Damped part with insert

Information

  • Patent Grant
  • 9527132
  • Patent Number
    9,527,132
  • Date Filed
    Wednesday, July 16, 2008
    16 years ago
  • Date Issued
    Tuesday, December 27, 2016
    7 years ago
Abstract
One embodiment of the invention may include a product including a body portion including a first face and a frictional damping insert overlying the first face of the body portion. The body portion may include a second face overlying the insert. The insert may have a throughhole and a portion of the body portion may extend from the first face through the throughhole and the insert to the second face of the body portion.
Description
TECHNICAL FIELD

The field to which the disclosure generally relates includes damped parts with inserts and methods of making and using the same.


BACKGROUND

Parts subjected to vibration may produce unwanted or undesirable vibrations. Similarly, a part or component may be set into motion at an undesirable amplitude and for a prolonged period. For example, parts such as brake rotors, brackets, pulleys, brake drums, transmission housings, gears and other parts may undergo unwanted or undesirable vibrations, and may even produce noise that is transmitted into the passenger compartment of a vehicle. In an effort to reduce the generation of this noise and thereby its transmission into the passenger compartment, a variety of techniques have been employed, including the use of polymer coatings on engine parts, sound absorbing barriers, and laminated panels having physical elastic layers. The undesirable vibrations in parts or components may occur in a variety of other products including, but not limited to, sporting equipment, housing appliances, manufacturing equipment such as lathes, mill/grinding/drilling machines, earth moving equipment, and other non-automotive applications, and components that are subject to dynamic loads and vibration. These components may be manufactured through a variety of means including casting, machining, forging, die casting, extrusion, etc.


SUMMARY OF EXEMPLARY EMBODIMENTS OF THE INVENTION

One embodiment of the invention may include a product including a body portion including a first face and a frictional damping insert overlying the first face of the body portion. The body portion may include a second face overlying the insert. The insert may have a throughhole and a portion of the body portion may extend from the first face through the throughhole and the insert to the second face of the body portion.


Other exemplary embodiments of the invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while disclosing exemplary embodiments of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary embodiments of the invention will become more fully understood from the detailed description and the accompanying drawings, wherein:



FIG. 1 is a perspective view illustrating a product according to one embodiment of the invention.



FIG. 2 is a perspective view with portions removed of a product according to one embodiment of the invention.



FIG. 3 is a perspective view illustrating a sacrificial core useful in making one embodiment of the invention.



FIG. 4 is a perspective view illustrating one embodiment of an insert useful in one embodiment of the invention.



FIG. 5 illustrates a casting mold and process according to one embodiment of the invention.



FIG. 6 is a sectional view with portions broken away of one embodiment of the invention including an insert.



FIG. 7 is a sectional view with portions broken away of one embodiment of the invention including an insert having a layer thereon to provide a frictional surface for damping.



FIG. 8 is a sectional view with portions broken away of one embodiment of the invention.



FIG. 9 is an enlarged view of an insert useful in one embodiment of the invention.



FIG. 10 is a sectional view with portions broken away of one embodiment of the invention.



FIG. 11 is an enlarged sectional view with portions broken away of one embodiment of the invention.



FIG. 12 is an enlarged sectional view with portions broken away of one embodiment of the invention.



FIG. 13 is an enlarged sectional view with portions broken away of one embodiment of the invention.



FIG. 14 illustrates particles useful in one embodiment of the invention.





DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

The following description of the embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.


Referring now to FIG. 1, one embodiment of the invention may include a product 500 which may be, for example, a rotor assembly 12. The rotor assembly 12 may include a hub portion 14, a first annular rotor cheek 16 which may extend from the hub 14. A second annular rotor cheek 18 may be provided and spaced a distance from the first annular rotor cheek 16. A plurality of vanes 20 may extend between the first rotor cheek 16 and the second rotor cheek 18. A first frictional damping insert 504 may be positioned adjacent the first rotor cheek 16 or overlying the same. The plurality of vanes 20 may extend through throughholes formed in the first frictional damping insert 504. The vanes 20 may or may not be bonded to the insert 504. Optionally, a second frictional damping insert 504′ may be provided, for example, adjacent the second rotor cheek 18 or underlying the same. The plurality of vanes 20 may also extend through associated throughholes formed in the second frictional damping insert 504′. In one embodiment, the hub portion 14 may include a central aperture 24. The hub portion 14 may also include a plurality of boltholes 26.


Referring now to FIG. 2, the frictional damping insert 504 may have slots 505 formed therein which may extend in a substantially perpendicular direction to an annular axis of the insert 504. Referring now to FIG. 3, the rotary assemblies 12 shown in FIGS. 1 and 2 may be manufactured utilizing a sacrificial casting core 28 which may include a plurality of slots 30 formed therein in a configuration to produce the vanes 20 such as those shown in FIG. 1 or 2. The slots 30 may be configured in any of a variety of geometries and are not limited to that shown in FIG. 3 or that necessary to produce the vane shown in either of FIG. 1 or 2. Referring now to FIG. 4, the rotary assembly 12 of FIG. 1 or 2 may be manufactured utilizing a friction damping insert 504 which may include a plurality of slots 505 formed therein in a configuration substantially identical to the slots 30 shown in the sacrificial casting core 28.


