Damper with printed circuit board carrier

Information

  • Patent Grant
  • 10479160
  • Patent Number
    10,479,160
  • Date Filed
    Tuesday, August 14, 2018
    5 years ago
  • Date Issued
    Tuesday, November 19, 2019
    4 years ago
Abstract
An electrically adjustable hydraulic shock absorber includes a tube defining a fluid chamber and a piston assembly positioned within the tube. The piston assembly divides the fluid chamber into a first working chamber and a second working chamber. A piston rod is attached to the piston assembly and projects out of the tube. Further, a rod guide guides the piston rod and an electronically-controlled valve is positioned within the rod guide for controlling a damping state of the shock absorber. A circuit board is positioned around the piston rod for actuating the electronically-controlled valve. A carrier housing receives the circuit board and engages with the rod guide. The carrier housing includes an inner column and an outer column. A bumper cap is mounted on the carrier housing and is engaged with the inner and outer columns.
Description
FIELD

The present disclosure relates to a hydraulic damper or shock absorber for use in a suspension system of a vehicle. More particularly, to a damper having an integrated electronic system.


BACKGROUND

This section provides background information related to the present disclosure which is not necessarily prior art.


Shock absorbers are used in conjunction with automotive suspension systems to absorb unwanted vibrations which occur during driving. To absorb the unwanted vibrations, shock absorbers are generally connected between the sprung portion (body) and the unsprung portion (suspension) of the automobile.


In recent years, vehicles may be equipped with an electrically adjustable damping system that includes an electrically adjustable hydraulic shock absorber. Such adjustable shock absorbers may include an electromechanical valve/actuator disposed therein. A main control unit disposed within the vehicle is used to control the damping state of each of the adjustable shock absorber by controlling the actuation of the electromechanical valve.


SUMMARY

This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.


The present disclosure relates to a damper system for a vehicle. The damper system includes an electrically adjustable hydraulic shock absorber and a bumper cap assembly that is coupled to an end of the shock absorber.


In an aspect of the present disclosure, the bumper cap assembly for an electrically adjustable hydraulic shock absorber is provided. The shock absorber includes a rod guide, a piston rod guided by the rod guide, and an electronically-controlled valve positioned within the rod guide. The electronically-controlled valve controls a damping state of the shock absorber. The bumper cap assembly includes a circuit board positioned around the piston rod. The circuit board is adapted to actuate the electronically-controlled valve. Further, a carrier housing receives the circuit board and engages with the rod guide. The carrier housing includes an inner column and an outer column located radially outwards with respect to the inner column. The bumper cap assembly further includes a bumper cap mounted on the carrier housing and engaged with the inner column and the outer column. Further, the inner column and the outer column transfer compressive axial loads from the bumper cap to the rod guide during an operation of the shock absorber. The carrier housing includes features that allows easy installation, sealing, and protection of the components mounted within the carrier housing from the environment. The carrier housing has structural features that minimize deflection and transfer energy to the shock absorber, thereby protecting the components mounted therein.


An electrically adjustable hydraulic shock absorber includes a tube defining a fluid chamber and a piston assembly positioned within the tube. The piston assembly divides the fluid chamber into a first working chamber and a second working chamber. A piston rod is attached to the piston assembly and projects out of the tube. Further, a rod guide guides the piston rod and an electronically-controlled valve is positioned within the rod guide for controlling a damping state of the shock absorber. A circuit board is positioned around the piston rod. The circuit board is adapted to actuate the electronically-controlled valve. A carrier housing receives the circuit board and engages with the rod guide. The carrier housing includes an inner column and an outer column located radially outwards with respect to the inner column. A bumper cap is mounted on the carrier housing and engaged with the inner column and the outer column. Further, the inner column and the outer column transfer compressive axial loads from the bumper cap to the rod guide during an operation of the shock absorber.


An electrically adjustable hydraulic shock absorber includes a tube defining a fluid chamber and a piston assembly positioned within the tube. The piston assembly divides the fluid chamber into a first working chamber and a second working chamber. A piston rod is attached to the piston assembly and projects out of the tube. Further, a rod guide guides the piston rod and an electronically-controlled valve is positioned within the rod guide for controlling a damping state of the shock absorber. A circuit board is positioned around the piston rod. The circuit board is adapted to actuate the electronically-controlled valve. Further, at least one terminal pin connects the circuit board with the electronically-controlled valve. The at least one terminal pin is directly connected with the circuit board. A carrier housing receives the circuit board and engages with the rod guide. The carrier housing includes an inner column, an outer column located radially outwards with respect to the inner column, and a receiving portion for receiving the at least one terminal pin therethrough. A bumper cap is mounted on the carrier housing and engaged with the inner column and the outer column. Further, the inner column and the outer column transfer compressive axial loads from the bumper cap to the rod guide during an operation of the shock absorber.


Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.





DRAWINGS

The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.



FIG. 1 is an illustration of a vehicle having a damper system which incorporates an electrically adjustable hydraulic shock absorber and a damper module in accordance with the present disclosure;



FIG. 2 is a perspective view of an example of the damper system;



FIG. 3 is a partial cross-sectional view of the shock absorber of the damper system;



FIG. 4 is an enlarged perspective view of a housing which houses an integrated electronic system;



FIG. 5 is an example functional block diagram of the damper module;



FIG. 6 illustrates a printed circuit board assembly (PCBA) disposed within the shock absorber;



FIG. 7 is a cross-sectional view of the damper system with an enlarged view of a rod guide assembly having the PCBA;



FIG. 8 is an example block diagram of the PCBA;



FIG. 9 illustrates an internal annular arrangement of the PCBA;



FIG. 10 illustrates an internal vertical arrangement of the PCBA;



FIG. 11 illustrates an inverted-wet arrangement of the PCBA;



FIG. 12 illustrates an external arrangement of the PCBA;



FIG. 13 illustrates a cap arrangement of the PCBA;



FIG. 14 illustrates a damper system having a bumper cap arrangement of the PCBA;



FIG. 15 is a perspective view of a bumper cap assembly of FIG. 14 disposed on a rod guide assembly of a shock absorber;



FIG. 16 is a partial cross-sectional view of FIG. 15;



FIG. 17 is an exploded view of the bumper cap assembly of FIG. 15;



FIGS. 18 and 19 are perspective views of a bumper cap of the bumper cap assembly;



FIG. 20 is a perspective view of an integrated electronic assembly having a PCBA;



FIG. 21 is a perspective view of a bumper cap assembly having solenoids;



FIG. 22 is a cross-sectional view of the bumper cap assembly of FIG. 21;



FIG. 23 is a perspective view of another shock absorber constructed in accordance with the teachings of the present disclosure;



FIG. 24 is a partial cross-sectional view of the shock absorber depicted in FIG. 23;



FIG. 25 is an enlarged cross-sectional view of a portion of the shock absorber;



FIG. 26 is a perspective view of a PCBA housing of the shock absorber;



FIG. 27 is another perspective view of the PCBA housing;



FIG. 28 is a fragmentary cross-sectional view of a portion of the shock absorber;



FIG. 29 is a fragmentary perspective view of a carrier of the shock absorber;



FIG. 30 is a fragmentary cross-sectional view of a portion of the shock absorber; and



FIG. 31 is a cross-sectional view of a portion of another shock absorber constructed in accordance with the teachings of the present disclosure.





Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.


DETAILED DESCRIPTION

The present disclosure will now be described more fully with reference to the accompanying drawings. With reference to FIG. 1, an example of a vehicle 10 incorporating a suspension system having dampers with an integrated electronic system is now presented. The vehicle 10 includes a rear suspension 12, a front suspension 14, and a body 16. The rear suspension 12 has a transversely extending rear axle assembly (not shown) adapted to operatively support a pair of rear wheels 18. The rear axle assembly is attached to the body 16 by means of a pair of damper systems 20 and by a pair of springs 22. Similarly, the front suspension 14 includes a transversely extending front axle assembly (not shown) to operatively support a pair of front wheels 24. The front axle assembly is attached to the body 16 by means of a pair of the damper systems 20 and by a pair of springs 26.


The damper systems 20 serve to dampen the relative motion of the unsprung portion (i.e., front and rear suspensions 12, 14) with respect to the sprung portion (i.e., body 16) of vehicle 10. While the vehicle 10 has been depicted as a passenger car having front and rear axle assemblies, the damper system 20 may be used with other types of vehicles or in other types of applications including, but not limited to, vehicles incorporating non-independent front and/or non-independent rear suspensions, vehicles incorporating independent front and/or independent rear suspensions or other suspension systems known in the art. In addition, the damper system 20 may also be used on all wheeled and/or tracked vehicles. For example the damper system 20 may be used on two and/or three wheels type of vehicles, such as motorcycles and all-terrain vehicles.


Referring now to FIGS. 2-3, an example of the damper system 20 is shown in greater detail. The damper system 20 includes an electrically adjustable hydraulic shock absorber 30 (“shock absorber 30” hereinafter) and a damper module (DM) 32. As shown in FIG. 3, the shock absorber 30 may have a twin tube configuration. The shock absorber 30 may include a pressure tube 36, a piston assembly 38, a piston rod 39, a reserve tube 40 and a base valve assembly 42.


