This invention relates to a cylindrical secondary battery.
In cylindrical secondary batteries represented by lithium secondary batteries or the like, a positive electrode and a negative electrode are wound around the periphery of a hollow cylindrical axial core via a separator, thereby forming an electrode group as a power generation element. The electrode group is accommodated in a battery can, and one of the positive electrode and the negative electrode is welded to a can bottom of the battery can serving as an external terminal of one of the positive and negative electrodes, with the other being welded to a lid member serving as an external terminal of reverse polarity. Before being welded to the lid member, an electrolytic solution is injected into the interior of the battery can, the electrode group is welded to the lid member, and the lid member and the battery can are then hermetically sealed from the outside by means of caulking.
In order to weld the positive or negative electrode to the battery can or the lid member, there are a structure using a large number of conductive leads and a structure using a small number of conductive leads as from 1 to 2. The structure using a small number of conductive leads is mainly used for small-sized cylindrical secondary batteries with a low charge and discharge current.
In the cylindrical secondary batteries, since torsion acts on the welded portion between the conductive lead and the battery can or the lid member following expansion and contraction and vibration of the electrode group or displacement thereof into the axial direction, as generated at the time of charge and discharge, breakage is liable to be caused in the welded portion due to the long-term use.
Accordingly, a variety of structures for preventing the breakage of the welded portion have been studied. As an example thereof, there is known a structure in which a conductive lead is provided with a helical shape portion which does not close a gas-removal hole in its central portion (see, for example, PTL 1). The above-described patent literature does not describe a structure of the welded portion of the can bottom side.
In the above-described patent literature, the conductive lead is formed in a spiral shape so as not to close the gas-removal hole in the central portion, and an end portion for welding is welded to the lid member at a position out of the central portion of the axial core. As an example of a method of welding a conductive lead to a can bottom of a battery can, there is known a method in which an electrode rod is inserted into a hollow portion of an axial core, and an end portion for welding of an electrode lead is welded to a tip of the electrode rod by means of, for example, resistance welding or the like in a state of being pressed onto the can bottom of the battery can. The above-described method cannot be applied in the structure in which the end portion for welding of the conductive lead is positioned out of the central portion as in the above-described patent literature. Accordingly, for example, a method with low working efficiency, in which a conductive lead is preliminarily welded to an electrode plate, and the electrode plate is then accommodated together with an electrode group in a battery can, must be adopted.
A cylindrical secondary battery according to a first aspect of the present invention is concerned with a cylindrical secondary battery in which an electrode group having a positive electrode and a negative electrode wound around the periphery of an axial core having a hollow portion via a separator is accommodated in a battery can, and one of a conductive lead welded to the negative electrode and a conductive lead welded to the positive electrode is connected to a lid member covering an opening of the battery can, with the other being welded to a can bottom of the battery can, wherein at least the conductive lead welded to the can bottom of the battery can includes an end portion for welding which is extended to a position corresponding to a central portion of the hollow portion of the axial core and a routing portion which is deformable in the axial direction of the axial core and the perpendicular direction to the axial direction, and the end portion for welding is welded to the can bottom of the battery can.
A cylindrical secondary battery according to a second aspect of the invention is concerned with the cylindrical secondary battery according to claim 1, wherein the routing portion of the conductive lead is routed around the periphery of the end portion for welding from the end portion for welding so as not to overlap planarly.
A cylindrical secondary battery according to a third aspect of the invention is concerned with the cylindrical secondary battery according to claim 1 or 2, wherein the conductive lead includes a bending portion for bending the routing portion toward the outer periphery side in at least one place between the end portion for welding and the routing portion.
A cylindrical secondary battery according to a fourth aspect of the invention is concerned with the cylindrical secondary battery according to any one of claims 1 to 3, wherein the routing portion of the conductive lead is in a spiral shape.
A cylindrical secondary battery according to a fifth aspect of the invention is concerned with the cylindrical secondary battery according to any one of claims 1 to 4, wherein the conductive lead welded to the can bottom of the battery can is welded to the positive electrode or the negative electrode in a side edge on the winding start side of the axial core of the positive electrode or the negative electrode.
A cylindrical secondary battery according to a sixth aspect of the invention is concerned with the cylindrical secondary battery according to claim 5, further including an insulating sheet disposed between the conductive lead and the can bottom of the battery can, the insulating sheet including a slit for inserting thereinto an opening corresponding to the hollow portion of the axial core and the conductive lead of the axial core.
