This invention relates to apparatus and methods for launching plugs in cementing operations of the type found when constructing wells in the oil and gas industry. In particular, the invention relates to the use of a latching mechanism for controlling the movement of a piston in a plug launcher.
In the construction of oil and gas wells, it is occasionally necessary to cement a liner or casing in the well to provide stability and zonal isolation. In such processes, it is common to use plugs to separate different fluids pumped along the tubing or casing. Such plugs are usually installed in a basket located in cementing equipment lowered into the well. The plugs are launched from the basket by means of darts pumped from the surface.
A known cement plug launching tool (see U.S. Pat. No. 5,890,537) is shown in
A piston 50 connected to a drive rod 36 slides in the bore of the spacer tube 42 which is connected to the upper end of a cylinder tube 55. A lower piston 58 is formed on the rod 36 and slides within the bore 60 of the cylinder tube 55 which is filled with a suitable hydraulic oil. The piston 58 has an outer diameter that provides a selected clearance with respect to the wall of the bore 60 such that, as the piston is forced downward with the rod 36, a metering effect is created which retards the rate of downward movement.
The lower end of the cylinder tube 55 is connected to the upper end of the basket 33 which initially houses the upper and lower wiper plugs 34, 35, and is provided with a plurality of longitudinal slots 68 that receive radial stop pins 70 which extend from the outer periphery of a drive flange 75 that rests on top of the upper plug 34. A head 71 on the upper end of the upper plug 34 receives the inner ends of several radially extending shear pins 73 on the drive flange 75 to releasably couple the plug 34 to the flange.
In operation and use, the liner is run and suspended by a hanger from a point near the lower end of the casing which is below the wellhead. The plug launcher tool is connected to the lower end of the mandrel, and the wiper plugs 34 and 35 were previously loaded into the basket 33. The drive rod 36 is in its upper position where the piston 58 is at the upper end of the oil chamber 60. The ports 38 in the housing 40 are open so that fluids can flow therethrough. A dart launcher is provided at the surface.
In order to cement the liner in place, cement slurry is pumped in through the dart launcher, and then a valve is opened to release a lower dart 101. Pressure is applied to the top of the dart 101 to force it through the valve and down into the drill pipe ahead of the cement. Eventually the dart 101 enters the housing 40, passes into the bore of the valve sleeve 44, and to a position where its nose bumps against the drive head 50 of the rod 36. Since the elastomer cups of the dart 101 seal off the bore of the valve sleeve 44, pressure causes the sleeve valve to shift downward against the bias of the coil spring 46, and in so doing, partially close off the radial ports 38.
Pressure on the dart 101 applies downward force to the rod 36 and causes it to shift downward in the body 32, thereby driving both the upper and lower wiper plugs 34 and 35 downward. Such movement is slowed by the action of hydraulic oil that meters upward through the clearance between the piston 58 and the inner wall of the cylinder 60 so that shock loads are dissipated. When the pins 70 on the drive plate 75 reach the bottoms of the slots 68 as shown in
When the proper amount of cement has been pumped into the running string, the upper dart 100 is forced into the drill pipe, followed by whatever fluid is being pumped behind it. The dart 100 travels down through the running string, the mandrel, and into the housing 40. When the cups of the dart 100 enter the valve sleeve 44 and seal off its bore, the valve sleeve shifts downward to close off the lateral ports 38. The dart 100 then engages the lower dart 101, so that applied pressures force the drive rod 36 further down in the body 32 as shown in
As is discussed above, the piston 58 and oil chamber 60 act to damp the motion of the rod when the dart lands, giving a steady action and pressure indication as the rod forces the plug from the basket. However, at the end of each operation, the piston and chamber must be re-set and any maintenance can involve draining the oils from the chamber and disassembling the piston. This is time consuming and complex, necessitating removal of the equipment from the rig site. It is an object of the invention to avoid such problems by providing a replaceable cartridge that can easily be installed at the rig site
A first aspect of the invention provides an apparatus for use in launching cement plugs in a well cementing operation, comprising:
By providing the damper in the form of a cartridge (dashpot) that is located on the actuator, and the use of frangible pins (shear pins) it is a relatively easy job to re-set the apparatus for use by replacing any parts. The problems associated with the previous systems are therefore avoided.
The apparatus typically further comprises a basket that houses at least two cement plugs, the pins being positioned so as to limit movement of the cartridge after each plug is launched from the basket. The shear pins can be replaced after use.
The apparatus is preferably configured such that the piston can move from a first position in which the plugs are located in the basket to an intermediate position in which a first plugs has been ejected from the basket; and from the intermediate position to a final position in which a second plug has been ejected from the basket; the pins being positioned so as to temporarily hold the piston at the first, intermediate and second positions until sheared by application of pressure to the piston.
The apparatus is typically arranged to be connected to a tubular pipe such that one or more darts can be pumped into contact with the piston to apply pressure thereto.
A second aspect of the invention provides a damper cartridge for use in the first aspect of the invention, the cartridge comprising a resilient body having a central bore through which the actuator can project, and further including upper and lower contact surfaces for contacting the piston and pins respectively.
Preferably, the cartridge comprises an upper flange that in use is contacted by the piston, and a lower flange that contacts the pins as the cartridge moves along the cylinder. A compression spring can be wound around the cartridge between the two flanges.
Further aspects of the invention will be apparent from the following description.
This invention provides a piston system that replaces that shown in
In use, a dart 126 (or similar device) is pumped from the surface down the drill pipe, fluid ahead of the dart exiting the cylinder through the ports 110, and the fins of the dart sealing the part of the drill pipe above the dart from that below it. Pumping continues until the head of the dart contacts the piston 118 and the piston is pushed down so as to contact the upper flange of the dashpot 122, the lower flange being held against the shear pin 122a. A spring in the head of the dart and the compressibility of the dashpot damps the impact of the dart but resists significant movement. Consequently, the pressure above the dart will rise as fluid continues to be pumped. This pressure rise can be detected at surface and used to indicate contact of the dart 126 with the piston 118. Pumping continues such that the pressure applied to the shear pin 122a via the dart 126, piston 118 and dashpot 124 exceeds is strength and it breaks. At this point, the dashpot 124 is then free to slide down the actuator rod 120 and the piston 118 and rod 120 start to move, pushing the lowermost plug 114 from the basket 112 (see
When it is desired to eject the second plug 116 from the basket 112, a further dart 128 is pumped from the surface in the same manner as described above. The head of the further dart 128 engages the tail of the first dart 126 and pushes it, and the piston 118 forward compressing the dashpot 124 until sufficient pressure builds to shear the second set of pins 122b (see
When the tool is retrieved to the surface, it is a relatively easy job to re-set the piston and rod, as no fluid filled cylinders need to be re-set or re-charged. The dashpot can be simply replaced, if necessary and a new set of shear pins installed in the cylinder. Assembly or reconditioning of the dashpot can take place off site making setup at the rig site a relatively simple operation of assembling the necessary parts.
The effect of the dashpot spring mounting of the head of the darts act to cushion the impact of the dart on the piston yet still gives a positive indication in the pressure monitored at the surface allowing detection of the contact and motion of the piston in the ejection process.
Various changes can be made within the scope of the invention. For example, if more than two plugs are to be launched, a corresponding number of sets of pins can be installed at suitable positions in the cylinder. The darts can be replaced by other release mechanisms such as balls. Other such changes will be apparent.
Number | Date | Country | Kind |
---|---|---|---|
08172471.8 | Dec 2008 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2009/008657 | 12/1/2009 | WO | 00 | 2/16/2012 |