The present invention relates to a damper-integrated blower that is applied to cut off the air introduced into a heat recovery ventilator, and more particularly, to a damper-integrated blower having improved airtightness that is capable of performing a ventilating operation, through which fresh outdoor air is moved into indoor air, while keeping the heat energy of the indoor air.
So as to improve the quality of indoor air, generally, deodorization or dust collection is conducted by means of negative ion air purifiers or electric dust collectors, and recently, heat recovery ventilators, which serve as indoor and outdoor air ventilation systems allowing for the loss of indoor heat energy, have been introduced. The heat recovery ventilators are classified into duct type ceiling mounted ventilators, ductless floor mounted ventilators, and window mounted ventilators.
Among them, the duct type ceiling mounted heat recovery ventilators cause large amount of fan motor power consumption due to the generation of static pressure from the duct and need a relatively high installation cost. Accordingly, compact and slim type heat recovery ventilators, which can be installed on windows or window frames, have been recently proposed. The heat recovery ventilator largely includes a total heat exchange element for exchanging the total heat between indoor air and outdoor air and supply and exhaust means like an exhaust blower for exhausting the indoor air and a supply blower for supplying the outdoor air. In this case, a blower type supply and exhaust means having low noise is generally adopted in the compact and slim type heat recovery ventilator.
When the heat recovery ventilator does not operate, by the way, a damper is generally mounted on the supply and exhaust grills to block the indoor and outdoor air, and in this case, it is actually hard to apply the damper to the compact and slim type heat recovery ventilators.
(First Patent Document) KR 20-0424420 Y1 (2006.08.14)
(Second Patent Document) KR 20-0353379 Y1 (2004.06.03)
(Third Patent Document) KR 20-0054122 Y1 (1991.01.28)
(Fourth Patent Document) KR 20-0442683 Y1 (2008.11.25)
(Fifth Patent Document) KR 10-1236422 B1 (2013.02.18)
Accordingly, the present invention has been made in view of the above-mentioned problems occurring in the prior art, and it is an object of the present invention to provide a damper-integrated blower having improved airtightness that is capable of performing a ventilating operation, through which fresh outdoor air is moved into indoor air, while keeping the heat energy of the indoor air, and that is improved in a damper blower as disclosed in Korean Patent No. 10-123622 filed by the same applicant as the invention, which is applied to a compact and slim type heat recovery ventilator having the installation space on a window or window frame so as to block the air introduced thereinto, the conventional damper blower having a damper module formed of a plurality of vanes laid on each other in such a manner as to be open and closed.
It is another object of the present invention to provide a damper-integrated blower having improved airtightness that is capable of solving conventional problems, such as the reduction of airtightness in gaskets laid on each other if foreign materials and dust are accumulated on the gaskets of the plurality of vanes, the generation of noise due to the resistance of air flow, the failure in the simple outer appearance design due to the protrusions of vane holes into which vane rotary shafts of the vanes are inserted and connection rods operated cooperatively with a set of rotary arms of each vane from the exterior of the casing, and high manufacturing cost, and the like.
To accomplish the above-mentioned objects, according to the present invention, there is provided a damper-integrated blower having improved airtightness having a blower fan embedded in a shaft center of a suction port formed on the side peripheral surface thereof and an exhaust port having a fixing frame, the damper-integrated blower characterized in that a blower casing a on which the suction port is formed and a blower casing b located at the opposite side to the blower casing b, so that the outer periphery of the blower casing a and the outer periphery of the blower casing b are fastened to each other by means of a plurality of casing assembling protruding pieces; a vane stopper protrusion is formed at the center of the bottom surface of the exhaust port of the assembled blower, and a vane contact housing part is formed above the exhaust port, while having the same size as the exhaust port; damper motor screw fixing parts are formed integrally with the outer upper surface of the vane contact housing part adjacent to the exhaust port of the blower casing a on which the suction port is formed and on the surface adjacent to the rear side of the upper side of the fixing frame of the exhaust port; a damper motor shaft hole is bored in the outer peripheral surface of the casing of the suction port of a damper motor shaft hole protrusion part which is integrally formed on the outer upper side of the vane contact housing part adjacent to the damper motor screw fixing parts of the blower casing a; a vane rotation shaft protrudes from the inner surface of a damper motor shaft hole protrusion part of the blower casing b facing the damper motor shaft hole protrusion part of the blower casing a; an eccentric damper motor shaft of a damper motor is introduced into the damper motor shaft hole of the blower casing a so as to connect damper motor fixing brackets facing the damper motor shaft hole with the blower casing a; a vane, which is made of fluorocarbon resin having a shape of a plate as a single member for opening and closing the exhaust port, is connected to the damper motor shaft and the vane rotation shaft located on the inner surface of the damper motor shaft hole protrusion part; and a gasket, which is made of a rubber material, is coupled to the four edges of the vane, thus providing a vane module having the vane and the gasket assembled integrally with each other, whereby the damper-integrated blower can be applied to a compact and slim type heat recovery ventilator having small installation space on a window or a window frame, thus reducing manufacturing cost, providing simple outer appearance, and being usefully applied to all kinds of ventilators or blowers for indoor and outdoor air ventilation.