In the example embodiment described herein, the damper system 20 is described and depicted as including a twin tube electrically adjustable shock absorber. It is readily understood that the damper system 20 may include other types of electrically adjustable hydraulic shock absorber and is not limited to the shock absorber described herein. For example, the damper system 20 may include an electrically adjustable shock absorber having a mono-tube configuration, a triple-tube configuration, or any other suitable shock absorber design known in the art. Furthermore, in the following description, the shock absorber is connected to the sprung and unsprung portions of the vehicle as a non-inverted shock absorber. It is readily understood that the present disclosure is further applicable to inverted shock absorbers, which differ in the manner in which it is connected to the sprung and unsprung portions of vehicle.


The pressure tube 36 defines a working chamber 44. The piston assembly 38 is slidably disposed within the pressure tube 36 and divides the working chamber 44 into an upper working chamber 46 and a lower working chamber 48.


The piston rod 39 is attached to the piston assembly 38 and extends through the upper working chamber 46 and through a rod guide assembly 50 which closes the upper end of the pressure tube 36. The end of the piston rod 39 opposite to the piston assembly 38 is adapted to be secured to the sprung mass of the vehicle 10.


Valving within the piston assembly 38 controls the movement of fluid between the upper working chamber 46 and the lower working chamber 48 during movement of the piston assembly 38 within the pressure tube 36. Since the piston rod 39 extends through the upper working chamber 46 and not the lower working chamber 48, movement of the piston assembly 38 with respect to the pressure tube 36 causes a difference in the amount of fluid displaced in the upper working chamber 46 and the amount of fluid displaced in the lower working chamber 48. The fluid displaced may flow through the base valve assembly 42, the piston assembly 38, or a combination thereof.


The reserve tube 40 surrounds the pressure tube 36 to define a fluid reservoir chamber 52 located between tubes 40 and 36. The bottom end of the reserve tube 40 is closed by a base cup 54 which can be connected to the unsprung mass of vehicle 10. The upper end of reserve tube 40 is attached to the rod guide assembly 50. The base valve assembly 42 is disposed between the lower working chamber 48 and the reservoir chamber 52 to control the flow of fluid between chambers 48 and 52. When the shock absorber 30 extends in length, an additional volume of fluid is needed in the lower working chamber 48. Thus, fluid may flow from the reservoir chamber 52 to the lower working chamber 48 through, for example, the base valve assembly 42. When the shock absorber 30 compresses in length, an excess of fluid must be removed from the lower working chamber 48, and therefore, fluid may flow from the lower working chamber 48 to the reservoir chamber 52 through the base valve assembly 42, the piston assembly 38, or a combination thereof.


The shock absorber 30 may include one or more electromechanical valves 34. The electromechanical valve 34 may be a digital valve, a variable state valve, or other suitable electromechanical valves. The electromechanical valve 34 may include a coil that controls the actuation of the electromechanical valve 34. More particularly, when power is supplied to the electromechanical valve 34, the coil creates a magnet field that actuates the electromechanical valve 34. The actuation of the electromechanical valve 34 controls the flow of fluid within the shock absorber 30. For example, the electromechanical valve 34 may control the flow of fluid between the upper working chamber 46 and the reservoir chamber 52.


While in the example embodiment the electrically adjustable hydraulic shock absorber is provided as having an electromechanical valve 34, the present disclosure is also applicable to electrically adjustable hydraulic shock absorbers that do not require an electromechanical valve. For example, the present disclosure is applicable to an electrically adjustable hydraulic shock absorber that uses magneto-rheological and electro-rheological damping technologies.


With reference to FIGS. 4-5, an example of the DM 32 is presented. The DM 32 is disposed at the shock absorber 30 in a housing 100. The DM 32 controls the damping characteristics of the shock absorber. For example, in the example embodiment, the DM 32 may control the damping characteristics of the shock absorber 30 by controlling the actuation of the electromechanical valve 34 disposed within the shock absorber 30. Accordingly, each damper system 20 includes a DM that controls the operation of the shock absorber 30, as described in further detail below.


The DM 32 may receive a damper setting from a master module 90 disposed in the vehicle 10. More particularly, the DM 32 is communicably coupled to the master module 90 via a communication network. The master module 90 transmits data as an electronic signal via the communication network. The electronic signal may be an analog signal, a pulse width modulated (PWM) signal, CAN, LIN, or other type of signal/digital signal protocol known in the art. Based on the damper setting, the DM 32 controls the electromechanical valve(s) 34 disposed within the shock absorber 30, such that the shock absorber 30 operates at a target damping state.


