The present invention pertains to devices for building control systems and particularly damper control devices.
The present invention is a damper control system having energy efficient mechanisms. The invention may use a heat-to-electric power converter such as a thermopile. The invention may store the electric energy in a significantly large capacitor or other electrical storage device. The invention may monitor the position of a damper in a vent or the like and provide start and stop movements of the damper using minimal energy. One among several ways of controlling electrical energy to a damper motor or other electrical mover is to use variable pulse width modulated signals.
a is a diagram of damper in a vent including a camshaft with position switches;
Various guidelines and energy efficiency ratings are effectively forcing water heater manufacturers to look at new ways to eliminate standby losses. Using a flame-powered control system in combination with a flue damper on a water heater is an important step in meeting such guidelines and ratings. However, a flame-powered damper motor control may suffer from the fact that the flame-generated supply voltage varies over a wider range. Too low of a voltage may not guarantee proper damper rotation while too large of a voltage may cause the damper to move past the desired position and continue to rotate the damper to the wrong position. To overcome this, a system may implement at least two thermopile devices in combination with a resistor parallel to the motor which consumes much power.
Also, a system may use end switches that are in series with the motor and act to remove current from the motor at a desired position. This arrangement may further increase the risk of moving the damper past the desired position—if the switches turn on again when the damper overshoots the desired position, the motor may be energized again and drive the damper to the wrong position. These non-ideal solutions appear in place since no flame-powered components which can regulate the motor supply voltage seem to be commercially available.
The present system may solve the problem of the damper moving past the desired position and supply voltage regulation. The system may have application to fossil fuel burning appliances such as a water heater. The system may have the following features. The system may use flame-powered control electronics that are capable of controlling a damper motor supply voltage level. The control electronics may use just one thermopile (for cost reduction) in combination with a storage capacitor having a large capacitance, or other storage device such as a battery or the like, to provide motor supply voltage when needed. An example of a large capacitor rating may be about one farad, although the rating may be significant from a fraction of a farad to several farads, depending on a load that a moving damper presents electrically to the capacitor or equivalent storage device. The capacitor needs to be significant enough to provide power sufficient to drive the damper in accordance with the present system. However, if the power from the storage device is too low, then the driving of the damper may be stopped; for instance, that stopping would be equivalent to a PWM signal having a duty cycle equal to zero. In the meanwhile, the storage capacitor may be recharged. The capacitor or other storage device may be recharged via power management implemented in the control electronics.
A resistor parallel to the damper motor may be eliminated thus significantly reducing the amount of power needed to operate the damper, and enabling the use of just one thermopile combined with a large capacitor or other storage device. The thermopile or other heat-to-electric power converter may be positioned near a normal pilot light or flame used for igniting a flame for an appliance. The thermopile or other heat-to-electric power converter may instead be positioned near much smaller than normal pilot flame or light. Such structure may result in lower costs compared to a system using several thermopiles, a normal pilot flame or a heating flame. In lieu of a thermopile or other heat-to-electric power converter, a solar cell and a source of light may be used as a source of power. These sources and/or other power sources may be used in a combination.
With the present system, moving past the desired position may be avoided by controlling the motor power supply voltage as the damper approaches the desired position. One way of control may be a use of variable pulse-width modulation (PWM), such as reducing the duty cycle to slow it down or vice versa. Another way of control would be to have a transistor connected in series which could be controlled to limit the current to the motor driving the damper to slow it down, stop it, start it or speed it up. Moving past the desired position may be further reduced or avoided by connecting an end switch or switches in the damper assembly such that the switch or switches are not in series with the motor power supply. End switches may provide information about the damper position. The end switch or switches may maintain contact over a range of angles between a desired open or closed damper position. This is to ensure that the control electronics can detect when the desired position is being approached, and operate to control the motor supply voltage or current in order to decelerate the rotation such that the damper reaches and stops at the desired position. An approaching position may be detected with a timer which indicates the time for the damper to reach a certain position. If the time is deemed too short or too long as indicated by the time the damper reaches the desired position according to the switch or switches, then the timer may be re-adjusted (e.g., via feedback) to more accurately indicate the time of the desired position at the next event of damper movement. Such adjustment may be continuous. The timer may instead be regarded as a time period or limit.