According to the present invention, the damper-integrated blower having improved airtightness is configured wherein the vane module as a single plate is mounted integrally with the exhaust port, unlike the conventional practice wherein a plurality of vanes laid on each other are operated cooperatively with each other, thus removing the reduction of wind pressure and the generation of noise caused by the vanes during the outdoor air is sucked or the indoor air is exhausted.
In case of conventional blowers, further, a rotary arm, a connection rod hinge shaft, and a connection rod having a connection rod hinge hole, which are fitted cooperatively to each other, are mounted on the exterior of the casing, but the damper-integrated blower according to the present invention has only the damper motor mounted on the exterior thereof, thus making the blower compact and simple in configuration.
Accordingly, the damper-integrated blower according to the present invention is useful in the application to heat recovery ventilators for windows or window frames having small installation spaces and further applicable to all kinds of blowers that perform a ventilating operation through which fresh outdoor air is moved into indoor air, while keeping the heat energy of the indoor air, so that upon the application, the number of parts of the blower can be remarkably reduced to save the manufacturing cost.
Hereinafter, an explanation on a damper-integrated blower having improved airtightness according to the present invention will be in detail given with reference to the attached drawing.
According to the present invention, a damper-integrated blower 100 includes a blower fan 101 embedded in a shaft center of a suction port 103 formed on the side peripheral surface thereof and an exhaust port 104 having a fixing frame 104a.
The blower 100 according to the present invention has a blower casing a 105 on which the suction port 103 is formed and a blower casing b 106 located at the opposite side to the blower casing b 105, so that the outer periphery of the blower casing a 105 and the outer periphery of the blower casing b 106 are fastened to each other by means of a plurality of casing assembling protruding pieces 108a, 108b, 108c, 108d, and 108e.
A vane stopper protrusion 104b is formed at the center of the bottom surface of the exhaust port 104 of the assembled blower 100, and a vane contact housing part 107 is formed above the exhaust port 104, while having the same size as the exhaust port 104.
Damper motor screw fixing parts 105a are formed integrally with the outer upper surface of the vane contact housing part 107 adjacent to the exhaust port 104 of the blower casing a 105 on which the suction port 103 is formed and on the surface adjacent to the rear side of the upper side of the fixing frame 104a of the exhaust port 104.
A damper motor shaft hole 105b is bored in the outer peripheral surface of the casing of the suction port 103 of a damper motor shaft hole protrusion part 105b′ which is integrally formed on the outer upper side of the vane contact housing part 107 adjacent to the damper motor screw fixing parts 105a of the blower casing a 105.
A vane rotation shaft 106a a protrudes from the inner surface of a damper motor shaft hole protrusion part 105b″ of the blower casing b 106 facing the damper motor shaft hole protrusion part 105b′ of the blower casing a 105.
An eccentric damper motor shaft 201a of a damper motor 201 is introduced into the damper motor shaft hole 105b of the blower casing a 105 so as to connect damper motor fixing brackets 210b facing the damper motor shaft hole 105b with the blower casing a 105.
A vane 202B, which is made of fluorocarbon resin having a shape of a plate as a single member for opening and closing the exhaust port 104, is connected to the damper motor shaft 201a and the vane rotation shaft 106a located on the inner surface of the damper motor shaft hole protrusion part 105b″, and a gasket 202A, which is made of a rubber material, is coupled to the four edges of the vane 202B, thus providing a vane module 202 having the vane 202B and the gasket 202A assembled integrally with each other.
The vane 202B includes: a square key hole 202a formed on one end of a rod formed on both ends of the upper side edge thereof; a rotary shaft hole 202b formed on the other end of the rod thereof; a rounded gasket assembling part 202d having a plurality of gasket assembling protrusions 202e formed thereon; and a vane protrusion 202c formed stepped higher than the gasket assembling part 202d from the inner sides of the four edges of the gasket assembling part 202d, so that the four edges of the vane protrusion 202c are assembled with the gasket 202A.