Referring now to FIG. 5, the rotary assemblies 12 shown in FIG. 1 or 2 may be produced from a method including providing a mold 32 including a first portion 34 and a second portion 36. A molten material charge line 38 may be formed in the first portion 34 and second portion 36 of the mold 32. At least one of the first portion 34 or second portion 36 may include at least one vent line 40. The sacrificial casting core 28 may be placed in the mold 32 and a first frictional damping insert 504 may underlie the sacrificial casting core 28 and a second frictional damping insert 504′ may optionally overlie the sacrificial casting core 28. The tabs 534 of the first frictional damping insert 504, the tabs 29 of the sacrificial casting core 28, and the tabs 534′ of the second frictional damping insert 504 may rest on a seat 42 formed in the second mold portion 36. A molten material such as a metal may be charged into the mold 32 and allowed to solidify to form a product 500 such as a vehicle brake rotor having an insert 504 for frictional damping.


Referring to FIGS. 1-14, one embodiment of the invention includes a product or part 500 having a frictional damping means. The frictional damping means may be used in a variety of applications including, but not limited to, applications where it is desirable to reduce noise associated with a vibrating part or reduce the vibration amplitude and/or duration of a part that is struck, dynamically loaded, excited, or set in motion. In one embodiment the frictional damping means may include an interface boundary conducive to frictionally damping a vibrating part. In one embodiment the damping means may include frictional surfaces 502 constructed and arranged to move relative to each other and in frictional contact, so that vibration of the part is dissipated by frictional damping due to the frictional movement of the surfaces 502 against each other.


According to various illustrative embodiments of the invention, frictional damping may be achieved by the frictional movement of the surfaces 502 against each other. The frictional damping may occur due to the movement of a surface of the body 506 of the part and a surface of the insert 504 against each other and/or against the particles 514 or fibers, or by frictional movement of the particles 514 or fibers against each other or against remaining binder material.


In embodiments wherein the frictional surface 502 is provided as a surface of the body 506 or the insert 504 or a layer 520 over one of the same, the frictional surface 502 may have a minimal area over which frictional contact may occur that may extend in a first direction a minimum distance of 0.1 mm and/or may extend in a second (generally traverse) direction a minimum distance of 0.1 mm. In one embodiment the insert 504 may be an annular body and the area of frictional contact on a frictional surface 502 may extend in an annular direction a distance ranging from about 20 mm to about 1000 mm and in a transverse direction ranging from about 10 mm to about 75 mm. The frictional surface 502 may be provided in a variety of embodiments, for example, as illustrated in FIGS. 1-14.


Referring again to FIG. 6, in another embodiment of the invention one or more of the outer surfaces 522, 524 of the insert 504 or surfaces 526, 528 of the body 506 of the part 500 may include a relatively rough surface including a plurality of peaks 510 and valleys 512 to enhance the frictional damping of the part. In one embodiment, the surface of the insert 504 or the body 506 may be abraded by sandblasting, glass bead blasting, water jet blasting, chemical etching, machining or the like.


As illustrated in FIGS. 11-13, the depth as indicated by line V of the valleys 512 may vary with embodiments. In various embodiments, the average of the depth V of the valleys 512 may range from about 1 μm-300 μm, 50 μm-260 μm, 100 μm-160 μm or variations of these ranges. However, for all cases there is local contact between the opposing frictional surfaces 502 during component operation for frictional damping to occur.


In another embodiment of the invention the damping means or frictional surface 502 may be provided by particles 514 or fibers provided on at least one face of the insert 504 or a surface of the body 506 of the part 500. The particles 514 may have an irregular shape (e.g., not smooth) to enhance frictional damping, as illustrated in FIG. 14. One embodiment of the invention may include a layer 520 including the particles 514 or fibers which may be bonded to each other or to a surface of the body 506 of the part or a surface of the insert 504 due to the inherent bonding properties of the particles 514 or fibers. For example, the bonding properties of the particles 514 or fibers may be such that the particles 514 or fibers may bind to each other or to the surfaces of the body 506 or the insert 504 under compression. In another embodiment of the invention, the particles 514 or the fibers may be treated to provide a coating thereon or to provide functional groups attached thereto to bind the particles together or attach the particles to at least one of a surface of the body 506 or a surface of the insert 504. In another embodiment of the invention, the particles 514 or fibers may be embedded in at least one of the body 506 of the part or the insert 504 to provide the frictional surface 502 (FIGS. 9-10).


