 60, cuff 24, and magnet holder 26 may all be designed such that second and third lock indicator magnets 28b, 28c never contact first, second, third, or fourth permanent magnets 106a, 106b, 108a, 108b of cuff 24. For example, interior hub 60 includes stop channels 64 (
Lock indicator assembly 20 includes flag 22 and rose 29a. Flag 22 is operably coupled to cuff 24 such that when cuff 24 rotates, flag 22 likewise rotates. For example, flag 22 includes retainers 116 (
A description of the function of door lock 12 will now be provided to facilitate understanding of how door lock 12 works with respect to the components previously disclosed. When door lock 12 is installed on door 10, door lock 12 can be transitioned between a locked condition and an unlocked condition, where lock indicator assembly 20 displays the lock status of door lock 12. Door lock 12 can be transitioned between the locked condition and the unlocked condition by transitioning exterior lug 48 of exterior lock assembly 40 into lock channel 82 of exterior hub 80 (e.g., via actuation of a lock input). As exterior lug 48 is transitioned into lock channel 82, exterior lug 48 is unable to rotate along longitudinal axis 75. As exterior lug 48 transitions longitudinally along or parallel to longitudinal axis 75, interior lug 38 likewise transitions along or parallel to longitudinal axis 75.
Interior lug 38 includes lock indicator engagement portion 39 which is magnetically coupled to magnet holder 26. Because interior lug 38 travels between a first position and a second position as exterior lug 48 transitions between the locked position and the unlocked position, and because interior lug 38 is magnetically coupled to magnet holder 26, magnet holder 26 likewise transitions between a first and second position (e.g., within magnet holder channel 66 of the interior hub 60). Magnet holder 26 includes permanent magnets 28b, 28c that create the magnet holder magnetic field. The magnet holder magnetic field interacts with the first and second magnetic fields generated by first, second, third, or fourth permanent magnets 106a, 106b, 108a, 108b of cuff 24. When magnet holder 26 is in the first position, the magnet holder magnetic field interacts with the first operative magnetic field of cuff 24. The interaction results in an attractive force between permanent magnets 28b, 28c of magnet holder 26 and of second permanent magnet 106b on first extension portion 102 of cuff 24 at a first longitudinal position on cuff 24, and a repulsive force between permanent magnets 28b, 28c of the magnet holder 26 and first permanent magnet 106a on the second extension portion 104 of cuff 24 at the first longitudinal position. Because cuff 24 is positioned relative to interior hub 60 in a rotational engagement, first and second extension portions 102, 104 of cuff 24 rotate to a first predetermined position (i.e., the first rest position) within cuff channel 70 of interior hub 60. When magnet holder 26 is in the second position, the magnet holder magnetic field interacts with second operative magnetic field of cuff 24. The interaction results in a repulsive force between permanent magnets 28b, 28c of magnet holder 26 and the third permanent magnet 108a on the first extension portion 102 of cuff 24 at second longitudinal position on the cuff 24, and an attractive force between permanent magnets 28b, 28c of magnet holder 26 and fourth permanent magnet 108b of second extension portion 104 of cuff 24 at the second longitudinal position. This results in cuff 24 rotating to a second predetermined position (i.e., the second rest position) within cuff channel 70 of interior hub 60. Interior lug 38 can be disengaged from magnet holder 26 when egress handle 14 is actuated such that interior lug 38 is rotated within interior space 67 of interior hub 60 because magnet holder 26 is constrained to a specific circumferential position within magnet holder channel 66 of interior hub 60. As interior lug 38 is returned to the neutral position, interior lug 38 and magnet holder 26 re-engage in a magnetic coupling.
Flag 22 is coupled to cuff 24 such that as cuff 24 rotates, flag 22 also rotates. Flag 22 includes indicators (e.g., lock indicator 112 and unlock indicator 114) that are visible through window 110 of rose 29a to indicate the specific lock status of exterior lug 48 (e.g., a lock and unlock symbol, a green and red-colored portion). Flag 22 and rose 29a are configured to include two positions on opposite sides at which the lock status is indicated (e.g., the top and bottom when installed). This simplifies installation such that flag 22 and rose 29a can be aligned more simply and the lock status is visible from multiple angles.
The magnetic-driven lock indicator provides various benefits, including, but not limited to, reduced wear of the internal components of the lock system to reduce wear of the components critical to maintain the locking function of door lock 12, lock status updates directly tied to the component that provides the mechanical interference for preventing actuation of the ingress handle (e.g., exterior lug 48), and a status indicator that provides a quick transition between displaying the lock status and the unlock status due to the opposite magnetic fields.
Additional description of a lock status indicator such as the one described above can be found in U.S. Provisional Patent Application Ser. No. 63/033,806 filed Jun. 2, 2020 and the U.S. utility application assigned attorney docket no. BAS-2020502-02, entitled LOCK STATUS INDICATOR and filed on even date herewith, the entire disclosures of which are hereby incorporated by reference in their entireties.
While this invention has been described as having exemplary designs, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains.
This application claims priority to U.S. Provisional Patent Application No. 63/033,034 filed Jun. 1, 2020, entitle CYLINDRICAL LOCK STATUS INDICATOR, the entire disclosure of which is expressly incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
63033034 | Jun 2020 | US |