The present disclosure relates to a hydraulic damper or shock absorber for use in a suspension system of a vehicle. More particularly, to a damper having an integrated electronic system.
This section provides background information related to the present disclosure which is not necessarily prior art.
Shock absorbers are used in conjunction with automotive suspension systems to absorb unwanted vibrations which occur during driving. To absorb the unwanted vibrations, shock absorbers are generally connected between the sprung portion (body) and the unsprung portion (suspension) of the automobile.
In recent years, vehicles may be equipped with an electrically adjustable damping system that includes an electrically adjustable hydraulic shock absorber. Such adjustable shock absorbers may include an electromechanical valve/actuator disposed therein. A main control unit disposed within the vehicle is used to control the damping state of each of the adjustable shock absorber by controlling the actuation of the electromechanical valve.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
The present disclosure provides for a damper system for a vehicle. The damper system includes an electrically adjustable hydraulic shock absorber and an integrated electronic system, such as a printed circuit board assembly. The integrated electronic system includes power drive electronics, and is electrically coupled to the shock absorber. The integrated electronic system is further disposed with the shock absorber.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
The present disclosure will now be described more fully with reference to the accompanying drawings. With reference to
The damper systems 20 serve to dampen the relative motion of the unsprung portion (i.e., front and rear suspensions 12, 14) with respect to the sprung portion (i.e., body 16) of vehicle 10. While the vehicle 10 has been depicted as a passenger car having front and rear axle assemblies, the damper system 20 may be used with other types of vehicles or in other types of applications including, but not limited to, vehicles incorporating non-independent front and/or non-independent rear suspensions, vehicles incorporating independent front and/or independent rear suspensions or other suspension systems known in the art. In addition, the damper system 20 may also be used on all wheeled and/or tracked vehicles. For example the damper system 20 may be used on two and/or three wheels type of vehicles, such as motorcycles and all-terrain vehicles.
Referring now to
In the example embodiment described herein, the damper system 20 is described and depicted as including a twin tube electrically adjustable shock absorber. It is readily understood that the damper system 20 may include other types of electrically adjustable hydraulic shock absorber and is not limited to the shock absorber described herein. For example, the damper system 20 may include an electrically adjustable shock absorber having a mono-tube configuration, a triple-tube configuration, or any other suitable shock absorber design known in the art. Furthermore, in the following description, the shock absorber is connected to the sprung and unsprung portions of the vehicle as a non-inverted shock absorber. It is readily understood that the present disclosure is further applicable to inverted shock absorbers, which differ in the manner in which it is connected to the sprung and unsprung portions of vehicle.
The pressure tube 36 defines a working chamber 44. The piston assembly 38 is slidably disposed within the pressure tube 36 and divides the working chamber 44 into an upper working chamber 46 and a lower working chamber 48.
The piston rod 39 is attached to the piston assembly 38 and extends through the upper working chamber 46 and through a rod guide assembly 50 which closes the upper end of the pressure tube 36. The end of the piston rod 39 opposite to the piston assembly 38 is adapted to be secured to the sprung mass of the vehicle 10.
Valving within the piston assembly 38 controls the movement of fluid between the upper working chamber 46 and the lower working chamber 48 during movement of the piston assembly 38 within the pressure tube 36. Since the piston rod 39 extends through the upper working chamber 46 and not the lower working chamber 48, movement of the piston assembly 38 with respect to the pressure tube 36 causes a difference in the amount of fluid displaced in the upper working chamber 46 and the amount of fluid displaced in the lower working chamber 48. The fluid displaced may flow through the base valve assembly 42, the piston assembly 38, or a combination thereof.
The reserve tube 40 surrounds the pressure tube 36 to define a fluid reservoir chamber 52 located between tubes 40 and 36. The bottom end of the reserve tube 40 is closed by a base cup 54 which can be connected to the unsprung mass of vehicle 10. The upper end of reserve tube 40 is attached to the rod guide assembly 50. The base valve assembly 42 is disposed between the lower working chamber 48 and the reservoir chamber 52 to control the flow of fluid between chambers 48 and 52. When the shock absorber 30 extends in length, an additional volume of fluid is needed in the lower working chamber 48. Thus, fluid may flow from the reservoir chamber 52 to the lower working chamber 48 through, for example, the base valve assembly 42. When the shock absorber 30 compresses in length, an excess of fluid must be removed from the lower working chamber 48, and therefore, fluid may flow from the lower working chamber 48 to the reservoir chamber 52 through the base valve assembly 42, the piston assembly 38, or a combination thereof.