In embodiments wherein at least a portion of the part 500 is manufactured such that the insert 504 and/or the particles 514 or fibers are exposed to the temperature of a molten material such as in casting, the insert 504 and/or particles 514 or fibers may be made from materials capable of resisting flow or resisting significant erosion during the manufacturing. For example, the insert 504 and/or the particles 514 or fibers may include refractory materials capable of resisting flow or that do not significantly erode at temperatures above 1100° F., above 2400° F., or above 2700° F. When molten material, such as metal, is cast around the insert 504 and/or the particles 514, the insert 504 or the particles 514 should not be wet by the molten material so that the molten material does not bond to the insert 504 or layer 520 at locations wherein a frictional surface 502 for providing frictional damping is desired.


Illustrative examples of suitable particles 514 or fibers include, but are not limited to, particles or fibers including silica, alumina, graphite with clay, silicon carbide, silicon nitride, cordierite (magnesium-iron-aluminum silicate), mullite (aluminum silicate), zirconia (zirconium oxide), phyllosilicates, or other high-temperature-resistant particles. In one embodiment of the invention the particles 514 may have a length along the longest dimension thereof ranging from about 1 μm-350 μm, or 10 μm-250 μm.


In embodiments wherein the part 500 is made using a process wherein the insert 504 and/or the particles 514 or fibers are not subjected to relatively high temperatures associated with molten materials, the insert 504 and/or particles 514 or fibers may be made from a variety of other materials including, but not limited to, non-refractory polymeric materials, ceramics, composites, wood or other materials suitable for frictional damping. For example, such non-refractory materials may also be used (in additional to or as a substitute for refractory materials) when two portions of the body 506 of the part 500 are held together mechanically by a locking mechanism, or by fasteners, or by adhesives, or by welding 518, as illustrated in FIG. 8.


In another embodiment of the invention, the layer 520 may be a coating over the body 506 of the part or the insert 504. The coating may include a plurality of particles 514 which may be bonded to each other and/or to the surface of the body 506 of the part or the insert 504 by an inorganic or organic binder 516 (FIGS. 7-8, 13) or other bonding materials. Illustrative examples of suitable binders include, but are not limited to, epoxy resins, phosphoric acid binding agents, calcium aluminates, sodium silicates, wood flour, or clays. In another embodiment of the invention the particles 514 may be held together and/or adhered to the body 506 or the insert 504 by an inorganic binder. In one embodiment, the coating may be deposited on the insert 504 or body 506 as a liquid dispersed mixture of alumina-silicate-based, organically bonded refractory mix.


In another embodiment, the coating may include at least one of alumina or silica particles, mixed with a lignosulfonate binder, cristobalite (SiO2), quartz, or calcium lignosulfonate. The calcium lignosulfonate may serve as a binder. In one embodiment, the coating may include Ironkote. In one embodiment, a liquid coating may be deposited on a portion of the insert and may include high temperature Ladle Kote 310B. In another embodiment, the coating may include at least one of clay, Al2O3, SiO2, a graphite and clay mixture, silicon carbide, silicon nitride, cordierite (magnesium-iron-aluminum silicate), mullite (aluminum silicate), zirconia (zirconium oxide), or phyllosilicates. In one embodiment, the coating may comprise a fiber such as ceramic or mineral fibers.


When the layer 520 including particles 514 or fibers is provided over the insert 504 or the body 506 of the part the thickness L (FIG. 3) of the layer 520, particles 514 and/or fibers may vary. In various embodiments, the thickness L of the layer 520, particles 514 and/or fibers may range from about 1 μm-400 μm, 10 μm-400 μm, 30 μm-300 μm, 30 μm-40 μm, 40 μm-100 μm, 100 μm-120 μm, 120 μm-200 μm, 200 μm-300 μm, 200 μm-250 μm, or variations of these ranges.


In yet another embodiment of the invention the particles 514 or fibers may be temporarily held together and/or to the surface of the insert 504 by a fully or partially sacrificial coating. The sacrificial coating may be consumed by molten metal or burnt off when metal is cast around or over the insert 504. The particles 514 or fibers are left behind trapped between the body 506 of the cast part and the insert 504 to provide a layer 520 consisting of the particles 514 or fibers or consisting essentially of the particles 514 or fibers.


The layer 520 may be provided over the entire insert 504 or only over a portion thereof. In one embodiment of the invention the insert 504 may include a tab 534 (FIG. 7). For example, the insert 504 may include an annular body portion and a tab 534 extending radially inward or outward therefrom. In one embodiment of the invention at least one wettable surface 536 of the tab 534 does not include a layer 520 including particles 514 or fibers, or a wettable material such as graphite is provided over the tab 534, so that the cast metal is bonded to the wettable surface 536 to attach the insert 504 to the body 506 of the part 500 but still allow for frictional damping over the remaining insert surface which is not bonded to the casting.