A cylindrical secondary battery according to a seventh aspect of the invention is concerned with the cylindrical secondary battery according to anyone of claims 1 to 4, wherein the conductive lead including the end portion for welding welded to the can bottom of the battery can is welded to the positive electrode or the negative electrode in an intermediate portion in the lengthwise direction in the positive electrode or the negative electrode.
A cylindrical secondary battery according to an eighth aspect of the invention is concerned with the cylindrical secondary battery according to claim 7, further including an insulating sheet disposed between the conductive lead and the can bottom of the battery can, the insulating sheet including a first opening provided at a position corresponding to the hollow portion of the axial core, a second opening provided at a position corresponding to a root of the conductive lead in which the conductive lead is welded to the positive electrode or the negative electrode, and a slit for inserting thereinto the conductive lead which is lead out from the second opening into the outside.
A cylindrical secondary battery according to a ninth aspect of the invention is concerned with the cylindrical secondary battery according to anyone of claims 1 to 8, wherein all of the conductive leads include a routing portion which is deformable in the axial direction of the axial core and the perpendicular direction to the axial direction.
A cylindrical secondary battery according to a tenth aspect of the invention is concerned with the cylindrical secondary battery according to anyone of claims 1 to 9, wherein a welded portion between the end portion for welding and the can bottom of the battery can has a size of from 1 to 5 mm in terms of a radius.
Since the conductive lead is deformable in the axial direction of the axial core and the perpendicular direction to the axial direction, the breakage of the welded portion can be prevented. In addition, since the end portion for welding is extended to a position corresponding to a central portion of the hollow portion of the axial core, by inserting an electrode rod into the hollow portion of the axial core, it is possible to weld the end portion for welding directly to the can bottom of the battery can.
The cylindrical secondary battery according to the invention is hereunder described by reference to a lithium ion cylindrical secondary battery as an embodiment together with the drawings.
A cylindrical secondary battery 1 has dimensions of an external shape of from about 14 to 26 mmφ and a height of from about 43 to 65 mm.
This cylindrical secondary battery 1 has a battery container 4 having a structure in which a closed-end cylindrical battery can 2 and a hat shaped lid body 3 are subjected to caulking processing via a seal member 43 generally called a gasket and hermetically sealed from the outside. The closed-end cylindrical battery can 2 is formed by subjecting a metal plate made of iron, aluminum, stainless steel, or the like to press processing, and in the case of an iron-made plate, for the purpose of preventing corrosion, a plated film of nickel or the like is formed over the entirety of the outer and inner surfaces thereof. The battery can 2 has an opening 202 on the upper end side that is an open side thereof. A groove 201 protruding inside the battery can 2 is formed on the side of the opening 202 of the battery can 2. Respective constituent members for the power generation as described below are accommodated in the interior of the battery can 2.
Reference numeral 10 stands for an electrode group which has an axial core 15 in its central portion, and a positive electrode and a negative electrode are wound around the periphery of the axial core 15. The axial core 15 has a hollow cylindrical shape having a hollow portion 15a in the center thereof.
As illustrated in
The axial core 15 has a hollow cylindrical shape, and the negative electrode 12, the first separator 13, the positive electrode 11, and the second separator 14 are laminated in this order and wound on the axial core 15. Inside the innermost peripheral negative electrode 12, the first separator 13 and the second separator 14 are wound by several turns. In addition, the negative electrode 12 and the second separator 14 wound on the outer periphery thereof appear on the outermost periphery. The second separator 14 on the outermost periphery is held down with an adhesive tape 19, for example, KAPTON (registered trademark) tape or the like (see
A conductive lead 21 of the positive electrode side is welded to the positive electrode 11, and a conductive lead 22 of the negative electrode side is welded to the negative electrode 12.
As illustrated in
An example of the formation method of the positive electrode 11 is hereunder shown.
LiNi0.33Mn0.33Co0.33O2 as a positive electrode active material, powdered carbon as a conductive agent, and polyvinylidene fluoride (PVDF) as a binder are weighed in a weight ratio of 85/10/5, to which is then added an appropriate amount of N-methylpyrrolidone (NMP) as a solvent, and these are kneaded for 30 minutes using a kneader, thereby obtaining a positive electrode slurry. Examples of a method of coating the positive electrode slurry on the positive electrode sheet 11a include a roll coating method, a slit die coating method, and the like. This positive electrode slurry is coated on the both surfaces of the positive electrode sheet 11a made of an aluminum foil (thickness: 20 μm, width: 56 mm). An example of the coating thickness of the positive electrode slurry is about 40 μm per one side. Thereafter, the positive electrode sheet 11a is subjected to rolling molding under a load of from 13 tons to 14 tons using a press machine, followed by vacuum drying at 120° C. for 3 hours.
