Claims
- 1. A ceramic matrix composite comprising:
(a) a fabric comprised of reinforced fibers; (b) a matrix prepreggable into the fabric; said matrix comprising:
(i) an alumina-yielding precursor selected from the group consisting of aluminum hydroxyl chloride, aluminum chloride hexahydrate, alpha aluminum monohydrate, aluminum oxide hydroxide, aluminum hydroxide, and aluminum acetate; and (ii) one or more fillers; wherein the matrix substantially and uniformly penetrates the fabric; and thereafter is curable, laminatable at pressures of less than 100 psi and temperatures less than 175° C., and sinterable at nominal ranges of atmospheric pressure
- 2. A ceramic matrix composite as claimed in claim 1 wherein said reinforcing fiber is selected from a group consisting of NEXTEL 720 1500 Denier 8HS and NEXTEL 720 3000 Denier 8HS.
- 3. A ceramic matrix composite as claimed in claim 1, wherein said one or more fillers is fine alumina with an average particle diameter of 0.5 micron or less.
- 4. A ceramic matrix composite as claimed in claim 1, wherein said one or more fillers are fine alumina with an average particle diameter of 0.5 micron or less and a coarse alumina with an average particle diameter greater than 0.5 micro and less than 1 micron.
- 5. A ceramic matrix composite as claimed in claim 1, wherein said reinforcement fibers are selected from a group consisting of NEXTEL 312, NEXTEL 550, NEXTEL 610, NEXTEL 720, and NEXTEL 720.
- 6. A ceramic matrix composite as claimed in claim 1, wherein said one or more fillers is a coarse mullite with an average particle diameter of more than 0.5 micron and less than 1 micron.
- 7. A ceramic matrix composite as claimed in claim 1, wherein said one or more fillers are fine alumina with an average particle diameter of 0.5 micron or less and a coarse mullite with an average particle diameter greater than 0.5 micron and less than 1 micron.
- 8. A ceramic matrix composite comprising:
(a) a fabric comprised of reinforced fibers; (b) a matrix infiltratable into the fabric; said matrix comprising:
(i) an alumina-yielding precursor selected from the group consisting of aluminum hydroxyl chloride, aluminum chloride hexahydrate, alpha aluminum monohydrate, aluminum oxide hydroxide, aluminum hydroxide, and aluminum acetate; and (ii) one or more alumina fillers; wherein the matrix substantially and uniformly penetrates the fabric; and thereafter is curable, laminatable at pressures of less than 100 psi and temperatures less than 175° C., and sinterable at nominal ranges of atmospheric pressure
- 9. A ceramic matrix composite as claimed in claim 8 wherein said reinforcing fiber is selected from a group consisting of NEXTEL 720 1500 Denier 8HS and NEXTEL 720 3000 Denier 8HS.
- 10. A ceramic matrix composite as claimed in claim 8, wherein said one or more fillers is fine alumina with an average particle diameter of 0.5 micron or less.
- 11. A ceramic matrix composite as claimed in claim 8, wherein said one or more fillers are fine alumina with an average particle diameter of 0.5 micron or less and coarse alumina with an average particle diameter greater than 0.5 micro and less than 1 micron.
- 12. A ceramic matrix composite as claimed in claim 8, wherein said reinforcement fibers are selected from a group consisting of NEXTEL 312, NEXTEL 550, NEXTEL 610, NEXTEL 720, and NEXTEL 720.
- 13. A ceramic matrix composite as claimed in claim 8, wherein said one or more fillers is a coarse mullite an average particle diameter greater than 0.5 micron and less than 1 micron.
- 14. A ceramic matrix composite as claimed in claim 8, wherein said one or more fillers are fine alumina with an average particle diameter of 0.5 micron or less and a coarse mullite with an average particle diameter greater than 0.5 micron and less than 1 micron.
- 15. A method of forming an oxide-oxide ceramic matrix composite that comprises the steps of:
combining alumina sol and fine alumina thereby making a slurry; prepregging the slurry into an oxide fabric thereby making one or more prepreg plies; staging each prepreg ply to about 80 to 98% of its original weight; stacking the prepreg plies, one atop one another; laminating the stacked plies using pressures of less than 100 psi and temperatures less than 175° C. thereby making a laminated component; and sintering the laminated component at a nominal range of atmospheric pressure thereby making an oxide-oxide ceramic matrix composite.