The shock absorber 30 may include one or more electromechanical valves 34. The electromechanical valve 34 may be a digital valve, a variable state valve, or other suitable electromechanical valves. The electromechanical valve 34 may include a coil that controls the actuation of the electromechanical valve 34. More particularly, when power is supplied to the electromechanical valve 34, the coil creates a magnet field that actuates the electromechanical valve 34. The actuation of the electromechanical valve 34 controls the flow of fluid within the shock absorber 30. For example, the electromechanical valve 34 may control the flow of fluid between the upper working chamber 46 and the reservoir chamber 52.
While in the example embodiment the electrically adjustable hydraulic shock absorber is provided as having an electromechanical valve 34, the present disclosure is also applicable to electrically adjustable hydraulic shock absorbers that do not require an electromechanical valve. For example, the present disclosure is applicable to an electrically adjustable hydraulic shock absorber that uses magneto-rheological and electro-rheological damping technologies.
With reference to
The DM 32 may receive a damper setting from a master module 90 disposed in the vehicle 10. More particularly, the DM 32 is communicably coupled to the master module 90 via a communication network. The master module 90 transmits data as an electronic signal via the communication network. The electronic signal may be an analog signal, a pulse width modulated (PWM) signal, CAN, LIN, or other type of signal/digital signal protocol known in the art. Based on the damper setting, the DM 32 controls the electromechanical valve(s) 34 disposed within the shock absorber 30, such that the shock absorber 30 operates at a target damping state.
With reference to
The damping state module 104 determines a control operation for operating the shock absorber 30 at the target damping state based on the data received from the signal module 102. For example, based on the damper setting, the damping state module 104 determines a damping state of the shock absorber 30 and then controls actuation of the electromechanical valve 34 to operate the shock absorber 30 at the damping state determined. Similarly, if multiple electromechanical valves are disposed within the shock absorber 30, the damping state module 104 determines the appropriate activation/deactivation of each of the valves 34.
The damping state module 104 provides a control signal to the coil activation module 106 which in return controls the electrical power provided to a coil of the electromechanical valve 34. More particularly, the coil activation module 106 determines the inputs for a coil drive, as discussed below.
The diagnostic module 108 monitors the operation of the coil activation module 106 and the electromechanical valve 34 for any faults/failures. If a fault is detected the diagnostic module 108 may notify the damping state module 104. The damping state module 104 may then control the shock absorber 30 to a predetermined operation state.
As provided above, information regarding the fault may also be transmitted to a device external of the DM 32. For example, the diagnostic module 108 may transmit data regarding the fault to the signal module 102 which transmits the data to the master module 90.
In operation, the DM 32 controls the damping state of the electrically adjustable hydraulic shock absorber 30. The DM 32 is disposed within the housing 100 as an integrated electronic system. Specifically, as shown in
With reference to
As the coil activation module 106, the microcontroller 202 determines an input for each of the coil drivers 204A-204D. As power drive electronics, the coil drivers 204A-204D control current to, for example, the electromechanical valves based on the input (i.e., signal) from the microcontroller 202. While in the example embodiment four coil drivers are shown, it is readily understood that one or more coil drivers may be used based on the number of electromechanical valves/coils disposed within the shock absorber 30. Specifically, each electromechanical valve has a dedicated coil driver.
As the diagnostic module 108, the microcontroller 202 may monitor the electrical current powering each electromechanical valve 34 as it responds to a command to change the damper setting. Accordingly, the microcontroller 202 can monitor the electrical current levels to insure that the electrical components, such as the coil drivers 204A-204D and electromechanical valve coils, are working properly. Comparing the electrical current level to predetermined limits ensures coil drivers 204A-204D (i.e., the power drive electronics) are not experiencing a fault such as a short circuit, open circuit, temperature extreme, or other fault.
Additionally, with additional logic, the transient current profile, when recorded over time, can indicate the mechanical state of the electromechanical valve. As the electromechanical valve moves from the energized state to the unenergized state and vice versa, changes in the inductance of the electromechanical valve affect the electrical current. Inspection of this electrical current profile can, thus, determine the mechanical state of the electromechanical valve 34 as well as the electrical state.