As illustrated in
An example of the formation method of the negative electrode 12 is hereunder shown.
Natural graphite as a negative electrode active material, powdered carbon as a conductive agent, and PVDF as a binder are weighed in a weight ratio of the negative electrode active material to the conductive agent to the binder of 90/5/5, to which is then added an appropriate amount of N-methylpyrrolidone (NMP) as a solvent, and these are kneaded for 30 minutes using a kneader, thereby obtaining a negative electrode slurry. The obtained negative electrode slurry is coated on the both surfaces of the negative electrode sheet 12a made of a copper foil having a thickness of 10 μm (thickness: 10 μm, width: 57 mm). Examples of a method of coating the negative electrode slurry on the negative electrode sheet 12a include a method of coating a dispersion solution of constituent materials of the negative electrode slurry on the negative electrode sheet 12a. Examples of the coating method include a roll coating method, a slit die coating method, and the like. Thereafter, the sheet is subjected to rolling molding under a load of from 13 tons to 14 tons using a press machine, followed by vacuum drying at 120° C. for 3 hours. An example of the coating thickness of the negative electrode slurry is about 40 μm per one side.
As illustrated in
Namely, there is a relation of WA<WC<WS.
In view of the fact that the width WC of the negative electrode mixture 12b is larger than the width WA of the positive electrode mixture 11b, an internal short circuit to be caused due to deposition of extraneous materials is prevented. This is because in the case of a lithium ion secondary battery, lithium that is a positive electrode active material is ionized to permeate the separator; however, if a negative electrode active material is not formed on the negative electrode side, and the negative electrode sheet 12a is exposed, lithium is deposited on the negative electrode sheet 12a, thereby causing the generation of an internal short circuit.
The first and second separators 13 and 14 are, for example, a polyethylene-made porous film having a thickness of 40 μm.
The conductive lead 21 of the positive electrode side is disposed so as to come into contact with the outer periphery of the axial core 15 via the side edge on the winding start side of each of the first and second separators 13 and 14 and protrudes into the upper side of the electrode group 10. The conductive lead 22 of the negative electrode side is disposed so as to come into contact with the outer periphery of the axial core 15 via the side edge on the winding start side of each of the first and second separators 13 and 14 and protrudes into the lower side of the electrode group 10. The conductive lead 21 of the positive electrode side has a spiral shape portion (routing portion) 21b which is bent from a main body portion 21a welded to the positive electrode sheet 11a. The conductive lead 22 of the negative electrode side has a spiral shape portion (routing portion) 22b which is bent from a main body portion 22a welded to the negative electrode sheet 12a. Though details of each of the spiral shape portions 21b and 22b are described later, its tip portion constitutes end portions 21c and 22c for welding, respectively, each of which is extended to a position corresponding to the hollow portion 15a of the axial core 15.
On each of the upper surface side and the lower surface side of the electrode group 10, an insulating sheet 25 (see
In order to install the insulating sheet 25, the slit 25b is registered with the main body portion 21a or 22a of the respective conductive lead 21 or 22 of the positive or negative electrode side. Then, in
A lid unit 5 (see
The collector plate 27 is formed of, for example, aluminum and has a dish-like shape in which a center side thereof protrudes toward the side of the electrode group 10. The end portion 21c for welding of the conductive lead 21 of the positive electrode side is welded to the lower surface of the collector plate 27 by means of ultrasonic welding or spot welding. The conductive lead 21 and the collector plate 27 are welded to each other at a position of the outside of the radial direction of the hollow portion 15a of the axial core (see
Since the collector plate 27 is oxidized by an electrolytic solution, its reliability can be enhanced by forming it with aluminum. As for aluminum, when its surface is exposed by some kind of processing, an aluminum oxide film is immediately formed on the surface, and the oxidation by the electrolytic solution can be prevented due to this aluminum oxide film.