- 16. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 15 further comprising: preceding the step of combining, the step of selecting alumina sol from the group consisting of aluminum hydroxylchloride, aluminum chloride hexahydrate, alpha aluminum monohydrate, aluminium oxide hydroxide aluminum hydroxide, and aluminum acetate.
- 17. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 15 wherein the alumina sol is colloidal and selecting is on the basis of surface areas ranging from 100 m2/g to 250 m2/g and average particle sizes ranging from 10 to 500 nanometers.
- 18. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 15 wherein the alumina sol is a solution yielding 8-30% weight percent alumina solids when heated to 1,200° C.
- 19. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 15 wherein the step of laminating is autoclaving.
- 20. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 15 wherein the step of laminating uses a lamination press.
- 21. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 15 wherein the step of laminating uses a compression mold whereby the plies are placed and laminated within the compression mold.
- 22. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 15, the method further comprising: (a) preceding the step of laminating, the step of affixing the plies to lamination tooling; and (b) preceding the step of sintering, the step of removing the laminated component from the lamination tooling.
- 23. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 22, wherein the step of combining alumina sol and fine alumina further comprises the step of combining coarse alumina with said alumina sol and said fine alumina.
- 24. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 22, wherein the step of combining alumina sol and fine alumina further comprises the step of combining coarse mullite with said alumina sol and said fine alumina.
- 25. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 22, wherein the step of combining alumina sol and fine alumina further comprises the step of combining diluted nitric acid with said alumina sol and said fine alumina.
- 26. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 22, wherein the step of combining alumina sol and fine alumina further comprises the step of combining with said alumina sol, and said fine alumina, organic processing aids selected from a group consisting of polyvinyl alcohol, methyl cellulose, propylene glycol, ethylene glycol and acacia gum.
- 27. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 22, wherein the oxide fabric is comprised of reinforcement fiber selected from a group consisting of NEXTEL 312, NEXTEL 550, NEXTEL 610, NEXTEL 650, and NEXTEL 720.
- 28. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 22, wherein the oxide fabric is comprised of NEXTEL 720 reinforcement fiber
- 29. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 22, wherein the step of laminating is effected at pressures of less than 100 psi and temperatures less than 175° C.
- 30. A method of forming an oxide-oxide ceramic matrix composite that comprises the steps of:
combining alumina sol and fine alumina thereby making a slurry; infiltrating an oxide fabric with the slurry thereby making one or more wet lay-up plies; staging each wet lay-up ply to about 80 to 98% of its original weight; stacking the wet lay-up plies, one atop one another; laminating the stacked plies using pressures of less than 100 psi and temperatures less than 175° C. thereby making a laminated component; and sintering the laminated component at a nominal range of atmospheric pressure thereby making an oxide-oxide ceramic matrix composite.
- 31. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 30 further comprising: preceding the step of combining, the step of selecting alumina sol from the group consisting of aluminum hydroxylchloride, aluminum chloride hexahydrate, alpha aluminum monohydrate, aluminium oxide hydroxide aluminum hydroxide, and aluminum acetate.
- 32. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 30 wherein the alumina sol is colloidal and selecting is on the basis of surface areas ranging from 100 m2/g to 250 m2/g and average particle sizes ranging from 10 to 500 nanometers.
- 33. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 30 wherein the alumina sol is a solution yielding 8-30% weight percent alumina solids when heated to 1,200° C.
- 34. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 30 wherein the step of laminating is autoclaving.
- 35. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 30 wherein the step of laminating uses a lamination press.
- 36. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 30 wherein the step of laminating uses a compression mold whereby the plies are placed and laminated within the compression mold.
- 37. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 30, the method further comprising: (a) preceding the step of laminating, the step of affixing the plies to lamination tooling; and (b) preceding the step of sintering, the step of removing the laminated component from the lamination tooling.
- 38. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 30, wherein the step of combining alumina sol and fine alumina further comprises the step of combining coarse alumina with said alumina sol and said fine alumina.
- 39. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 30, wherein the step of combining alumina sol and fine alumina further comprises the step of combining coarse mullite with said alumina sol and said fine alumina.
- 40. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 30, wherein the step of combining alumina sol and fine alumina further comprises the step of combining diluted nitric acid with said alumina sol and said fine alumina.
