CYTOSKELETAL AND SIGNALING MECHANISMS REGULATING CILIARY TRAFFIC

Information

  • Research Project
  • 10237414
  • ApplicationId
    10237414
  • Core Project Number
    R35GM128702
  • Full Project Number
    5R35GM128702-04
  • Serial Number
    128702
  • FOA Number
    PAR-17-190
  • Sub Project Id
  • Project Start Date
    9/1/2018 - 6 years ago
  • Project End Date
    8/31/2023 - a year ago
  • Program Officer Name
    AINSZTEIN, ALEXANDRA M
  • Budget Start Date
    9/1/2021 - 3 years ago
  • Budget End Date
    8/31/2022 - 2 years ago
  • Fiscal Year
    2021
  • Support Year
    04
  • Suffix
  • Award Notice Date
    8/20/2021 - 3 years ago
Organizations

CYTOSKELETAL AND SIGNALING MECHANISMS REGULATING CILIARY TRAFFIC

Project Summary/Abstract A fundamental question in cell biology is how targeted intracellular protein trafficking is achieved and regulated. An excellent framework to ask this question is to study transport to a specific organelle or intracellular compartment. Trafficking of proteins to and into the eukaryotic flagellum is an ideal model to study polarized transport given that flagellar protein synthesis and trafficking can be induced experimentally on-demand, cargo proteins have been identified through proteomics and the ultimate cargo destination is localized to a very small region at the apical cell surface. This trafficking pathway was previously thought to only require microtubules and the regulation of microtubule motors through signaling pathways. Through quantitative analysis of flagellar motor dynamics in the canonical flagellar model system Chlamydomonas reinhardtii, we discovered that actin and an actin-based myosin motor play an important role in regulating the localization and compartmentalization of flagellar proteins. We also identified a variety of signaling pathways including a phosphatase, MKP-2, that are required for proper flagellar assembly. The broad goals of our work are to: 1) use chemical and genetic screening to identify novel pathways that integrate to control flagellar protein trafficking and molecular motors flagellar entry; and 2) use a toolbox of cellular and molecular assays to dissect the mechanisms by which they exert this control. We expect to uncover entirely new avenues for the study of secretory pathways conserved in all eukaryotes as well as novel functions for known genes in coordinated cellular trafficking.

IC Name
NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES
  • Activity
    R35
  • Administering IC
    GM
  • Application Type
    5
  • Direct Cost Amount
    250000
  • Indirect Cost Amount
    160000
  • Total Cost
    410000
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    859
  • Ed Inst. Type
    SCHOOLS OF MEDICINE
  • Funding ICs
    NIGMS:410000\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    ZGM1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    DARTMOUTH COLLEGE
  • Organization Department
    BIOCHEMISTRY
  • Organization DUNS
    041027822
  • Organization City
    HANOVER
  • Organization State
    NH
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    037551421
  • Organization District
    UNITED STATES