The present invention relates generally to damper devices that are used to dampen or reduce vibrations, and particularly, to a damper and method for tuning a damper utilizing a surface contact reducing resilient member.
Rotary shafts such as rotary driveshafts, propeller shafts, and crankshafts are often used in the power train and engine designs of modern automotive vehicles. Rotary driveshafts are used to drive the front wheels of front wheel driven vehicles, propeller shafts are used to drive the rear drive system in rear wheel driven vehicles, and crankshafts are used to transmit power from the engine to the power train. In studying the rotational movement of such rotary shafts, it is known that certain unbalanced rotation may occur at certain rotational speeds or due to uneven power input thereby causing undesirable vibrations. These undesirable vibrations often present themselves as bending and torsional forces within the shaft during rotation.
For many years, this problem has been recognized and a variety of devices have been constructed and used to lessen or dampen the resultant vibrations. One common form of a damper comprises an inner metal hub attached to a rotary shaft, an outer metal annular member or “inertia member”, and an elastomer member positioned under compression between the hub and outer member. The hub directly executes the vibrations created by the shaft due to its rigid coupling thereto. The inertia member is coupled to the hub by the elastomer member and accordingly causes a phase lag between the oscillations of the hub and the corresponding oscillations of the inertia member thereby reducing or eliminating vibrations in the shaft.
Such dampers are designed or “tuned” to generate a prescribed vibrational frequency adjusted to the dominant frequency of the excited harmful vibrations. The damper converts or transfers the vibrational energy of the rotary driveshaft to the damper by resonance, and eventually absorbs the vibrational energy of the rotary driveshaft. In short, the damper attempts to cancel or negate vibrations that are induced onto or caused by the rotary driveshaft in normal operation of the drive train of the vehicle.
Elastomer members used in such known dampers exhibit a set part frequency based upon their rubber hardness and thickness. In the manufacture of such dampers, sometimes the part frequency needs to be lower than what can be achieved with the typical softest rubber compounds used in a typical sheet-like geometry. Therefore, there is a need in the art to develop an elastomer element that achieves lower part frequency independent of its composition or based primarily on its part geometry.
It is an object of the present invention to provide a damper that dampens or reduces the axial, radial, and torsional vibrations of a rotating shaft.
It is another object of the present invention to provide a resilient member for a damper that improves dampening performance based primarily on the part geometry.
It is yet another object of the present invention to provide a damper that permits tuning thereof through manipulation of the resilient member part geometry.
These and other objects are met by the present invention that provides a damper and method for tuning a damper utilizing a surface contact reducing resilient member that allows the damper to achieve lower part frequency based primarily on the geometry of the resilient member. A damper for dampening torsional and bending vibrations in a rotating shaft according to the present invention includes a hub member, an inertia member spaced radially outwardly from the hub member, and a resilient member positioned under compression between the hub member and the inertia member. The resilient member has at least one protrusion extending axially thereon to reduce the amount of surface contact between the resilient member and the hub member or the inertia member, thus enabling the damper to achieve lower part frequency. A method for tuning dampers is also disclosed wherein reducing the amount of surface contact between the resilient member and the hub member and inertia member enables the damper to achieve lower part frequency based primarily on the geometry of the resilient member.
By manipulating the part geometry of the resilient member to select the amount of surface contact between the resilient member and the inertia member and hub member, the damper of the present invention can effectively dampen or reduce shaft vibrations better than a similar resilient member of known sheet-like part geometry to achieve a lower part frequency. In other words, the resilient member of the present invention provides a part geometry able to achieve lower part frequencies while using the same rubber hardness through reducing surface area contact between the resilient member and the hub and/or inertia member.
Objects and advantages together with the operation of the invention may be better understood by reference to the following detailed description taken in connection with the following drawings, wherein:
The present invention will now be described with reference to
As shown in
A damper for dampening torsional and bending vibrations in a rotating shaft, according to the present invention, generally comprises a hub member capable of connection to a rotating shaft, an inertia member spaced radially outwardly from the hub member, and a resilient member positioned under compression between the hub member and the inertia member. The resilient member 12 of the present invention is shown in
The resilient member 12 comprises an elastomeric sheet 14 having at least one outwardly extending protrusion 16 which extends from at least one surface of the sheet 14. When the damper is assembled, the outwardly extending protrusion 16 reduces the amount of surface contact between the resilient member 12 and the hub member and/or inertia member. Preferably, the protrusions 16 extend outwardly from both the inner and outer surfaces of the sheet 14 to reduce the amount of surface contact between the resilient member 12 and the hub member and inertia member.