In one embodiment of the invention at least a portion of the insert 504 is treated or the properties of the insert 504 are such that molten metal will not wet or bond to that portion of the insert 504 upon solidification of the molten metal. According to one embodiment of the invention at least one of the body 506 of the part or the insert 504 includes a metal, for example, but not limited to, aluminum, steel, stainless steel, cast iron, any of a variety of other alloys, or metal matrix composite including abrasive particles. In one embodiment of the invention the insert 504 may include a material such as a metal having a higher melting point than the melting point of the molten material being cast around a portion thereof.


In one embodiment the insert 504 may have a minimum average thickness of 0.2 mm and/or a minimum width of 0.1 mm and/or a minimum length of 0.1 mm. In another embodiment the insert 504 may have a minimum average thickness of 0.2 mm and/or a minimum width of 2 mm and/or a minimum length of 5 mm. In other embodiments the insert 504 may have a thickness ranging from about 0.1-20 mm, 0.1-6.0 mm, or 1.0-2.5 mm, or ranges therebetween.


Referring now to FIGS. 11-12, again the frictional surface 502 may have a plurality of peaks 510 and a plurality of valleys 512. The depth as indicated by line V of the valleys 512 may vary with embodiments. In various embodiments, the average of the depth V of the valleys 512 may range from about 1 μm-300 μm, 50 μm-260 μm, 100 μm-160 μm or variations of these ranges. However, for all cases there is local contact between the body 506 and the insert 504 during component operation for frictional damping to occur.


In other embodiments of the invention improvements in the frictional damping may be achieved by adjusting the thickness (L, as shown in FIG. 7) of the layer 520.


In one embodiment the insert 504 is not pre-loaded or under pre-tension or held in place by tension. In one embodiment the insert 504 is not a spring. Another embodiment of the invention includes a process of casting a material comprising a metal around an insert 504 with the proviso that the frictional surface 502 portion of the insert used to provide frictional damping is not captured and enclosed by a sand core that is placed in the casting mold. In one embodiment of the invention the layer 520 and/or insert 504 does not include or is not carbon paper or cloth.


Referring again to FIGS. 6-8, in various embodiments of the invention the insert 504 may include a first face 522 and an opposite second face 524 and the body 506 of the part may include a first inner face 526 adjacent the first face 522 of the insert 504 constructed to be complementary thereto, for example nominally parallel thereto. The body 506 of the part includes a second inner face 528 adjacent to the second face 524 of the insert 504 constructed to be complementary thereto, for example parallel thereto. The body 506 may include a first outer face 530 overlying the first face 522 of the insert 504 constructed to be complementary thereto, for example parallel thereto. The body 506 may include a first outer face 532 overlying the second face 524 of the insert 504 constructed to be complementary thereto, for example parallel thereto. However, in other embodiments of the invention the outer faces 530, 532 of the body 506 are not complementary to associated faces 522, 524 of the insert 504. In other embodiments the surfaces 526 and 528; 526 and 522; or 528 and 524 are mating surfaces but not parallel to each other.


When the term “over,” “overlying,” overlies,” “under,” “underlying,” or “underlies” is used herein to describe the relative position of a first layer or component with respect to a second layer or component such shall mean the first layer or component is directly on and in direct contact with the second layer or component or that additional layers or components may be interposed between the first layer or component and the second layer or component.


The above description of embodiments of the invention is merely exemplary in nature and, thus, variations thereof are not to be regarded as a departure from the spirit and scope of the invention.