The transceiver 206 may be provided as a LIN transceiver. The transceiver communicably couples the PCBA 200 to the communication bus provided as the communication link between the DM 32 and devices external of the DM 32, such as the master module 90. The communication bus may be a LIN bus 209 which is external of the PCBA 200.
The PCBA 200 may also include a high side driver 208, a PWM input 210, a timer 212, a voltage regulator 214, a protection circuit 216, and a temperature sensor 218. The high side driver 208 is electrically coupled to each of the coil drivers 204A-204D. The high side driver 208 acts like a master switch for controlling the power supply to each of the coil drivers 204A-204D. The PWM input 210 may be provided as an alternative communication link (reference number 222 in
The temperature sensor 218 detects the ambient temperature of the PCBA 200. The temperature sensor 218 provides the information to the microcontroller 202. The microcontroller 202 may then determine the proper operation of the damper system 20 based on the temperature detected. Accordingly, the components disposed on the PCBA 200 are protected from extreme temperatures.
The PCBA 200 receives power from a vehicle battery. The voltage regulator 214 conditions the electrical power from the vehicle battery to a voltage level suitable for the components on the PCBA 200. The protection circuit 216 may be provided as a battery line load dump transient and reverse voltage protection circuit. The protection circuit protects the components of the PCBA 200 from electrical transients which could damage or disrupt proper operation of the components on the PCBA 200.
The PCBA 200 may couple to the power supply and the communication bus via a connector 202 (
With reference to
With reference to
With reference to
With reference to
The lead frame 250 couples the PCBA 200 to the electromechanical valve. For example, the lead frame 250 couples the coil driver disposed on the PCBA 200 to an end of the electromagnetic valve 34 that is farthest from the rod guide assembly 50. Thus, the configuration has an inverted arrangement.
With reference to
With reference to
The cap 382 may or may not be a load bearing structure. Specifically the PCBA 200 has a ring like structure, such that the piston rod 39 (not shown) may extend through both the PCBA 200 and the cap 382. Furthermore, the PCBA 200 is electrically coupled to an electromechanical valve disposed within a valve cavity 386. Based on the distance between the PCBA 200 and the electromechanical valve, the PCBA 200 may be directly connected to the electromechanical valve or may be indirectly connected via, for example, a lead frame.
As provided above, the present disclosure is also applicable to electrically adjustable hydraulic shock absorbers that do not include an electromagnetic valve. For example, if the shock absorber utilizes magneto-rheological and electro-rheological damping technologies, the damping module may operate the shock absorber using known methods that utilize the magneto-rheological and electro-rheological damping technologies. Accordingly, instead of the electromechanical valve, the PCBA 200 controls the current supplied to a coil disposed within the shock absorber.
As provided above, the PCBA 200 is an integrated electronic system that electrically powers coil(s) to create a magnetic field. The magnetic field actuates the electromechanical valve (i.e., a hydraulic valve), thereby adjusting the damping characteristic of the shock absorber. By integrating an electronics system with the electrically adjustable hydraulic shock absorber, the complexity of a vehicle damping system/suspension system is reduced. In essence, each damper system 20 includes its own power drive electronics for controlling the damping state of the shock absorber 30.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
In this application, including the definitions below, the term module may be replaced with the term circuit. The term module may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC); a digital, analog, or mixed analog/digital discrete circuit; a digital, analog, or mixed analog/digital integrated circuit; a combinational logic circuit; a field programmable gate array (FPGA); a processor (shared, dedicated, or group) that executes code; memory (shared, dedicated, or group) that stores code executed by a processor; other suitable hardware components that provide the described functionality; or a combination of some or all of the above, such as in a system-on-chip.
