The present disclosure generally relates to dampers. More particularly, the present disclosure relates to a damper with external active control valves and a passive intake valve that selectively allows flow between a rebound working chamber and a compression working chamber.
Dampers for vehicles are commonly included in a wide variety of vehicle segments. Some vehicles include semi-active damping that adjusts damping levels according to road conditions and vehicle dynamics. The dampers are between a body and the suspension system of the vehicle. A piston is located within the damper. The piston is connected to the vehicle body or the suspension of the vehicle through a piston rod. As the damper is compressed or extended, fluid flows between rebound and compression working chambers within the damper to counteract vibrations. By adjusting the flow of damping fluid between the chambers, greater or lower damping forces may be generated.
The present disclosure relates to a damping system that may continuously adjust damping levels according to road conditions and vehicle 10 dynamics. With reference to
With reference to
The dampers 16 include an inner tube 28 elongated along an axis A1, and a piston 30 slidably disposed in the inner tube 28. The piston 30 and the inner tube 28 define a rebound working chamber 32 and compression working chamber 34. The damper 16 includes an outer tube 36 surrounding the inner tube 28. The inner tube 28 and the outer tube 36 define a fluid chamber 38 therebetween. The rebound working chamber 32, the compression working chamber 34, and the fluid chamber 38 contain a fluid, preferably a hydraulic oil suitable for use with dampers 16.
The intake assembly 22 is in the fluid chamber 38 for controlling fluid flow therein. The intake assembly 22 includes the unitary support ring 24a, 24b and pair of fulcrum spacers 26a, 26b. The intake assembly 22 includes one or more support posts 42 fixed to and extending along the axis A1 away from the unitary support ring 24a, 24b and pair of fulcrum spacers 26a, 26b. The intake assembly 22 includes at least one valve ring 44a, 44b supported by the support post 42. The valve ring 44a, 44b defines an orifice 46a, 46b. The intake assembly 22 includes one or more valve discs 48a, 48b, e.g., one or more bendable first valve discs 48a and one or more bendable second valve discs 48b, supported by the support post 42 between the valve ring 44a, 44b and the unitary support ring 24a, 24b and pair of fulcrum spacers 26a, 26b. The valve disc 48a, 48b covers the orifice 46a, 46b of the valve ring 44a, 44b and may control fluid flow therethrough.
The damper 16 includes an active rebound valve 50 in fluid communication with the rebound working chamber 32 through the fluid chamber 38 and a distal orifice 52 of the inner tube 28. The active rebound valve 50 has a variable flow resistance controllable by the ECU 20. The damper 16 also includes an active compression valve 54 that is in fluid communication with compression working chamber 34 through a proximate inner tube orifice 56. The active compression valve 54 has a variable flow resistance controllable by the ECU 20. The active rebound valve 50 and active compression valve 54 are positioned external to the outer tube 36 as shown and may be separated by a gap 58. The active rebound valve 50 and active compression valve 54 may be circumferentially spaced from each other about the outer tube 36 (not shown). The intake assembly 22 is provided within the fluid chamber 38 and may be positioned at the gap 58. The intake assembly 22 is in selective fluid communication with active rebound valve 50 and active compression valve 54 through an outer tube intake orifice 60 whereby the intake assembly 22 controls flow during a rebound and compression stroke.
The active rebound valve 50 is in fluid communication with the fluid chamber 38 through an active rebound valve orifice 62 in the outer tube 36, and with the rebound working chamber 32 through the distal orifice 52 of the inner tube 28. The distal orifice 52 fluidly communicates with the rebound working chamber 32. During a rebound stroke fluid flows from the rebound working chamber 32, out the distal inner tube orifice 56 through the fluid chamber 38, through the active rebound valve orifice 62 in the outer tube 36 into the active rebound valve 50 and through the intake assembly 22 into the compression working chamber 34 through the proximate inner tube orifice 56 into the compression working chamber 34. The active compression valve 54 is in fluid communication with the fluid chamber 38 through an outer tube active compression valve orifice 64 and the proximate inner tube orifice 56. During a compression stroke, fluid flows from the compression working chamber 34, out the proximate inner tube orifice 56, through the active compression valve orifice 64 in the outer tube 36, into the active compression valve 54, through the intake assembly 22, through the fluid chamber 38 and into the rebound working chamber 32 through the distal inner tube orifice 56.