Claims
  • 1. A product comprising: a rotor assembly comprising a first rotor cheek comprising an inner face, a second rotor cheek comprising an inner face, a plurality of vanes extending from the inner face of the first rotor cheek to the inner face of the second rotor cheek, and a frictional damping insert having slots formed therein, the insert being interposed between the inner face of the first rotor cheek and the inner face of the second rotor cheek so that the vanes extend through the slots of the frictional damping insert, the frictional damping insert being constructed and arranged to dampen the rotor assembly.
  • 2. A product as set forth in claim 1 further comprising frictional surfaces over at least one of the inner face of the first rotor cheek, the inner face of the second rotor cheek or the insert, wherein the frictional surfaces are constructed and arranged to move relative to each other and in frictional contact so that vibration of the rotor assembly is dissipated by frictional damping due to frictional movement of the frictional surfaces.
  • 3. A product as set forth in claim 2 wherein the frictional surfaces comprise a layer comprising a plurality of particles or fibers over at least one of the inner face of the first rotor cheek, the inner face of the second rotor cheek or the insert.
  • 4. A product as set forth in claim 2 wherein the frictional surfaces comprise a plurality of particles embedded in at least one of the inner face of the first rotor cheek, the inner face of the second rotor cheek, or the insert.
  • 5. A product as set forth in claim 2 wherein the frictional surfaces comprise a coating comprising a plurality of particles or fibers over at least one of the inner face of the first rotor cheek, the inner face of the second rotor cheek or the insert.
  • 6. A product as set forth in claim 2 wherein the frictional surfaces comprise a plurality of particles or fibers.
  • 7. A product as set forth in claim 6 wherein the particles or fibers comprise at least one of silica, alumina, graphite with clay, silicon carbide, silicon nitride, cordierite (magnesium-iron-aluminum silicate), mullite (aluminum silicate), zirconia (zirconium oxide), phyllosilicates, or other high-temperature-resistant particles or fibers.
  • 8. A product as set forth in claim 1 further comprising a second frictional damping insert having slots formed therein, the second frictional damping insert overlying the first frictional damping insert and being interposed between the inner face of the first rotor cheek and the inner face of the second rotor cheek and wherein the plurality of vanes extend through the slots of the second frictional damping insert.
  • 9. A product as set forth in claim 1 wherein the vanes are not bonded to the first frictional damping insert.
  • 10. A product as set forth in claim 1 wherein the vanes are bonded to the first frictional damping insert.
  • 11. A product comprising: a body portion comprising a first face and a second face, a frictional damping insert overlying the first face of the body portion and underlying the second face of the body portion, the insert having a throughhole and a portion of the body portion extending from the first face of the body portion through the throughhole of the insert to the second face of the body portion, and a layer of particles or fibers provided on at least one face of the frictional damping insert, wherein the layer of particles or fibers does not bond the frictional damping insert to the body portion.
  • 12. A product as set forth in claim 11 wherein at least one of the first face or the second face of the body portion is spaced a distance from the insert so that a gap exists between at least one of the first face or the second face of the body portion and the insert.
  • 13. A product as set forth in claim 11 wherein the layer of particles or fibers has a thickness ranging from about 1 μm to 400 μm.
  • 14. A product as set forth in claim 11 wherein the body portion comprises a metal.
  • 15. A product as set forth in claim 11 wherein the insert comprises a metal.
  • 16. A product as set forth in claim 11 wherein the particles are embedded in the insert.
  • 17. A product as set forth in claim 11 wherein the body portion comprises cast metal.
  • 18. A product as set forth in claim 11 wherein the body portion comprises a first brake rotor cheek and a second brake rotor cheek and wherein the first face is a surface of the first brake rotor cheek and wherein the second face is a surface of the second brake rotor cheek.
  • 19. A product as set forth in claim 11 wherein the particles or fibers comprise at least one of silica, alumina, graphite with clay, silicon carbide, silicon nitride, cordierite (magnesium-iron-aluminum silicate), mullite (aluminum silicate), zirconia (zirconium oxide), phyllosilicates, or other high-temperature-resistant particles or fibers.
  • 20. A method comprising: providing a mold including a first portion and a second portion, the mold being constructed to produce a rotor assembly comprising a first rotor cheek comprising an inner face, a second rotor cheek comprising an inner face, and a plurality of vanes extending from the inner face of the first rotor cheek to the inner face of the second rotor cheek;placing a sacrificial casting core in the mold, the casting core having slots formed therein;placing a first frictional damping insert in the mold overlying the sacrificial casting core, the first frictional damping insert having slots formed therein;charging a molten material into the mold and solidifying the molten material; andremoving the sacrificial core to form the rotor assembly comprising a first rotor cheek comprising an inner face, a second rotor cheek comprising an inner face, and a plurality of vanes extending from the inner face of the first rotor cheek to the inner face of the second rotor cheek through the slots of the first frictional damping insert.
  • 21. A method as set forth in claim 20 further comprising: placing a second frictional damping insert in the mold underlying the sacrificial casting core, the second frictional damping insert having slots formed therein; andremoving the sacrificial core to form the rotor assembly comprising a first rotor cheek comprising an inner face, a second rotor cheek comprising an inner face, and a plurality of vanes extending from the inner face of the first rotor cheek to the inner face of the second rotor cheek through the slots of the first frictional damping insert and the second frictional damping insert.
  • 22. A product as set forth in claim 2 wherein the frictional surfaces include a plurality of peaks and valleys and an average depth of the valleys is in a range of about 1 μm to 300 μm.
  • 23. A product as set forth in claim 1 wherein at least one of the first face or second face provides a first frictional surface, and wherein the insert provides a second fictional surface wherein the first frictional surface and first frictional surface are constructed and arranged to move relative to each other and in frictional contact so that vibration of the body is dissipated by frictional damping due to frictional movement of the frictional surfaces.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 60/951,031, filed Jul. 20, 2007.