The insulating plate 34 has an annular shape formed of an insulating resin material. The insulating plate 34 has an opening 34a (see
The connection plate 35 is formed of an aluminum alloy and has a substantially dish-like shape in which substantially the entirety exclusive of the central portion is uniform, and the center side is slightly bent at a low position. A thickness of the connection plate 35 is, for example, about 1 mm. A thin-walled protruding portion 35a formed in a dome shape is formed in the center of the connection plate 35, and a plurality of openings 35b (see
The protruding portion 35a of the connection plate 35 is welded to the bottom surface of the central portion of the diaphragm 37 by means of resistance welding or friction stir welding. The diaphragm 37 is formed of an aluminum alloy and has a circular notch 37a centering on a central portion of the diaphragm 37. The notch 37a is one in which its upper surface side is crushed in a V shape by means of pressing, with the remainder being made thin in wall thickness.
The diaphragm 37 is provided for the purpose of ensuring the safety of the battery. When the internal pressure of the battery increases, in a first stage, the diaphragm 37 bends upward to detach the junction to the protruding portion 35a of the connection plate 35 so that it separates from the connection plate 35, thereby breaking the electrical continuity with the connection plate 35. In a second stage, in the case where the internal pressure still increases, the diaphragm 37 ruptures in the notch 37a to function to release the gas in the inside.
In a peripheral portion of the diaphragm 37, it is fixed to a peripheral portion 3a of the lid body 3. As illustrated in
The lid body 3 is formed of iron such as carbon steel, and a plated film of nickel or the like is formed over the entirety of the outer and inner surfaces thereof. The lid body 3 has a hat shape having the disk-shaped peripheral portion 3a coming into contact with the diaphragm 37 and a headed, bottomless cylindrical portion 3b which protrudes upward from this peripheral portion 3a. An opening 3c is formed in the cylindrical portion 3b. This opening 3c is formed for allowing a gas which has been generated in the interior of the battery to release outside the battery at the time of rupture of the diaphragm 37 due to the gas pressure.
Incidentally, in the case where the lid body 3 is formed of iron, at the time of joining with another cylindrical secondary battery in series, it is possible to join with another cylindrical secondary battery formed of iron by means of spot welding.
The lid body 3, the diaphragm 37, the insulating plate 34, the connection plate 35, and the collector plate 27 are integrated to configure the lid unit 5. A method of assembling the lid unit 5 is hereunder shown.
First of all, the lid body 3 is fixed to the diaphragm 37. The fixation of the lid body 3 to the diaphragm 37 is performed by means of caulking or the like. As illustrated in
On the other hand, the connection plate 35 is engaged and installed in the opening 34a of the insulating plate 34. Subsequently, the protruding portion 35a of the connection plate 35 is welded to the bottom surface of the diaphragm 37 to which the lid body 3 is fixed, in a state of interposing the insulating plate 34 therebetween. In that case, as for the welding method, resistance welding or friction stir welding can be adopted. Subsequently, the collector plate 27 is engaged in the opening 34a of the insulating plate 34 and held by the insulating plate 34 in a state of bringing the peripheral portion into contact with the connection plate 35. The collector plate 27 and the connection plate 35 may be welded to each other as the need arises. In this way, the diaphragm 37 is caulked with the lid body 3, the connection plate 35 is welded to the diaphragm 37, the insulating plate 34 is held by the connection plate 35, and the collector plate 27 is held by the insulating plate 34, whereby the lid unit 5 is configured.
As described above, the lid body 3 of the lid unit 5 is connected to the positive electrode 11 via the conductive lead 21 of the positive electrode side, the collector plate 27, the connection plate 35, and the diaphragm 37. The lid body 3 connected to the positive electrode 11 in this way acts as an external terminal of one side.
The seal member 43 which is generally called a gasket is provided so as to cover the peripheral portion of the side portion 37b of the diaphragm 37. The seal member 43 is formed of rubber. While it is not intended to limit the seal member 43, as one of preferred examples thereof, there can be exemplified an ethylene propylene copolymer (EPDM). A thickness of the seal member 43 is about 1.0 mm.
Initially, as illustrated in
Then, caulking processing is performed by bending the outer peripheral wall portion 43b of the seal member 43 together with battery can 2 by means of pressing or the like, thereby bringing the diaphragm 37 and the lid body 3 into press contact with each other in the axial direction by the base portion 43a and the outer peripheral wall portion 43b. According to this, the lid unit 5 in which the lid body 3, the diaphragm 37, the insulating plate 34, the connection plate 35, and the collector plate 27 are integrally formed is fixed to the battery can 2 via the seal member 43.