The voltage supply may be connected/disconnected, or adjusted, by a switching device (e.g., transistor) in the control electronics. Since application safety is taken care of by the control electronics, a redundant end switch in the damper assembly may be eliminated, further reducing costs. In existing systems, the redundant end switch is connected in series with another end switch and the gas main valve and is implemented to make the system robust to single failures.
A sensor for indicating a position of the damper may be used in lieu of the switch or switches, e.g., switches 44 and 45 in
In addition, the control electronics may be capable of sensing water temperature and controlling gas valves. This may eliminate the need in some systems in that the temperature sensor has to provide a pair of contacts. Instead, a combination of a low cost accurate sensor (e.g., NTC sensor), an electronically sensed temperature set point, and a safety algorithm implemented in the control electronics, may provide accuracy and safety greater than other systems. Although some of these items might not relate directly to damper control, they may constitute an important improvement over other systems.
The present system may have control electronics which are flame-powered and include a microprocessor capable of managing power, reading a state of the damper end switches, and controlling electronic switches that connect power to the damper motor. The system may be powered by means of a single thermopile. When flame power is available, a large storage device may be charged. This device may then provide power for the damper at the end of heat cycle to drive it closed, preserve the remaining charge during standby (flame off), and again provide power to the damper at the beginning of the next heat cycle to drive it open. At the very first manual system start-up, a pilot flame may be used to charge the storage device via the power converter, for example in a case with the damper closed, prior to an opening the damper and igniting the main flame. The main flame and/or the pilot light, having a medium or small size, may be used as a source of heat for a heat-to-electric power converter. For other examples, a solar cell or other kind of light-to-electric power converter may be used along with a source of light such as ambient light, a bulb, or a flame. These different kinds of power sources may be used separately or in combination. The control electronics or controller may have inputs which include the energy storage module status, damper position signals, an appliance request for heat, and other signals useful for operation of the damper control system.
The present damper assembly may appear similar to other assemblies; however, the present assembly may have significant differences in that it has no parallel resistor, the end switches are not in series with the motor supply, and the redundant end switch is not present.
The damper may be driven with unregulated DC voltage. The higher the voltage, the faster the motor spins. If the supply voltage is too low, the motor will not be driven (or will stop being driven) until the voltage is increased above a specified level. For a given voltage, using adjustable pulse width modulation, the motor and driven damper may be slowed by reducing the duty cycle or increased in speed by enlarging the duty cycle.
When the damper is approaching the open or closed positions, voltage regulation to the motor may begin in order to control the speed and allow the motor to slowly coast the damper into place or destined position.
A damper approaching an end position may be detected by a switch (in addition to the end switch) placed before the end position or by a shaped switch-actuating cam such that the switch remains actuated over a specified range of damper rotation. The end position may additionally be determined by timing the duration of rotation. Based on previous operations, the time to reach the end position may be estimated and the PWM can start at a pre-determined time.
Another way to stop the motor and damper at the correct position may include an attempt to stop the motor the instant the end switch is closed. If the switch opens again, it may be assumed that the motor spun past the desired stop point and that the damper control can reverse motor rotation by changing the drive voltage (for example, by reversing the voltage polarity to a DC motor or reversing the step direction to a stepper motor). If the damper control is incapable of reversing or does not reverse the damper motor, then the motor may drive the damper nearly all the way around again in the same direction so as to arrive close to the desired stop point. The motor for moving the damper may be instead an electric solenoid or other electric mover.