US Referenced Citations (118)
Number Name Date Kind
974024 Carter Oct 1910 A
1484421 Thomspon Feb 1924 A
1989211 Norton Jan 1935 A
2012838 Tilden Aug 1935 A
2026878 Farr Jan 1936 A
2288438 Dach Jun 1942 A
2603316 Pierce Jul 1952 A
2978793 Lamson et al. Apr 1961 A
3085391 Hatfield et al. Apr 1963 A
3127959 Wengrowski Apr 1964 A
3147828 Hunsaker Sep 1964 A
3292746 Robinette Dec 1966 A
3378115 Stephens, III Apr 1968 A
3425523 Robinette Feb 1969 A
3509973 Kimata May 1970 A
3575270 Wagenfuhrer et al. Apr 1971 A
3774472 Mitchell Nov 1973 A
3841448 Norton, Jr. Oct 1974 A
3975894 Suzuki Aug 1976 A
4049085 Blunier Sep 1977 A
4072219 Hahm et al. Feb 1978 A
4195713 Hagbjer et al. Apr 1980 A
4250950 Buxmann et al. Feb 1981 A
4278153 Venkatu Jul 1981 A
4338758 Hagbjer Jul 1982 A
4379501 Hagiwara et al. Apr 1983 A
4475634 Flaim et al. Oct 1984 A
4523666 Murray Jun 1985 A
4529079 Albertson Jul 1985 A
4905299 Ferraiuolo et al. Feb 1990 A
5004078 Oono et al. Apr 1991 A
5025547 Sheu et al. Jun 1991 A
5083643 Hummel et al. Jan 1992 A
5115891 Raitzer et al. May 1992 A
5139117 Melinat Aug 1992 A
5143184 Snyder et al. Sep 1992 A
5183632 Kluchi et al. Feb 1993 A
5184663 Oono Feb 1993 A
5259486 Deane Nov 1993 A
5310025 Anderson May 1994 A
5416962 Passarella May 1995 A
5417313 Matsuzaki et al. May 1995 A
5509510 Ihm Apr 1996 A
5530213 Hartsock et al. Jun 1996 A
5582231 Siak et al. Dec 1996 A
5620042 Ihm Apr 1997 A
5660251 Nishizawa et al. Aug 1997 A
5789066 DeMare et al. Aug 1998 A
5819882 Reynolds et al. Oct 1998 A
5855257 Wickert et al. Jan 1999 A
5862892 Conley Jan 1999 A
5878843 Saum Mar 1999 A
5927447 Dickerson Jul 1999 A
5965249 Sutton et al. Oct 1999 A
6032769 Daudi Mar 2000 A
6047794 Nishizawa Apr 2000 A
6073735 Botsch et al. Jun 2000 A
6112865 Wickert et al. Sep 2000 A
6206150 Hill Mar 2001 B1
6216827 Ichiba et al. Apr 2001 B1
6223866 Giacomazza May 2001 B1
6231456 Rennie et al. May 2001 B1
6241055 Daudi Jun 2001 B1
6241056 Cullen et al. Jun 2001 B1
6283258 Chen et al. Sep 2001 B1
6302246 Naumann et al. Oct 2001 B1
6357557 DiPonio Mar 2002 B1
6405839 Ballinger et al. Jun 2002 B1
6465110 Boss et al. Oct 2002 B1
6481545 Yano et al. Nov 2002 B1
6505716 Daudi et al. Jan 2003 B1
6507716 Nomura et al. Jan 2003 B2
6543518 Bend et al. Apr 2003 B1
6648055 Haug et al. Nov 2003 B1
6799664 Connolly Oct 2004 B1
6880681 Koizumi et al. Apr 2005 B2
6890218 Patwardhan et al. May 2005 B2
6899158 Matuura et al. May 2005 B2
6932917 Golden et al. Aug 2005 B2
6945309 Frait et al. Sep 2005 B2
7066235 Huang Jun 2006 B2
7112749 DiPaola et al. Sep 2006 B2
7178795 Huprikar et al. Feb 2007 B2
7293755 Miyahara et al. Nov 2007 B2
7594568 Hanna et al. Sep 2009 B2
7604098 Dessouki et al. Oct 2009 B2
7644750 Schroth et al. Jan 2010 B2
7775332 Hanna et al. Aug 2010 B2
7836938 Agarwal et al. Nov 2010 B2
20020084156 Ballinger et al. Jul 2002 A1
20020104721 Schaus et al. Aug 2002 A1
20030037999 Tanaka et al. Feb 2003 A1
20030127297 Smith et al. Jul 2003 A1
20030141154 Rancourt et al. Jul 2003 A1
20030213658 Baba Nov 2003 A1
20040031581 Herreid et al. Feb 2004 A1
20040045692 Redemske Mar 2004 A1
20040074712 Quaglia et al. Apr 2004 A1
20040084260 Hoyte et al. May 2004 A1
20040242363 Kohno et al. Dec 2004 A1
20050011628 Frait et al. Jan 2005 A1
20050150222 Kalish et al. Jul 2005 A1
20050183909 Rau, III et al. Aug 2005 A1
20050193976 Suzuki et al. Sep 2005 A1
20060076200 Dessouki Apr 2006 A1
20060243547 Keller Nov 2006 A1
20070039710 Newcomb Feb 2007 A1
20070056815 Hanna et al. Mar 2007 A1
20070062664 Schroth et al. Mar 2007 A1
20070062768 Hanna et al. Mar 2007 A1
20070142149 Kleber Jun 2007 A1
20070166425 Utsugi Jul 2007 A1
20070235270 Miskinis Oct 2007 A1
20070298275 Carter et al. Dec 2007 A1
20080099289 Hanna et al. May 2008 A1
20080185249 Schroth et al. Aug 2008 A1