The conductive lead 22 of the negative electrode side has the end portion 22c for welding which is extended to the central portion of the hollow portion 15a of the axial core 15. As illustrated in
The battery can 2 connected to the negative electrode 12 by the conductive lead 22 of the negative electrode side acts as an external terminal of the other side. It becomes possible to discharge an electric power stored in the electrode group 10 and charge it in the electrode group 10 by the lid body 3 functioning as an external termination with polarity of one side and the battery can 2 functioning as an external terminal of polarity of the other side.
A prescribed amount of a nonaqueous electrolytic solution is injected into the interior of the battery can 2. It is preferable to use a solution of a lithium salt dissolved in a carbonate-based solvent as an example of the nonaqueous electrolytic solution. Examples of the lithium salt include lithium fluorophosphate (LiPF6), lithium fluoroborate (LiBF4), and the like. In addition, examples of the carbonate-based solvent include ethylene carbonate (EC), dimethyl carbonate (DMC), propylene carbonate (PC), methyl ethyl carbonate (MEC), and mixtures with a solvent selected from one or more kinds of the above-described solvents.
Next, detailed structures of the conductive leads 21 and 22 of the positive electrode side and the negative electrode side are described.
The conductive lead 21 of the positive electrode side and the conductive lead 22 of the negative electrode side are the same as each other, except that the positions of the end portions 21c and 22c for welding are different from each other.
Then, the conductive lead 22 of the negative electrode side is described, and thereafter, the difference of the conductive lead 21 of the positive electrode side from the conductive lead 22 of the negative electrode side is described.
As illustrated in
The tip portion of the spiral shape portion 22b has the end portion 22c for welding positioned on the central axis of the main body portion 22a. The main body portion 22a of the conductive lead 22 is welded to the negative electrode mixture-untreated portion 12c of the negative electrode sheet 12, and thereafter, the negative electrode sheet 12a is wound around the outer periphery of the axial core 15. Then, the electrode group 10 is formed, and thereafter, bending is performed between the main body portion 22a and the spiral shape portion 22b.
The conductive lead 22 is bent toward the outside of the electrode group 10 in the vicinity of the main body portion 22a which is positioned in the vicinity of the outer periphery of the axial core 15 and protrudes from the negative electrode sheet 12a (see also
As an example, in
The electrode group 10 is accommodated within the battery can 2, and an electrode rod 61 is inserted into the hollow portion 15a of the axial core 15.
In this state, the end portion 21c for welding of the tip side of the conductive lead 21 of the positive electrode side is positioned outside the hollow portion 15a of the axial core 15. When the electrode group 10 is accommodated within the battery can 2, the end portion 22c for welding of the conductive lead 22 of the negative electrode side is disposed at a position corresponding to the hollow portion 15a of the axial core 15. Then, by pressing the end portion 22c for welding of the conductive lead 22 against the inner surface of the can bottom 203 of the battery can 2 in the tip portion of the electrode rod 61, the conductive lead 22 can be welded to the can bottom 203 in this state.
In this way, according to the present embodiment, the conductive lead 22 can be welded directly to the battery can 2 by the electrode rod 61 by merely accommodating the electrode group 10 within the battery can 2. Accordingly, the workability can be significantly enhanced.
In the cylindrical secondary battery, the electrode group 10 expands and contracts in the radial direction at the time of charge and discharge. In addition, the electrode group 10 is displaced in the axial direction due to vibration or the like. Accordingly, torsion acts in the welded portion where the conductive lead 22 and the can bottom 203 of the battery can 2 are welded to each other, and breakage is liable to be generated in the welded portion due to the long-term use.
However, according to the present embodiment, the conductive lead 22 expands and contracts in the axial direction against the displacement of the electrode group 10 in the axial direction. In addition, the conductive lead 22 expands and contracts in the radial direction against the torsion to be caused following the rotation of the electrode group 10 in the circumferential direction. According to this, it is possible to reduce an external force acting in the welded portion between the end portion 22c for welding of the conductive lead 22 and the can bottom 203 of the battery can 2, thereby preventing the breakage of the welded portion.
As for the conductive lead 21 of the positive electrode side, the end portion 21c for welding of the tip side is not positioned on the axial center of the electrode group 10, and as illustrated in
In any way, since the conductive lead 21 of the positive electrode side expands and contracts in the axial direction against the displacement in the axial direction of the electrode group 10 and also expands and contracts in the radial direction against the torsion to be caused following the rotation of the electrode group 10 in the circumferential direction, similar to the conductive lead 22 of the negative electrode side, the conductive lead 21 has an action to prevent the breakage of the welded portion.