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
When an element is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element, it may be directly on, engaged, connected or coupled to the other element, or intervening elements may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element, there may be no intervening elements present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements and/or components, these elements and/or components should not be limited by these terms. These terms may be only used to distinguish one element or component from another. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element or component discussed could be termed a second element or component without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
This application claims the benefit of U.S. Provisional Application No. 61/770,426, filed on Feb. 28, 2013. The entire disclosure of the above application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3945474 | Palmer | Mar 1976 | A |
4552324 | Hrusch | Nov 1985 | A |
4589528 | Axthammer et al. | May 1986 | A |
4749070 | Moser et al. | Jun 1988 | A |
4776437 | Ishibashi et al. | Oct 1988 | A |
4788489 | Kobayashi et al. | Nov 1988 | A |
4846317 | Hudgens | Jul 1989 | A |
4850460 | Knecht et al. | Jul 1989 | A |
4867476 | Yamanaka et al. | Sep 1989 | A |
4872537 | Warner | Oct 1989 | A |
4892328 | Kurtzman et al. | Jan 1990 | A |
4909536 | Hale | Mar 1990 | A |
4943083 | Groves et al. | Jul 1990 | A |
4958706 | Richardson et al. | Sep 1990 | A |
4969662 | Stuart | Nov 1990 | A |
4973854 | Hummel | Nov 1990 | A |
4986393 | Preukschat et al. | Jan 1991 | A |
5038613 | Takenaka et al. | Aug 1991 | A |
5133434 | Kikushima et al. | Jul 1992 | A |
5143185 | Klein et al. | Sep 1992 | A |
5154442 | Milliken | Oct 1992 | A |
5189614 | Mitsuoka et al. | Feb 1993 | A |
5200895 | Emura et al. | Apr 1993 | A |
5242190 | Morris | Sep 1993 | A |
5293968 | Schuelke et al. | Mar 1994 | A |
5299488 | Kadlicko et al. | Apr 1994 | A |
5350187 | Shinozaki | Sep 1994 | A |
5350983 | Miller et al. | Sep 1994 | A |
5360089 | Nakamura et al. | Nov 1994 | A |
5363945 | Lizell et al. | Nov 1994 | A |
5383679 | Nakamura et al. | Jan 1995 | A |
5396973 | Schwemmer et al. | Mar 1995 | A |
5404973 | Katoh et al. | Apr 1995 | A |
5430648 | Sasaki | Jul 1995 | A |
5485417 | Wolf et al. | Jan 1996 | A |
5487455 | Feigel | Jan 1996 | A |
5497325 | Mine | Mar 1996 | A |
5497862 | Hoya | Mar 1996 | A |
5532921 | Katsuda | Jul 1996 | A |
5570762 | Jentsch et al. | Nov 1996 | A |
5597054 | Nagai et al. | Jan 1997 | A |
5632503 | Raad et al. | May 1997 | A |
5653315 | Ekquist et al. | Aug 1997 | A |
5655633 | Nakadate et al. | Aug 1997 | A |
5690195 | Kruckemeyer et al. | Nov 1997 | A |
5725239 | de Molina | Mar 1998 | A |
5775470 | Feigel | Jul 1998 | A |
5803482 | Kim | Sep 1998 | A |
5833036 | Gillespie | Nov 1998 | A |
5845672 | Reuter et al. | Dec 1998 | A |
5860497 | Takahashi | Jan 1999 | A |
5878851 | Carlson et al. | Mar 1999 | A |
5913391 | Jeffries et al. | Jun 1999 | A |
5937976 | Grundei | Aug 1999 | A |
5950775 | Achmad | Sep 1999 | A |
5967268 | de Molina et al. | Oct 1999 | A |
5987369 | Kwak et al. | Nov 1999 | A |