20090032569 Sachdev et al. Feb 2009 A1
20090107787 Walker et al. Apr 2009 A1
Foreign Referenced Citations (37)
Number Date Country
428319 Jan 1967 CH
200510113784 Oct 2005 CN
20051113784 Oct 2005 CN
1757948 Apr 2006 CN
2863313 Jan 2007 CN
24 46 938 Apr 1976 DE
2446938 Apr 1976 DE
25 37 038 Mar 1977 DE
2537038 Mar 1977 DE
19649919 Jun 1998 DE
199 48 009 Mar 2001 DE
19948009 Mar 2001 DE
60000008 Mar 2002 DE
101 41 698 Mar 2003 DE
10141698 Mar 2003 DE
102005048258.9 Oct 2005 DE
102005048258 Apr 2006 DE
60116780 Nov 2006 DE
0 205 713 Dec 1986 EP
0205713 Dec 1986 EP
1230 274 Apr 1971 GB
1230274 Apr 1971 GB
2328952 Mar 1999 GB
57154533 Sep 1982 JP
57154533 Sep 1982 JP
1126434 Aug 1989 JP
05-104567 Apr 1993 JP
11342461 Dec 1999 JP
2001512763 Aug 2001 JP
2003214465 Jul 2003 JP
2004011841 Jan 2004 JP
20010049837 Jun 2001 KR
9823877 Jun 1998 WO
WO 9823877 Jun 1998 WO
0136836 May 2001 WO
WO 0136836 May 2001 WO
2007035206 Mar 2007 WO
Non-Patent Literature Citations (55)
Entry
International Search Report dated Apr. 2, 2007 for International Application No. PCT US06/29687, Publication No. WO 2007/040768; GM Global Technology Operations, Inc.
Omar Dessouki, George Drake, Brent Lowe, Wen Kuei Chang, General Motors Corp: Disc Brake Squeal: Diagnosis & Prevention. 03NVC-224; Society of Automotive Engineer, Inc. 2002.
Z. Wu, C. Richter, L. Menon, A Study of Anodization Process During Pore Formation in Nanoporous Alumina Templates, Journal of the Electrochemical Society, vol. 154, 2007.
W.-J. Lee, M. Alhoshan, W.H. Smyrl, Titanium Dioxide Nanotube Arrays Fabricated by Anodizing Processes, Journal of the Electrochemical Society, vol. 153, 2006, pp. B499-B505.
I.V. Sieber, P. Schmuki, Porous Tantalum Oxide Prepared by Electrochemical Anodic Oxidation, Journal of the Electrochemical Society, vol. 152, 2005, pp. C639-C644.
H. Tanaka, A. Shimada, A. Kinoshita, In situ Measurement of the Diameter of Nanopores in Silicon During Anodization in Hydrofluoric Acid Solution, Journal of the Electrochemic.
L.G. Hector, Jr., S. Sheu, Focused Energy Beam Work Roll Surface Texturing Science and Technology, Journal of Materials Processing & Manufacturing Science, vol. 2, Jul. 1993.
P.N. Anyalebechi, Ungrooved Mold Surface Topography Effects on Cast Subsurface Microstructure, Materials Processing Fundamentals, TMS 2007, pp. 49-62.
F. Yigit, Critical Wavelengths for Gap Nucleation in Solidification—Part 1: Theoretical Methodology, Journal of Applied Mechanics, vol. 67, Mar. 2000, pp. 66-76.
P.N. Anyalebechi, Undulatory Solid Shell Growth of Aluminum Alloy 3003 as a Function of the Wavelength of a Grooved Mold Surface Topography, TMS 2007, pp. 31-47.
Dessouki et al., U.S. Appl. No. 10/961,813, Coulumb friction damped disc brake rotors, filed Oct. 8, 2004.
Hanna et al., U.S. Appl. No. 11/475,756, Bi-metal disc brake rotor and method of manufacturing, filed Jun. 27, 2006.
Schroth et al., U.S. Appl. No. 11/475,759, Method of casting components with inserts for noise reduction, filed Jun. 27, 2006.
Schroth et al., U.S. Appl. No. 12/025,967, Damped products and methods of making and using the same, filed Feb. 5, 2008.
Hanna et al., U.S. Appl. No. 11/440,916, Bi-metal disc brake rotor and method of manufacture, filed May 25, 2006.
Hanna et al., U.S. Appl. No. 11/554,234, Coulomb damped disc brake rotor and method of manufacturing, filed Oct. 30, 2006.
Walker et al., U.S. Appl. No. 11/926,798, Inserts with holes for damped products and methods of making and using the same, filed Oct. 29, 2007.
Hanna et al., U.S. Appl. No. 11/832,401, Damped product with insert and method of making the same, filed Aug. 1, 2007.
Kleber, et al., U.S. Appl. No. 11/848,732, Cast-in-place torsion joint, filed Aug. 31, 2007.