The gasket 202A includes: a pocket-shaped gasket compressing part 202f formed on the four edges thereof; a plurality of gasket assembling holes 202h formed on the gasket compressing part 202f in such a manner as to be coupled to the gasket assembling protrusions 202e formed on the gasket assembling part 202d formed on the four edges of the vane 202B; and a sheet-shaped wind shielding frame 202g formed along the four outer edges of the gasket compressing part 202f.
The vane module 202 has a shape of a plate as a single member connected to the damper motor shaft 201a and the vane rotation shaft 106a located on the inner surface of the damper motor shaft hole protrusion part 105b′ within the exhaust port 104 of the blower 100, so as to open and close the exhaust port 104, and at this time, if the blower fan 101 stops, the damper motor 201 operates to move the damper motor shaft 201a in a left direction in the drawing to allow the vane module 202 to be rotated by 90° in a counterclockwise direction by means of the vane rotary shaft 106a and the damper motor shaft 201a fitted to the square key hole 202a. Accordingly, the vane module 202 comes into close contact with the vane stopper protrusion 104b formed at the center of the bottom surface of the exhaust port 104, so that external air is not introduced into the exhaust port 105 by means of the gasket 202A having the wind shielding frame 202g formed on the four edges thereof, thereby improving the airtightness.
By the way, the damper motor 201 which is adapted to open and close the vane module 202 is a small-sized stepping motor, and if main power is applied to the damper motor 201, accordingly, the damper motor 201 is kept closed, without being open by means of wind pressure of the blower fan in the state where the exhaust port is open and external physical pressing or external wind in the state where the exhaust port is closed.
On the other hand, if the blower fan 101 operates to perform blowing, the vane module 202 which has closed the exhaust port 104 is rotated by 90° in a clockwise direction by means of the reverse rotation of the damper motor 201 and thus comes into close contact with the interior of the vane contact housing part 107, thus preventing the interference in the flow of the air discharged to the exhaust port 104. Accordingly, the problems occurring in the conventional blower wherein vanes are laid on each other and installed on the exhaust port, that is, the reduction of the wind pressure by means of the vanes and the generation of noise are completely solved.
The damper-integrated blower having improved airtightness according to the present invention is configured wherein the vane module is mounted integrally with the exhaust port, and accordingly, the configuration of the present invention is more compact than the conventional configuration wherein the damper is separately mounted on the blower casing performing the suction of outdoor air and the exhaust of indoor air.
According to the present invention, further, the blower casing a 105 and the blower casing b 106 of the blower 100 are formed integrally with each other, and accordingly, the vane module 202 can be applied to all kinds of blowers having two separated casings, that is, a suction port side casing and a casing located at the opposite to the suction port side casing.
In the conventional blower, particularly, a rotary arm, a connection rod hinge shaft, and a connection rod having a connection rod hinge hole, which are fitted cooperatively to each other, are mounted on the exterior of the casing, but the damper-integrated blower 100 according to the present invention has only the damper motor 201 mounted on the exterior thereof, thus being applicable to a heat recovery ventilator for a window or window frame having small installation space.
Further, if the damper-integrated blower 100 according to the present invention is applied to all kinds of blowers that perform a ventilating operation through which fresh outdoor air is moved into indoor air, while keeping the heat energy of the indoor air, the number of parts of the blower can be remarkably reduced to save the manufacturing cost.
Number | Date | Country | Kind |
---|---|---|---|
10-2013-0046093 | Apr 2013 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2014/003495 | 4/22/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/175629 | 10/30/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2548607 | Jenn | Apr 1951 | A |
6899516 | Wang | May 2005 | B2 |
7329089 | Senba | Feb 2008 | B2 |
7529088 | Chiu | May 2009 | B2 |
8197193 | Messmer | Jun 2012 | B2 |
8366417 | Fan | Feb 2013 | B2 |
20150159673 | Chang | Jun 2015 | A1 |
20160258438 | Johnson | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
101285477 | Dec 2010 | CN |
2757576 | Jun 1998 | FR |
04208347 | Jul 1992 | JP |
1990-0006691 | Feb 1990 | KR |
20-1998-0028857 | Aug 1998 | KR |
20-0353379 | Jun 2004 | KR |
20-0424420 | Aug 2006 | KR |
10-2007-0015263 | Feb 2007 | KR |
10-2007-0016235 | Feb 2007 | KR |
20-0442683 | Dec 2008 | KR |
10-2012-0101811 | Sep 2012 | KR |
10-1236422 | Feb 2013 | KR |
Entry |
---|
JP04208347—Translation from Espacenet. |
FR2757576—Translation from Espacenet. |
CN101285477—Translation from Espacenet. |
Number | Date | Country | |
---|---|---|---|
20160115965 A1 | Apr 2016 | US |