Power source 11 may have a thermopile 18 which converts thermal energy into electrical energy. The negative terminal of the thermopile 18 may be connected to a reference voltage or ground terminal 19 of system 10. The power management module 14 may have a capacitor 22 with one terminal connected to terminal 19 and another terminal connected to the positive terminal 21 of thermopile 18. Capacitor 22 may have a value of about 220 microfarads. Another capacitor 23 may be connected in parallel with capacitor 22. Capacitor 23 may have a value of about 100 nanofarads. An inductor 24 may have one end connected to terminal 21 and the other end connected to a drain of a field effect transistor (FET) 25. Inductor 24 may have a value of about 220 microhenries. FET 25 may have a source connected to terminal 19 and a gate connected to a PWM1 output 26 of controller 17. A source of a FET 27 may be connected to the drain of FET 25. A gate of FET 27 may be connected to a PWM2 output 28 of controller 17.
A drain of FET 27 may be connected to a terminal 29 which is connected to one end of a capacitor 31 of the energy storage module 15. The other end of capacitor 31 may be connected to reference terminal 19. Terminal 29 may also be connected to an AD1 input 32 of controller 17. A Schottky diode 34 may have an anode connected to the source of FET 27 and have a cathode connected to the drain of FET 27. Diode 34 may have a model number MBR0530TX. FET's 25 and 27 may have a model number MGSF2N02ELT1.
Capacitor 31 of energy storage module 15 may be used for storing energy for system 10. The value of capacitor 31 may be about one farad. Terminal 29 from capacitor 31 may be connected to an input of damper control module 16, which may be regarded as a motor control. The input of module 16 may be a drain of a FET 35. A gate of FET 35 may be connected to a PWM3 output 36 of controller 17. A source of FET 35 may be connected to a cathode of a diode 37. An anode of diode 37 may be connected to reference terminal 19. A capacitor 38 may be connected in parallel with diode 37. Diode 37 may have a model number S1G. Capacitor 38 may have a value of about 100 nanofarads. FET 35 may have the same model number as FET 27. FET 35, diode 37 and capacitor 38 may constitute the damper control module 16 having a single direction drive motor control for damper assembly 13.
The output of module 16 at terminals 19 and 39 may go to a motor 41 of damper assembly 13. Motor 41 may drive a damper 42 having a camshaft 43. End switches 44 and 45 may be situated proximate to the camshaft 43 such that one switch 44 operates when the camshaft 43 is in one position and the other switch 45 operates when the camshaft 43 is in another position. The operation of switches 44 and 45 relative to camshaft 43 is to indicate to the controller 17 a position of the damper 42 as it is moved by motor 41. Switch 44 has one terminal connected to reference terminal 19 and the other terminal connected to an IN1 input 46 of controller 17. Switch 45 may have one terminal connected to reference terminal 19 and the other terminal connected to an IN2 input 47 of controller 17. The end switches 44 and 45 may be regarded as a switch mechanism 48. Devices, other than a switch or switches, may be used for damper position detection. Controller 17 may be a microcontroller of one kind or another.
Damper control system 10 in
a is a diagram of damper 42 for a vent 61. The damper may have camshaft 43 attached for indicating the position of the damper. In this instance, as driven by motor 41 (not shown in
In the present specification, some of the matter may be of a hypothetical or prophetic nature although stated in another manner or tense.
Although the invention has been described with respect to at least one illustrative example, many variations and modifications will become apparent to those skilled in the art upon reading the present specification. It is therefore the intention that the appended claims be interpreted as broadly as possible in view of the prior art to include all such variations and modifications.