A manufacturing method of the cylindrical secondary battery shown as the embodiment of the invention is hereunder described.
First of all, the electrode group 10 is fabricated. The positive electrode 11 in which the positive electrode mixture 11b is coated on the both surfaces of the positive electrode sheet 11a exclusive of the positive electrode mixture-untreated portion 11c is fabricated. In addition, the positive electrode 11 in which the negative electrode mixture 12b is coated on the both surfaces of the negative electrode sheet 12a exclusive of the negative electrode mixture-untreated portion 12c is fabricated.
The main body portion 21a of the conductive lead 21 of the positive electrode side is welded to the positive electrode mixture-untreated portion 11c, thereby fabricating the positive electrode 11 having the conductive lead 21 joined therewith as illustrated in
Subsequently, the innermost side edge portions of the first separator 13 and the second separator 14 are welded to the axial core 15. Subsequently, the first separator 13 and the second separator 14 are wound by one to several turns around the axial core 15, the negative electrode 12 is interposed between the second separator 14 and the first separator 13, and the axial core 15 is wound at a prescribed angle. Subsequently, the positive electrode 11 is interposed between the first separator 13 and the second separator 14. Then, in this state, the resultant is wound by prescribed turns, thereby fabricating the electrode group 10.
Subsequently, as illustrated in
According to this, the main body portion 21a of the conductive lead 21 and the main body portion 22a of the conductive lead 22 are disposed, respectively within the opening 25a of the insulating sheet 25, and substantially the entirety of each of the upper and lower surfaces of the electrode group 10 is covered by the insulating sheet 25, exclusive of a region corresponding to the opening 25a.
Subsequently, as illustrated in
[Fabrication of Battery can]
On the other hand, as illustrated in
[Accommodation into Battery Container]
Subsequently, the electrode group 10 is accommodated within the battery can 2.
Then, as illustrated in
Subsequently, a part of the upper end side of the battery can 2 is protruded inward upon being subjected to drawing processing, thereby forming the groove 201 that is a substantially U-shaped.
Subsequently, a prescribed amount of a nonaqueous electrolytic solution is injected into the interior of the battery can 2 having the electrode rod 10 accommodated therein. The nonaqueous electrolytic solution is injected from the hollow portion 15a of the upper end of the axial core 15. As described above, for example, a solution of a lithium salt dissolved in a carbonate-based solvent is used as the nonaqueous electrolytic solution.
On the other hand, separately from the above-described assembling process, the lid unit 5 is fabricated.
As described above, the lid unit 5 is configured of the insulating plate 34, the collector plate 27 fitted in the opening 34a of the insulating plate 34, the connection plate 35, the diaphragm 37 welded to the connection plate 35, and the lid body 3 fixed to the diaphragm 37 by means of caulking. The fabrication method of the lid unit 5 is as described previously.
The electrode group 10 and the lid unit 5 are electrically connected to each other. First of all, the seal member 43 is placed on the groove 201 of the battery can 2. As illustrated in
Subsequently, on the base portion 43a of the seal member 43, the lid unit 5 is placed in an inclined state. This may be done in such a manner that in a state where the lid unit 5 is made substantially vertical, apart of the outer periphery thereof is placed on the base portion 43a of the seal member 43, and the opposite side of the outer periphery of the lid unit 5 is inclined toward the side of the battery can 2 at an appropriate angle. In this state, the end portion 21c for welding of the conductive lead 21 is welded to the lower surface of the collector plate 27 of the lid unit 5.
After completion of welding between the collector plate 27 and the conductive lead 21, the lid unit is flattened substantially horizontally, thereby bringing the entirety of the lower surface of the peripheral portion of the diaphragm 27 into contact with the base portion 43a of the seal member 43. In this state, the battery can 2 and the battery unit 5 are subjected to caulking processing to achieve sealing, followed by hermetically sealing from the exterior. There is thus obtained the cylindrical secondary battery 1 illustrated in
For the purpose of confirming the effects of the invention, a torsion test and a vibration test were carried out using the cylindrical secondary battery according to the invention and a cylindrical secondary battery of Comparative example.
For the torsion test and the vibration test, a sample obtained by fabricating the cylindrical secondary battery 1 and then subjecting it to a prescribed aging process was used.