As shown in
As shown in
An inertia member 22 is spaced radially outwardly from the rim 28 and a resilient member 12 is positioned under compression between the rim 28 and the inertia member 22. The resilient member 12 has an inner surface 30 facing the rim 28 and an outer surface 32 facing the inertia member 22. At least one protrusion 16 extends axially along either the inner surface 30 or the outer surface 32 or both to reduce the amount of surface contact between said resilient member 12 and the rim 28 and the inertia member 22.
The resilient member 12 of the present invention is preferably comprised of an elastomeric material. The elastomeric material may consist of natural rubber or any suitable synthetic elastomeric composition such as styrene butadiene rubber, isoprene rubber, nitrile rubber, ethylene propylene copolymer, and ethylene acrylic. The hub and inertia members are preferably made from metal materials, such as steel, cast iron and aluminum. One common combination of materials utilizes automotive ductile cast iron (SAE J434) for the hub and automotive gray cast iron (SAE J431) for the annular ring. Another known combination of materials for the damper comprises die cast aluminum (SAE 308) for the hub and cast iron for the inertia member.
The construction of the damper of the present invention allows assembly in a conventional manner with conventional assembly tools and techniques. The hub member 20 and inertia member 22 are held in place in a jig or fixture (not shown) leaving an annular space for entry of the resilient member 12. The resilient member 12 is then formed into a ring shape, or could have been produced as a ring, and placed in an appropriate fixture over the annular space. The resilient member 12 could then post bonded to the inertia member and hub rim. First, the outer surface of the rim 28 and inner surface of the inertia member 22 are coated with a bonding agent such as “Chemlock” from Hughson Cements, a division of Lord Chemical. Hydraulic or pneumatic pressure is then used to force the resilient member 12 into the annular space. Finally, the damper is heated to activate the bonding agent. The resilient member could also be forced into the annular space without a bonding agent. Either way, the axially extending protrusions 16 of the resilient member 12 assist in the insertion of the resilient member 12 into the annular space.
The resilient member 12 is stretched and changed in cross-section when it is forced into the annular space. When set, the protrusions 16 reduce the surface contact between the resilient member 12 and the hub member 20 and the inertia member 22. Such a reduction in surface contact reduces the stiffness between the hub member 20 and inertia member 22 thereby greatly reducing part frequency.
Although the preferred embodiment of the present invention has been illustrated in the accompanying drawings and described in the foregoing detailed description, it is to be understood that the present invention is not to be limited to just the preferred embodiment disclosed, but that the invention described herein is capable of numerous rearrangements, modifications and substitutions without departing from the scope of the claims hereafter.
The present application claims the benefit of priority to U.S. Provisional Patent Application Ser. No. 60/541,310 filed Feb. 3, 2004.
| Number | Name | Date | Kind |
|---|---|---|---|
| 1791495 | Frey | Feb 1931 | A |
| 1928079 | Taylor | Sep 1933 | A |
| 2012838 | Tilden | Aug 1935 | A |
| 2287984 | Glazebrook | Jun 1942 | A |
| 2897026 | Haller et al. | Jul 1959 | A |
| 2931412 | Wing | Apr 1960 | A |
| 2977819 | Haushalter | Apr 1961 | A |
| 3041889 | Haushalter | Jul 1962 | A |
| 3058208 | Haushalter | Oct 1962 | A |
| 3061386 | Dix et al. | Oct 1962 | A |
| 3776653 | Buzogany | Dec 1973 | A |
| 4395809 | Whiteley | Aug 1983 | A |
| 4493471 | McInnis | Jan 1985 | A |
| 5004078 | Oono et al. | Apr 1991 | A |
| 5201528 | Upper | Apr 1993 | A |
| 5390769 | Bair et al. | Feb 1995 | A |
| 5496216 | Rohrle et al. | Mar 1996 | A |
| 5551318 | Fukushima | Sep 1996 | A |
| 5749269 | Szymanski et al. | May 1998 | A |
| 5855257 | Wickert et al. | Jan 1999 | A |
| 6386065 | Hodjat | May 2002 | B1 |
| Number | Date | Country |
|---|---|---|
| 01309822 | Dec 1989 | JP |
| Number | Date | Country | |
|---|---|---|---|
| 20050167213 A1 | Aug 2005 | US |
| Number | Date | Country | |
|---|---|---|---|
| 60541310 | Feb 2004 | US |