Hanna et al., U.S. Appl. No. 11/780,679, Method of manufacturing a damped part, filed Jul. 20, 2007.
Aase et al., U.S. Appl. No. 11/969,259, Method of forming casting with frictional damping insert, filed Jan. 4, 2008.
Hanna et al., U.S. Appl. No. 12/165,729, Method for securing an insert in the manufacture of a damped part, filed Jul. 1, 2008.
Hanna et al., U.S. Appl. No. 12/165,731, Product with metallic foam and method of manufacturing the same, filed Jul. 1, 2008.
Agarwal et al., U.S. Appl. No. 11/860,049, Insert with tabs and damped products and methods of making the same, filed Sep. 24, 2007.
Hanna et al., U.S. Appl. No. 12/174,163, Damped part, filed Jul. 16, 2008.
Hanna et al., U.S. Appl. No. 12/174,223, Method of casting damped part with insert, filed Jul. 16, 2008.
Hanna et al., U.S. Appl. No. 12/183,180, Casting noise-damped, vented brake rotors with embedded inserts, filed Jul. 31, 2008.
Hanna et al., U.S. Appl. No. 12/183,104, Low mass multi-piece sound damped article, filed Jul. 31, 2008.
Golden et al., U.S. Appl. No. 12/105,411, Insert with filler to dampen vibrating components, filed Apr. 18, 2008.
Hanna et al., U.S. Appl. No. 11/440,893, Rotor assembly and method, filed May 25, 2006.
Carter, U.S. Appl. No. 11/680,179, Damped automotive components with cast in place inserts and method of making same, filed Feb. 28, 2007.
Ulicny et al., U.S. Appl. No. 12/105,438, Filler material to dampen vibrating components, filed Apr. 18, 2008.
Hanna et al., U.S. Appl. No. 12/272,164, Surface configurations for damping inserts, filed Nov. 17, 2008.
Hanna et al., U.S. Appl. No. 12/145,169, Damped product with an insert having a layer including graphite thereon and methods of making and using the same, filed Jun. 24, 2008.
Xia, U.S. Appl. No. 12/858,596, Lightweight brake rotor and components with composite materials, filed Sep. 20, 2007.
Dessouki et al., U.S. Appl. No. 12/178,872, Friction damped brake drum, filed Jul. 24, 2008.
Sachdev et al., U.S. Appl. No. 11/832,356, Friction welding method and products made using the same, filed Aug. 1, 2007.
Chinese First Office Action; CN200510113784.X; Dated May 18, 2007; 19 pages.
Chinese Second Office Action; CN200510113784.X; Dated Feb. 15, 2008; 13 pages.
German Examination Report; DE102005048258.9-12; Dated Oct. 22, 2007; 8 pages.
Gerdemann, Steven J,; Titanium Process Technologies; Advanced Materials & Processes, Jul. 2001, pp. 41-43.
Mahoney, M. W. & Lynch S. P.; Friction-Stir Processing; 15 pages.
MPIF: All You Need to Know about Powder Metallurgy; http://www.mpif.org/IntroPM/intropm/asp?linkid=1; 8 pages.
Powder Metallurgy—Wikipedia article; http://en.wikipedia.org/wiki/Powder—metallurgy; 5 pages.
Sintering—Wikipedia article; http://en.wikipedia.org/wiki/Sintering; 2 pages.
Magnetorheological fluid—Wikipedia article; http:en/wikipedia.org/wiki/Magnetorheological—fluid.
PCT/US2008/087354 Written Opinion and Search Report; Date of Mailing: Aug. 3, 2009; 9 pages.
PCT/US2009/039839 Written Opinion and Search Report; Date of Mailing: Nov. 24, 2009; 7 pages.
PCT/US2009/048424 Written Opinion and Search Report; Date of Mailing; Dec. 28, 2009; 7 pages.
U.S. Appl. No. 12/328,989, filed Dec. 5, 2008; First Named Inventor: Patrick J. Monsere.
U.S. Appl. No. 12/420,259, filed Apr. 8, 2009; First Named Inventor: Michael D. Hanna.
U.S. Appl. No. 12/434,057, filed May 1, 2009; First Named Inventor: Chongmin Kim.
U.S. Appl. No. 12/436,830, filed May 7, 2009; First Named Inventor: James G. Schroth.
U.S. Appl. No. 12/489,901, filed Jun. 23, 2009; First Named Inventor: Michael D. Hanna.
U.S. Appl. No. 12/885,813, filed Sep. 20, 2010; First Named Inventor: Michael D. Hanna.
Related Publications (1)
Number Date Country
20090071779 A1 Mar 2009 US
Provisional Applications (1)
Number Date Country
60951031 Jul 2007 US