6003644 | Tanaka | Dec 1999 | A |
6036500 | Francis et al. | Mar 2000 | A |
6095489 | Kaneko et al. | Aug 2000 | A |
6109400 | Ayyildiz et al. | Aug 2000 | A |
6155391 | Kashiwagi et al. | Dec 2000 | A |
6213262 | Bell | Apr 2001 | B1 |
6273224 | Achmad | Aug 2001 | B1 |
6296091 | Hamilton | Oct 2001 | B1 |
6302248 | Nakadate | Oct 2001 | B1 |
6321888 | Reybrouck et al. | Nov 2001 | B1 |
6343677 | Bell | Feb 2002 | B2 |
6427986 | Sakai et al. | Aug 2002 | B1 |
6460664 | Steed et al. | Oct 2002 | B1 |
6533294 | Germain et al. | Mar 2003 | B1 |
6588726 | Osterhart et al. | Jul 2003 | B2 |
6616124 | Oliver et al. | Sep 2003 | B2 |
6651787 | Grundei | Nov 2003 | B2 |
6655512 | Moradmand et al. | Dec 2003 | B2 |
6672436 | Keil et al. | Jan 2004 | B1 |
6708803 | Jensen | Mar 2004 | B2 |
6814193 | Grundei | Nov 2004 | B2 |
6851528 | Lemieux | Feb 2005 | B2 |
6879898 | Ghoneim et al. | Apr 2005 | B2 |
6904344 | LaPlante et al. | Jun 2005 | B2 |
6959797 | Mintgen et al. | Nov 2005 | B2 |
6964325 | Maes | Nov 2005 | B2 |
6978872 | Turner | Dec 2005 | B2 |
7032912 | Nicot et al. | Apr 2006 | B2 |
7168709 | Niwa et al. | Jan 2007 | B2 |
7214103 | Kim et al. | May 2007 | B2 |
7234574 | Matsunaga et al. | Jun 2007 | B2 |
7234707 | Green et al. | Jun 2007 | B2 |
7273138 | Park | Sep 2007 | B2 |
7286919 | Nordgren et al. | Oct 2007 | B2 |
7318595 | Lamela et al. | Jan 2008 | B2 |
7347307 | Joly | Mar 2008 | B2 |
7374028 | Fox | May 2008 | B2 |
7389994 | Trudeau et al. | Jun 2008 | B2 |
7413062 | Vandewal | Aug 2008 | B2 |
7416189 | Wilde et al. | Aug 2008 | B2 |
7475538 | Bishop | Jan 2009 | B2 |
7493995 | Sas et al. | Feb 2009 | B2 |
7604101 | Park | Oct 2009 | B2 |
7611000 | Naito | Nov 2009 | B2 |
7628253 | Jin et al. | Dec 2009 | B2 |
7644933 | Brookes et al. | Jan 2010 | B2 |
7654369 | Murray et al. | Feb 2010 | B2 |
7654370 | Cubalchini, Jr. | Feb 2010 | B2 |
7680573 | Ogawa | Mar 2010 | B2 |
7722405 | Jaklin et al. | May 2010 | B2 |
7770983 | Park | Aug 2010 | B2 |
7775333 | Or et al. | Aug 2010 | B2 |
7849983 | St. Clair et al. | Dec 2010 | B2 |
7878311 | Van Weelden et al. | Feb 2011 | B2 |
7896311 | Jee | Mar 2011 | B2 |
7912603 | Stiller et al. | Mar 2011 | B2 |
7926513 | Ishibashi et al. | Apr 2011 | B2 |
7931282 | Kolp et al. | Apr 2011 | B2 |
7942248 | St. Clair et al. | May 2011 | B2 |
7946163 | Gartner | May 2011 | B2 |
7946399 | Masamura | May 2011 | B2 |
7967116 | Boerschig | Jun 2011 | B2 |
7967117 | Abe | Jun 2011 | B2 |
7992692 | Lee et al. | Aug 2011 | B2 |
7997394 | Yamaguchi | Aug 2011 | B2 |
8056392 | Ryan et al. | Nov 2011 | B2 |
8075002 | Pionke et al. | Dec 2011 | B1 |
8116939 | Kajino et al. | Feb 2012 | B2 |
8132654 | Widla et al. | Mar 2012 | B2 |
8136644 | Sonsterod | Mar 2012 | B2 |
8160774 | Li et al. | Apr 2012 | B2 |
8214106 | Ghoneim et al. | Jul 2012 | B2 |
8267382 | Yazaki et al. | Sep 2012 | B2 |
8393446 | Haugen | Mar 2013 | B2 |
8430217 | Hennecke et al. | Apr 2013 | B2 |
8567575 | Jung et al. | Oct 2013 | B2 |
8616351 | Roessle et al. | Dec 2013 | B2 |
8666596 | Arenz | Mar 2014 | B2 |
8684367 | Haugen | Apr 2014 | B2 |
8695766 | Yamashita et al. | Apr 2014 | B2 |
8794405 | Yamashita et al. | Aug 2014 | B2 |
8844687 | Yu et al. | Sep 2014 | B2 |