The torsion test was carried out in such a manner that in the cylindrical secondary battery 1, charge and discharge of 3 C rate was repeated 100 times in the range of from 0% of SOC to 100% of SOC (from 2.8 V to 4.2 V), and a force derived due to the increase or decrease of volume of the active material was applied to the electrode group 10.
The vibration test was carried out in such a manner that the cylindrical secondary battery 1 was repeatedly vibrated in the axial direction of the cylinder can in a vibration width of 10 mm at a frequency of 100 Hz for 24 hours, and a force of the axial direction was applied to the electrode group 10.
The evaluation of each of the torsion test and the vibration test was carried out in such a manner that after the test, the cylindrical secondary battery 1 was taken apart, and the presence or absence of breakage of the welded portion was confirmed by visual inspection.
Incidentally, the term “SOC” means the state of charge, and 0% of SOC is in a state of complete discharge, whereas 100% of SOC is in a state of full charge. In addition, the term “C” means a unit of the charge and discharge current, and 1 C expresses a current at which the battery capacity can be charged or discharged within one hour.
In each of the tests, a sample obtained by bending a tape-shaped conductive foil in a zigzag form and welding the positive electrode sheet 11a to the lid unit 5 and the negative electrode sheet 12a to the can bottom 203 of the battery can 2, respectively was used as the Comparative Example.
According to the results of the torsion test shown in
In addition, according to the results of the vibration test shown in
In the light of the above, in all of the torsion test and the vibration test, the effects of the above-described embodiment were perceived.
A difference of a cylindrical secondary battery 1A of Embodiment 2 from the cylindrical secondary battery 1 of Embodiment 1 resides in a point in which each of the main body portion 21a of a conductive lead 21′ of the positive electrode side and the main body portion 22a of a conductive lead 22′ of the negative electrode side of the electrode group 10A is positioned substantially in the center of the radial direction of the electrode group 10.
As illustrated in
An insulating sheet 25′ has the opening 25a corresponding to the axial core 15 and an opening 25c in which the main body portion 21a or 22a of the conductive lead 21 or 22 is disposed. A slit 25b′ for inserting the main body portion 21a or 22a of the conductive lead 21 or 22 into the opening 25c is provided upon being extended to the outer periphery from the opening 25c.
In the positive electrode 11′, the positive electrode mixture-untreated portion 11c in which the positive electrode mixture 11b is not coated is provided in an intermediate portion in the longer direction of the longitudinal positive electrode sheet 11a. The conductive lead 21′ is welded to the positive electrode mixture-untreated portion 11c at this position.
In addition, in the negative electrode 12′, the negative electrode mixture-untreated portion 12c in which the negative electrode mixture 12b is not coated is provided in an intermediate portion in the longer direction of the longitudinal negative electrode sheet 12a. The conductive lead 22′ is welded to the negative electrode mixture-untreated portion 12c at this position.
Similar to the case of Embodiment 1, each of the positive electrode 11′ and the negative electrode 12′, to which the conductive leads 21′ and 22′ are welded, respectively, is wound around the outer periphery of the axial core 15 from the side edge of the tip side via the first and second separators 13 and 14.
Since other configurations of Embodiment 2 are the same as those of Embodiment 1, the same reference numbers are given to the corresponding members, and explanations thereof are omitted.
Even in such cylindrical secondary battery 1A shown in Embodiment 2, the same effects as those in the case of Embodiment 1 are brought.
According to the above-described embodiments, the following effects are brought.
(1) Each of the conductive leads 22 and 22′ has the end portion 22c for welding extended to a position corresponding to the hollow portion 15a of the axial core 15 in the tip of the spiral shape portion 22b. Accordingly, it becomes possible to insert the electrode rod 61 from the hollow portion 15a of the axial core 15 in a state of accommodating the electrode group 10 or 10A within the battery can 2 and weld the end portion 22c for welding to the can bottom 203 of the battery can 2, so that the assembling workability is enhanced.
(2) Each of the conductive leads 21 and 21′ of the positive electrode side and each of the conductive leads 22 and 22′ of the negative electrode side have the spiral shape portions 21b and 22b, respectively. Since the spiral shape portion 21b or 22b is deformed in the axial center direction and the radial direction, the torsion of the electrode group 10 and the external force which is applied to the welded portion following the movement in the axial direction are reduced. According to this, the breakage of the welded portion can be prevented.