Number | Name | Date | Kind |
---|---|---|---|
3708737 | Johnson | Jan 1973 | A |
3818297 | Ha et al. | Jun 1974 | A |
3847350 | Thompson | Nov 1974 | A |
3849350 | Matsko | Nov 1974 | A |
4204833 | Kmetz et al. | May 1980 | A |
4256257 | Pinkerton | Mar 1981 | A |
4267965 | Everett | May 1981 | A |
4299554 | Williams | Nov 1981 | A |
4324944 | Weihrich et al. | Apr 1982 | A |
RE30936 | Kmetz et al. | May 1982 | E |
4333002 | Kozak | Jun 1982 | A |
4390123 | McCabe | Jun 1983 | A |
4460329 | Trent | Jul 1984 | A |
4508261 | Blank | Apr 1985 | A |
4511790 | Kozak | Apr 1985 | A |
4538980 | Hoyme | Sep 1985 | A |
4588875 | Kozak et al. | May 1986 | A |
4692598 | Yoshida et al. | Sep 1987 | A |
4696639 | Bohan, Jr. | Sep 1987 | A |
4734658 | Bohan, Jr. | Mar 1988 | A |
4742210 | Tsuchiyama et al. | May 1988 | A |
4752210 | Trent | Jun 1988 | A |
4770629 | Bohan, Jr. | Sep 1988 | A |
4778378 | Dolnick et al. | Oct 1988 | A |
4834284 | Vandermeyden | May 1989 | A |
4835670 | Adams et al. | May 1989 | A |
4880376 | Bartels et al. | Nov 1989 | A |
4984981 | Pottebaum | Jan 1991 | A |
4986468 | Deisinger | Jan 1991 | A |
5007156 | Hurtgen | Apr 1991 | A |
5039006 | Habegger | Aug 1991 | A |
5276630 | Baldwin et al. | Jan 1994 | A |
5442157 | Jackson | Aug 1995 | A |
5612629 | Mullin et al. | Mar 1997 | A |
5622200 | Schulze | Apr 1997 | A |
5652525 | Mullin et al. | Jul 1997 | A |
5660328 | Momber | Aug 1997 | A |
5797358 | Brandt et al. | Aug 1998 | A |
5896089 | Bowles | Apr 1999 | A |
5968393 | Demaline | Oct 1999 | A |
5975884 | Dugger | Nov 1999 | A |
6048193 | Juntunen et al. | Apr 2000 | A |
6053130 | Shellenberger | Apr 2000 | A |
6059195 | Adams et al. | May 2000 | A |
6208806 | Langford | Mar 2001 | B1 |
6257871 | Weiss et al. | Jul 2001 | B1 |
6261087 | Bird et al. | Jul 2001 | B1 |
6271505 | Henderson | Aug 2001 | B1 |
6293471 | Stettin et al. | Sep 2001 | B1 |
6350967 | Scott | Feb 2002 | B1 |
RE37745 | Brandt et al. | Jun 2002 | E |
6560409 | Troost, IV | May 2003 | B2 |
6644957 | Weiss | Nov 2003 | B2 |
6684821 | Lannes et al. | Feb 2004 | B2 |
6701874 | Schultz et al. | Mar 2004 | B1 |
6838847 | Dragoi et al. | Jan 2005 | B2 |
6880493 | Clifford | Apr 2005 | B2 |
6934862 | Sharood et al. | Aug 2005 | B2 |
6955301 | Munsterhuis et al. | Oct 2005 | B2 |
6959876 | Chian et al. | Nov 2005 | B2 |
7205737 | Bilodeau | Apr 2007 | B1 |
7205892 | Luebke et al. | Apr 2007 | B2 |
7221862 | Miller et al. | May 2007 | B1 |
7252502 | Munsterhuis | Aug 2007 | B2 |
7275533 | Soeholm et al. | Oct 2007 | B2 |
7317265 | Chian et al. | Jan 2008 | B2 |
7712677 | Munsterhuis et al. | May 2010 | B1 |
7721972 | Bracken et al. | May 2010 | B2 |
7747358 | Troost et al. | Jun 2010 | B2 |
7804047 | Zak et al. | Sep 2010 | B2 |
8113823 | Guzorek | Feb 2012 | B2 |
20050247304 | Weiss | Nov 2005 | A1 |
20060214015 | Furakawa et al. | Sep 2006 | A1 |
20070023333 | Mouhebaty et al. | Feb 2007 | A1 |
20100173252 | Bracken et al. | Jul 2010 | A1 |
Number | Date | Country |
---|---|---|
0356609 | Mar 1990 | EP |
2211331 | Jun 1989 | GB |
Number | Date | Country | |
---|---|---|---|
20110054711 A1 | Mar 2011 | US |