The intake assembly 22 is supported in the fluid chamber 38 between the inner tube 28 and the outer tube 36 of the damper 16. For example, one or more components of the intake assembly 22 may be compressed between the inner tube 28 and the outer tube 36, such as to an outer surface 66 of the inner tube 28 and/or to an inner surface 68 of the inner tube 28. As other example, the one or more components of the intake assembly 22 may be fixed to the inner tube 28 and/or the outer tube 36, e.g., via weld, adhesive, fastener, etc.
With reference to
The intake assembly 22 includes the fulcrum spacers 26a, 26b to enable bending of the respective valve discs 48a, 48b and provide spacing between the respective valve discs 48a, 48b and support rings 24a, 24b. The supports rings 24a, 24b and the respective fulcrum spacers 26a, 26b are unitary. For example, a first support ring 24a and pair of first fulcrum spacers 26a may be unitary with each other, and a second support ring 24b and pair of second fulcrum spacers 26b may be unitary with each other. The fulcrum spacers 26a, 26b are thicker than the support rings 24a, 24b, e.g., along the axis A1. The increased thickness of the fulcrum spacers 26a, 26b spacing between the respective valve discs 48a, 48b and support rings 24a, 24b and enables bending of the valve discs 48a, 48b toward the support rings 24a, 24b. The fulcrum spacers 26a, 26b may include two (and only two) fulcrum spacers 26a, 26b attached to each support ring 24a, 24b. The two fulcrum spacers 26a, 26b attached to the respective support ring 24a, 24b may be spaced from each other 180-degrees about the support ring 24a, 24b. In other words, the fulcrum spacers 26a, 26b may be opposite each other on the respective support ring 24a, 24b, e.g., having a diameter of the support ring 24a, 24b intersect the fulcrum spacers 26a, 26b. The intake assembly 22 may include more or less fulcrum spacers 26a, 26b connected to the support rings 24a, 24b than shown. When assembled, the fulcrum spacers 26a, 26b provide a pre-load to permit a suitable hydraulic seal such that fluid does not flow through the first valve ring 44a, e.g., during a compression stroke and similarly does not flow through the second valve ring 44b, e.g., during a rebound stroke.
The intake assembly 22 includes the support posts 42 to fix the support rings 24a, 24b relative to each other and to support other components of the intake assembly 22, e.g., limiting movement of the valve rings 44a, 44b and valve discs 48a, 48b transverse to the axis A1. The intake assembly 22 may include two and only two support posts 42, e.g., spaced from each other 180-degrees about the support rings 24a, 24b. The support posts 42 may extend away from one of the support rings 24a, 24b to the other of the support rings 24a, 24b. For example, each support post 42 may extend away from one of the first fulcrum spacers 26a of the first support ring 24a to one of the second fulcrum spacers 26b of the second support ring 24b. The support posts 42 extend along, e.g., are elongated parallel to, the axis A1.
The support posts 42 may be fixed to the support rings 24a, 24b and the fulcrum spacers 26a, 26b. The support post 42 may be press fit into holes 70 of the support rings 24a, 24b and fulcrum spacers 26a, 26b, the support posts 42 may be welded to the support rings 24a, 24b and fulcrum spacers 26a, 26b, the support posts 42 may be fixed to the support rings 24a, 24b and fulcrum spacers via fasteners or other suitable structure. For example, the support posts 42 may include threaded shafts and nuts may be engaged on the threaded shafts to urge one support ring toward the other support ring. As another example, the support posts 42 may be hollow and deformable to secure the support rings 24a, 24b to each other. In other words, the support posts 42 may provide rivets securing the support rings 24a, 24b to each other.
As described, the intake assembly 22 includes the first valve ring 44a and the second valve ring 44b. The first valve ring 44a and second valve ring 44b may have identical construction. The first valve ring 44a and the second valve ring 44b may face each other in a mirrored configuration. The first valve ring 44a may be spaced from the second valve ring 44b, e.g., along the axis A1. The first valve ring 44a and second valve ring 44b may each define respective orifices 46a, 46b. The orifices 46a, 46b may be arcuate in shape. The orifices 46a on the first valve ring 44a may be termed rebound orifices 46a, while the orifices 46b on the second valve ring 44b may be termed compression orifices 46b. The intake orifice 60 defined by the outer tube 36 may be between the first valve ring 44a and the second valve ring 44b along the axis A1, e.g., such that fluid may flow from the intake orifice 60 through the space between the second valve ring 44b and first valve ring 44a to the orifices 46a, 46b. The first valve ring 44a and second valve ring 44b may be supported by the support posts 42, e.g., between the unitary support rings 24a, 24b and fulcrum spacers 26a, 26b along the axis A1. The first valve ring 44a and second valve ring 44b may each include one or more fastening holes 72. The support posts 42 may be disposed within the fastening holes 72. The first valve ring 44a 54 and second valve ring 44b include respective tapered sections 74a, 74b. The tapered sections 74a may be radially outward and provide fluid access to the intake assembly 22 through the outer tube intake orifice 60. The tapered sections 74b may be radially inward, e.g., to apply force on a clamping ring 78 as further discussed below.