(3) Each of the conductive leads 21 and 21′ of the positive electrode side and each of the conductive leads 22 and 22′ of the negative electrode side have a spiral shape which does not have portions overlapping each other in the planar view. Accordingly, each of the conductive leads 21, 21′, 22 and 22′ can be formed by means of pressing and can be efficiently processed.
(4) Each of the conductive leads 21 and 21′ of the positive electrode side and each of the conductive leads 22 and 22′ of the negative electrode side have the spiral shape portions 21b and 22b, respectively having substantially the same outer diameter as an outer diameter of the electrode group 10. In the case where the tape-shaped conductive lead is bent and welded to the lid unit 5 or the can bottom 203 of the battery can 2, the bent portions comes into contact with the inner surface of the battery can 2 to generate an internal short circuit. However, according to the present embodiments, it is possible to prevent such generation of an internal short circuit to be caused due to the contact of each of the conductive leads 21, 21′, 22 and 22′ with the inner surface of the battery can 2.
Incidentally, in the above-described embodiments, though the spiral shape of each of the conductive leads 21, 21′, 22 and 22′ was made rectangular in the planar view, it can also be made circular or oval.
In addition, in the above-described embodiments, though the number of turn of each of the conductive leads 21, 21′, 22 and 22′ is substantially one, the number of turn may be further increased.
In the above-described embodiments, both of the welding positions of the conductive leads 21 and 22 were the same position of the side edge on the winding start side or the intermediate portion of the positive electrode sheet 11a or the negative electrode sheet 12a. However, the welding positions of the conductive leads 21 and 22 may be welded to the positive electrode sheet 11a and the negative electrode sheet 12a at a different position from each other between the positive electrode side and the negative electrode side by, for example, welding the conductive lead 21 of the positive electrode side to the winding start side of the positive electrode sheet 11a and welding the conductive lead 22 of the negative electrode side to the intermediate portion of the negative electrode sheet 12a. In that case, the welding position of each of the conductive leads 21 and 22 in the intermediate portion may be a different distance from the side edge of the winding start side of the positive electrode sheet 11a or the negative electrode sheet 12a. In that case, the welding position of the conductive lead 21 or 22 may be an end of a winding end side of the positive electrode sheet 11a or the negative electrode sheet 12a.
In the above-described embodiments, the conductive leads 21 of the positive electrode side and the conductive leads 22 of the negative electrode side had a spiral shape which does not have portions overlapping each other in the planar view.
However, the invention is not limited thereto, and the shape may be a spiral shape or a helical shape which has portions overlapping each other in the planar view, or the like. In short, the shape may be a shape capable of being deformed in the axial direction and the radial direction.
In the above-described embodiments, the positive electrode 11 was welded to the lid unit 5, and the negative electrode 12 was welded to the can bottom 203 of the battery can 2. However, the invention is also applicable to a cylindrical secondary battery in which the positive electrode 11 is welded to the can bottom 203 of the battery can 2, and the negative electrode 12 is welded to the lid unit 5.
In the above-described embodiments, the lid unit 5 was configured of the lid body 3, the diaphragm 37, the insulating plate 34, the connection plate 35, and the collector plate 27. However, the configuration of the lid unit 5 is an example, and configurations composed of other members may also be adopted. In addition, the lid member may be made of a single body but not a unitized body, and it may be an electrode terminal member having a function as an electrode terminal.
The above-described embodiments have been described by reference to the lithium ion cylindrical secondary battery as the battery. However, it should not be construed that the invention is limited to the lithium battery, but the invention can also be applied to other cylindrical secondary batteries such as a nickel-hydrogen battery, a nickel-cadmium battery.
Besides, it is possible to configure the cylindrical secondary battery according to the invention upon being deformed in various ways within the range of the gist of the invention. In short, the cylindrical secondary battery may be a cylindrical secondary battery in which an electrode group having a positive electrode and a negative electrode wound around the periphery of an axial core having a hollow portion via a separator is accommodated in a battery can, and one of a conductive lead welded to the negative electrode and a conductive lead welded to the positive electrode is connected to a lid member covering an opening of the battery can, with the other being welded to a can bottom of the battery can, wherein at least the conductive lead welded to the can bottom of the battery can includes an end portion for welding which is extended to a position corresponding to a central portion of the hollow portion of the axial core and a routing portion which is deformable in the axial direction of the axial core and the perpendicular direction to the axial direction, and the end portion for welding is welded to the can bottom of the battery can.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2010/070376 | 11/16/2010 | WO | 00 | 7/24/2013 |