9150077 | Roessle | Oct 2015 | B2 |
9163691 | Roessle | Oct 2015 | B2 |
9217483 | Dunaway | Dec 2015 | B2 |
20020133277 | Koh | Sep 2002 | A1 |
20030164193 | Lou | Sep 2003 | A1 |
20030192755 | Barbison et al. | Oct 2003 | A1 |
20040090020 | Braswell | May 2004 | A1 |
20040199313 | Dellinger | Oct 2004 | A1 |
20050029063 | Neumann | Feb 2005 | A1 |
20050056502 | Maes | Mar 2005 | A1 |
20050085969 | Kim | Apr 2005 | A1 |
20050113997 | Kim | May 2005 | A1 |
20050173849 | Vandewal | Aug 2005 | A1 |
20060038149 | Albert et al. | Feb 2006 | A1 |
20060124415 | Joly | Jun 2006 | A1 |
20060219503 | Kim | Oct 2006 | A1 |
20070034466 | Paesmans et al. | Feb 2007 | A1 |
20070051574 | Keil et al. | Mar 2007 | A1 |
20080054537 | Harrison | Mar 2008 | A1 |
20080243336 | Fitzgibbons | Oct 2008 | A1 |
20080250844 | Gartner | Oct 2008 | A1 |
20080264743 | Lee et al. | Oct 2008 | A1 |
20080277218 | Fox | Nov 2008 | A1 |
20090071772 | Cho et al. | Mar 2009 | A1 |
20090078517 | Maneyama et al. | Mar 2009 | A1 |
20090084647 | Maneyama et al. | Apr 2009 | A1 |
20090132122 | Kim et al. | May 2009 | A1 |
20090192673 | Song et al. | Jul 2009 | A1 |
20100001217 | Jee et al. | Jan 2010 | A1 |
20100044172 | Jee et al. | Feb 2010 | A1 |
20100066051 | Haugen | Mar 2010 | A1 |
20100163354 | Braun | Jul 2010 | A1 |
20100181154 | Panichgasem | Jul 2010 | A1 |
20100191420 | Honma et al. | Jul 2010 | A1 |
20100211253 | Morais Dos Santos et al. | Aug 2010 | A1 |
20110035091 | Yamamoto | Feb 2011 | A1 |
20110056780 | St.Clair et al. | Mar 2011 | A1 |
20110056783 | Teraoka et al. | Mar 2011 | A1 |
20110079475 | Roessle et al. | Apr 2011 | A1 |
20110101579 | Polakowski et al. | May 2011 | A1 |
20110198172 | Whan | Aug 2011 | A1 |
20110240424 | Beck | Oct 2011 | A1 |
20110298399 | Ogawa et al. | Dec 2011 | A1 |
20120018263 | Marking | Jan 2012 | A1 |
20120048665 | Marking | Mar 2012 | A1 |
20120181126 | de Kock | Jul 2012 | A1 |
20120186922 | Battlogg et al. | Jul 2012 | A1 |
20120228072 | Mangelschots et al. | Sep 2012 | A1 |
20130090808 | Lemme et al. | Apr 2013 | A1 |
20130234379 | Panichgasem | Sep 2013 | A1 |
20130313057 | Tsukahara et al. | Nov 2013 | A1 |
20130328277 | Ryan et al. | Dec 2013 | A1 |
20130340865 | Manger et al. | Dec 2013 | A1 |
20130341842 | Weber | Dec 2013 | A1 |
20140102842 | Roessle et al. | Apr 2014 | A1 |
20140125018 | Brady et al. | May 2014 | A1 |
20140202808 | Spyche, Jr. et al. | Jul 2014 | A1 |
20140231200 | Katayama | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
3928343 | Feb 1991 | DE |
19853277 | May 2000 | DE |
10238657 | Mar 2004 | DE |
1588072 | Oct 2005 | EP |
1746302 | Jan 2007 | EP |
2123922 | Feb 1984 | GB |
61125907 | Jun 1986 | JP |
62-253506 | Nov 1987 | JP |
06-026546 | Feb 1994 | JP |
07-113434 | May 1995 | JP |
7056311 | Jun 1995 | JP |
08-260747 | Oct 1996 | JP |
09-217779 | Aug 1997 | JP |
2002-349630 | Dec 2002 | JP |
9218788 | Oct 1992 | WO |
WO 2010029133 | Mar 2010 | WO |
Entry |
---|
Search Report and Written Opinion dated Jun. 20, 2014 in corresponding PCT Application No. PCT/US2014/019534 (12 pages). |
Number | Date | Country | |
---|---|---|---|
20140238797 A1 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
61770426 | Feb 2013 | US |