The first valve ring 44a and second valve ring 44b have an outer diameter that substantially corresponds to an inner diameter of the outer tube 36 and an inner diameter that substantially corresponds to the outer diameter of inner tube 28. As shown, a pair of O-Rings 76 may be included to seal the first valve ring 44a and the second valve ring 44b to the outer tube 36.
The intake assembly 22 may include the clamping ring 78. The clamping ring 78 may be disposed between the first valve ring 44a and the second valve ring 44b. A radially outmost surface of the clamping ring 78 may be radially inward of the rebound orifices 46a and the compression orifices 46b. The clamping ring 78 may secure the intake assembly 22 to the outer surface 66 of the inner tube 28. For example, normal forces from the tapered sections 74b of the first valve ring 44a and the second valve ring 44b may compress the clamping ring 78 against the inner tube 28. As another example, the clamping ring 78 may be received in a groove 80 that extends circumferentially about the outer surface 66 of the inner tube 28.
The intake assembly 22 includes the valve discs 48a, 48b to control fluid flow through the orifices 46a, 46b of the valve rings 44a, 44b. The valve discs 48a, 48b cover the orifices 46a, 46b, e.g., inhibiting fluid flow in one direction and selectively permitting flow fluid in an opposite direction. At least one valve disc 48a, 48b may abut each of the valve rings 44a, 44b, e.g., about perimeters of the orifices 46a, 46b. To allow clearance, e.g., for the valve discs 48a, 48b to move away from the orifices 46a, 46b, an outer diameter of the valve discs 48a, 48b are less than the inner diameter of the outer tube 36. Likewise, an inner diameter of the valve discs 48a, 48b is greater than the outer diameter of the inner tube 28.
The valve discs 48a, 48b may be supported by the support posts 42. For example, the valve disc may include fastener holes 82 and the support posts 42 may be disposed within the fastener holes 82. The valve discs 48a, 48b may be supported by the support posts 42 between the respective support rings 24a, 24b and valve rings 44a, 44b along the axis A1. For example, first valve discs 48a may be supported between the first support ring 24a and the first valve ring 44a, and second valve discs 48b may be supported between the second support ring 24b and the second valve ring 44b. In the example shown in the Figures, the intake assembly 22 includes two valve discs 48a between the first support ring 24a and the first valve ring 44a and two valve discs 48b between the second support ring 24b and the second valve ring 44b. The intake assembly 22 may include greater or fewer valve discs 48a, 48b.
The damper 16 may include an accumulator 84. The accumulator 84 is in fluid communication with the active rebound valve 50 and active compression valve 54 through an accumulator orifice 86. The accumulator 84 includes a low-pressure chamber 8884 that is separated from the compression working chamber 34 by an end wall 90. The accumulator 8480 further includes a flexible membrane 92 and a gas chamber 94. The accumulator 84 can receive or discharge fluid as is known in the art.
With reference to
With reference to
Turning to
Next, at a step 620, the unitary second support ring 24b and second pair of fulcrum spacers 26b are secured to the support posts 42 opposite the first support ring 24a to provide the intake assembly 22. For example, the unitary second support ring 24b and second pair of fulcrum spacers 26b may be installed onto the support posts 42, as shown in
Next, at a step 630 the intake assembly 22 is installed onto the inner tube 28 of the damper 16. The intake assembly 22 may be installed by inserting the inner tube 28 into a central opening (not numbered) of the intake assembly 22, as shown in
The adjectives first, second, etc., are used throughout this document as identifiers and, unless explicitly stated otherwise, are not intended to signify importance, order, or quantity.
The disclosure has been described in an illustrative manner, and it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation. Many modifications and variations of the present disclosure are possible in light of the above teachings, and the disclosure may be practiced otherwise than as specifically described.