The application relates generally to gas turbine engines and, more particularly, to a frictional damper arrangement for damping vibrations transmitted to a rotor.
Gas turbine engines contain rotating parts (e.g. turbine or compressor rotors, discs, seal runners, etc. . . . ), which are in some cases subject to high vibrations and therefore require mechanical dampers to reduce vibratory stresses to provide adequate field life. Conventional dampers are typically provided in the form of a wire ring installed in a corresponding groove defined in the rotating part. Such ring dampers are subjected to centrifugal loads that create reaction forces between the damper and the mating rotor part. In high speed applications, this force could be enough to stick the damper to the rotor by friction so that no relative sliding is maintained and damper effectiveness is lost because it deforms together with the rotor as one solid body. This phenomenon is referred to as damper lock by friction. When the damper effectiveness is lost, energy dissipation by the damper is significantly reduced resulting in rotor vibratory stress increase that reduces service life and could result in in-flight engine failure.
In one aspect of an embodiment, there is provided a gas turbine engine rotor comprising: a body mounted for rotation about an axis, a circumferential flange projecting from the body about the axis, a circumferential groove defined in a radially inner surface of the circumferential flange, at least one damper ring mounted in the circumferential groove, a circumferential flange extension projecting from the circumferential flange, and a plurality of circumferentially spaced-apart pockets defined in the circumferential flange extension, the circumferential flange extension and the pockets defining a total volume, the pockets collectively forming about 10% to about 90% of said total volume, the circumferentially spaced-apart pockets providing discontinuous strain around the circumferential groove such that a Plock/Pactual ratio is at least equal to 1.0, wherein Plock is a normal force based on the strain between the damper ring and the circumferential groove for a specified coefficient of friction and Pactual is a centrifugal force of the damper ring when the rotor is rotating.
In another aspect, there is provided a gas turbine engine rotor comprising: a body mounted for rotation about an axis, a circumferential flange projecting axially from the body about the axis, a circumferential groove defined in a radially inner surface of the circumferential flange, the radially inner surface of the circumferential flange having a radius (R), at least one damper ring mounted in the circumferential groove, a circumferential flange extension depending radially inwardly from the radially inner surface of the circumferential flange, the circumferential flange extension having a radially inner surface having a radius (r), wherein radius (r) is between about 90% to about 97% of radius (R), and a plurality of circumferentially spaced-apart pockets defined in the radially inner surface of the circumferential flange extension, wherein the circumferential flange extension and the pockets define a total volume, and wherein the pockets collectively form about 10% to about 90% of said total volume.
In a further general aspect, there is provided a gas turbine engine rotor comprising: a body mounted for rotation about an axis, a circumferential flange projecting axially from a first face of the body about the axis, the circumferential flange having an axial length (A), a circumferential groove defined in a radially inner surface of the circumferential flange, at least one damper ring mounted in the circumferential groove, a circumferential flange extension projecting axially from the circumferential flange on a second face of the body opposite to the first face thereof, the circumferential flange extension having an axial length (a), wherein the axial length (a) of the circumferential flange extension is between about 30% to about 40% of the axial length (A) of the circumferential flange, and a plurality of circumferentially spaced-apart pockets defined in the circumferential flange extension, wherein the circumferential flange extension and the pockets define a total volume, and wherein the pockets collectively form about 10% to about 90% of said total volume.
In a still further general aspect, there is provided a method of providing frictional damping for a rotor of a gas turbine engine, the rotor having at least one damper ring mounted in a circumferential groove defined in radially inner surface of a circumferential flange projecting from a body of the rotor, the method comprising: locally varying a stiffness of the body around a circumference thereof until a Plock/Pactual ratio be at least equal to 1.0, wherein Plock is a normal force based on the strain between the damper ring and the circumferential groove for a specified coefficient of friction and Pactual is the centrifugal force of the at least one damper ring when the rotor is rotating.
Reference is now made to the accompanying figures in which:
As shown in
Applicant has found that lock by friction phenomenon can be avoided by locally changing the stiffness of the rotor 20 over its circumference. According to the embodiment shown in
More particularly, the pockets 28 interrupt circumferential, axial and radial stiffness of the rotor 20 locally near the groove 24 where the damper ring 22 is installed. As a result, local circumferential vibratory strain in the bottom of the groove 24 (where the damper ring contacts the groove) changes rapidly in circumferential direction near the pockets 28 as opposed to conventional groove design where circumferential strain distribution over circumference is smoother and in general for axisymmetric part has a sinusoidal shape (see
Accordingly, when Plock/Pactual is less than 1.0 for a given design with damper ring configuration, introduction of pockets may be used to create discontinuous strain and thereby increase the ratio Plock/Pactual to at least 1.0. In the designed shown in
In the embodiment of
Optimal pockets configuration can be achieved, for example, by finite element (FE) contact analysis of a numerical model of a damper ring installed in the rotor groove and subjected to a specified centrifugal load, as for instance described in applicant's application Ser. No. 15/166,588, filed on May 27, 2016, entitled Friction damper, the entire contents of which are herein incorporated by reference. By using computer simulation, each rotor could be specifically designed to allow conventional wire damper to be effectively used in high speed applications by locally increasing Plock. An iterative approach can be taken to establish the optimum volume of material to be added to the grooved flange and to determine the number, the dimension, the shape and location of the pockets to be removed from the material added to the grooved flange in order to increase Plock/Pactual to at least 1.0. The threshold value line contact pressure [lb/in] required to lock the damper by friction could be calculated by FE transient dynamic analysis (with taking in account friction forces) or analytical method, as known by person skilled in the art and as described in application Ser. No. 15/166,588.
While the radial and axial pockets shown in
The pockets can be precisely machined on a CNC grinder. Alternatively, the flange extension and the pockets could be provided by additive manufacturing. Other suitable manufacturing processes are contemplated as well.
The above description is meant to be exemplary only, and one skilled in the art will recognize that changes may be made to the embodiments described without departing from the scope of the invention disclosed. For instance, the pockets could have an orientation different from the illustrated radial and axial orientation. Other modifications which fall within the scope of the present invention will be apparent to those skilled in the art, in light of a review of this disclosure, and such modifications are intended to fall within the appended claims.
This application is a continuation of U.S. patent application Ser. No. 15/278,483, filed Sep. 28, 2016, the entire content of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4817455 | Buxe | Apr 1989 | A |
4848182 | Novotny | Jul 1989 | A |
5373922 | Marra | Dec 1994 | A |
5582077 | Agram | Dec 1996 | A |
7217100 | Benderradji et al. | May 2007 | B2 |
7458769 | Forgue et al. | Dec 2008 | B2 |
8328519 | Denis et al. | Dec 2012 | B2 |
8747054 | Witlicki | Oct 2014 | B2 |
9151170 | El-Aini et al. | Oct 2015 | B2 |
20130004313 | El-Aini | Jan 2013 | A1 |
20140314578 | Xu | Oct 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20200072056 A1 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15278483 | Sep 2016 | US |
Child | 16674264 | US |