- 41. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 30, wherein the step of combining alumina sol and fine alumina further comprises the step of combining with said alumina sol, and said fine alumina, organic processing aids selected from a group consisting of polyvinyl alcohol, methyl cellulose, propylene glycol, ethylene glycol and acacia gum.
- 42. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 30, wherein the oxide fabric is comprised of reinforcement fiber selected from a group consisting of NEXTEL 312, NEXTEL 550, NEXTEL 610, NEXTEL 650, and NEXTEL 720.
- 43. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 30, wherein the oxide fabric is comprised of NEXTEL 720 reinforcement fiber
- 44. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 30, wherein the step of laminating is effected at pressures of less than 100 psi and temperatures less than 175° C.
- 45. A method of forming an oxide-oxide ceramic matrix composite that comprises the steps of:
combining alumina sol and fine alumina thereby making a slurry; wet winding oxide filament with the slurry about a fixture, thereby making one or more wet filament winding plies; stacking the wet filament winding plies, one atop one another; laminating the stacked plies using pressures of less than 100 psi and temperatures less than 175° C. thereby making a laminated component; and sintering the laminated component at a nominal range of atmospheric pressure thereby making an oxide-oxide ceramic matrix composite.
- 46. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 45 further comprising: preceding the step of combining, the step of selecting alumina sol from the group consisting of aluminum hydroxylchloride, aluminum chloride hexahydrate, alpha aluminum monohydrate, aluminium oxide hydroxide aluminum hydroxide, and aluminum acetate.
- 47. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 45 wherein the alumina sol is colloidal and selecting is on the basis of surface areas ranging from 100 m2/g to 250 m2/g and average particle sizes ranging from 10 to 500 nanometers.
- 48. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 45 wherein the alumina sol is a solution yielding 8-30% weight percent alumina solids when heated to 1,200° C.
- 49. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 45 wherein the step of laminating is autoclaving.
- 50. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 45 wherein the step of laminating uses a lamination press.
- 51. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 45 wherein the step of laminating uses a compression mold whereby the plies are placed and laminated within the compression mold.
- 52. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 45, the method further comprising: (a) preceding the step of laminating, the step of affixing the plies to lamination tooling; and (b) preceding the step of sintering, the step of removing the laminated component from the lamination tooling.
- 53. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 45, wherein the step of combining alumina sol and fine alumina further comprises the step of combining coarse alumina with said alumina sol and said fine alumina.
- 54. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 45, wherein the step of combining alumina sol and fine alumina further comprises the step of combining coarse mullite with said alumina sol and said fine alumina.
- 55. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 45, wherein the step of combining alumina sol and fine alumina further comprises the step of combining diluted nitric acid with said alumina sol and said fine alumina.
- 56. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 45, wherein the step of combining alumina sol and fine alumina further comprises the step of combining with said alumina sol, and said fine alumina, organic processing aids selected from a group consisting of polyvinyl alcohol, methyl cellulose, propylene glycol, ethylene glycol and acacia gum.
- 57. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 45, wherein the oxide fabric is comprised of reinforcement fiber selected from a group consisting of NEXTEL 312, NEXTEL 550, NEXTEL 610, NEXTEL 650, and NEXTEL 720.
- 58. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 45, wherein the oxide fabric is comprised of NEXTEL 720 reinforcement fiber
- 59. The method of forming an oxide-oxide ceramic matrix composite as claimed in claim 45, wherein the step of laminating is effected at pressures of less than 100 psi and temperatures less than 175° C.
CROSS-REFERENCE TO RELATED APPLICATION
[0001] This application claims priority from the following U.S. Provisional Patent Application, the disclosure of which, including all appendices and all attached documents, is incorporated by reference in its entirety for all purposes: U.S. Provisional Patent Application Ser. No. 06/286,392, Steven Carl Butner and Thomas Barrett Jackson entitled, “DAMAGE TOLERANT CERAMIC MATIX COMPOSITE BY WET LAY-UP/PREPREG FABRICATION USING A SOL-GEL MATRIX,” filed Apr. 24, 2001.
FEDERALLY SPONSORED RESEARCH
[0002] The invention was made with Government support under F33615-99-C-5200 awarded by the Department of the Air Force. The Government has certain rights in the invention.
Provisional Applications (1)
|
Number |
Date |
Country |
|
60286392 |
Apr 2001 |
US |