With reference to FIG. 5, an example of the DM 32 is now presented. The DM 32 includes a signal module 102, a damping state module 104, a coil activation module 106, and a diagnostic module 108. The signal module 102 decodes the electronic signal received from a device external of the DM 32, such as the master module 90. For example, the signal module 102 receives the damper setting from the master module 90. The signal module 102 may also transmit data to the device external of the DM. For example, the signal module 102 may transmit data regarding a fault detected by the diagnostic module 108. It is readily understood that the signal module 102 may receive an electronic signal from other devices external of the DM 32, such as a switch, and is not limited to the master module 90.


The damping state module 104 determines a control operation for operating the shock absorber 30 at the target damping state based on the data received from the signal module 102. For example, based on the damper setting, the damping state module 104 determines a damping state of the shock absorber 30 and then controls actuation of the electromechanical valve 34 to operate the shock absorber 30 at the damping state determined. Similarly, if multiple electromechanical valves are disposed within the shock absorber 30, the damping state module 104 determines the appropriate activation/deactivation of each of the valves 34.


The damping state module 104 provides a control signal to the coil activation module 106 which in return controls the electrical power provided to a coil of the electromechanical valve 34. More particularly, the coil activation module 106 determines the inputs for a coil drive, as discussed below.


The diagnostic module 108 monitors the operation of the coil activation module 106 and the electromechanical valve 34 for any faults/failures. If a fault is detected the diagnostic module 108 may notify the damping state module 104. The damping state module 104 may then control the shock absorber 30 to a predetermined operation state.


As provided above, information regarding the fault may also be transmitted to a device external of the DM 32. For example, the diagnostic module 108 may transmit data regarding the fault to the signal module 102 which transmits the data to the master module 90.


In operation, the DM 32 controls the damping state of the electrically adjustable hydraulic shock absorber 30. The DM 32 is disposed within the housing 100 as an integrated electronic system. Specifically, as shown in FIGS. 6-7, the shock absorber 30 includes a printed circuit board assembly (PCBA) 200. The PCBA 200 is disposed at the shock absorber 30, and can be disposed within the housing 100. In the example embodiment the PCBA 200 is disposed within the rod guide assembly 50. The PCBA 200 is an integrated electronic system that electrically powers coil(s) via coil drivers to create a magnetic field. The magnetic field actuates the electromechanical valve 34 (i.e., a hydraulic valve), thereby adjusting the damping characteristic of the shock absorber 30.


With reference to FIG. 8, an example block diagram of the PCBA 200 is shown. It is readily understood that the PCBA may include other components, and is therefore not limited to the components and/or configuration depicted. The PCBA 200 includes a microcontroller 202, coil drivers 204A, 204B, 204C, and 204D (hereinafter “coil drivers 204A-204D”), and a transceiver 206. The microcontroller 202 performs the functions of the DM 32. Specifically, microcontroller 202 performs the operation of the signal module 102, the damping state module 104, the coil activation module 106, and the diagnostic module 108.


As the coil activation module 106, the microcontroller 202 determines an input for each of the coil drivers 204A-204D. As power drive electronics, the coil drivers 204A-204D control current to, for example, the electromechanical valves based on the input (i.e., signal) from the microcontroller 202. While in the example embodiment four coil drivers are shown, it is readily understood that one or more coil drivers may be used based on the number of electromechanical valves/coils disposed within the shock absorber 30. Specifically, each electromechanical valve has a dedicated coil driver.


As the diagnostic module 108, the microcontroller 202 may monitor the electrical current powering each electromechanical valve 34 as it responds to a command to change the damper setting. Accordingly, the microcontroller 202 can monitor the electrical current levels to ensure that the electrical components, such as the coil drivers 204A-204D and electromechanical valve coils, are working properly. Comparing the electrical current level to predetermined limits ensures coil drivers 204A-204D (i.e., the power drive electronics) are not experiencing a fault such as a short circuit, open circuit, temperature extreme, or other fault.


Additionally, with additional logic, the transient current profile, when recorded over time, can indicate the mechanical state of the electromechanical valve. As the electromechanical valve moves from the energized state to the unenergized state and vice versa, changes in the inductance of the electromechanical valve affect the electrical current. Inspection of this electrical current profile can, thus, determine the mechanical state of the electromechanical valve 34 as well as the electrical state.


The transceiver 206 may be provided as a LIN transceiver, CAN Bus, or Communication Bus. The transceiver communicably couples the PCBA 200 to the communication bus provided as the communication link between the DM 32 and devices external of the DM 32, such as the master module 90. The communication bus may be a LIN bus 209 which is external of the PCBA 200.


The PCBA 200 may also include a high side driver 208, a PWM input 210, a timer 212, a voltage regulator 214, a protection circuit 216, and a temperature sensor 218. The high side driver 208 is electrically coupled to each of the coil drivers 204A-204D. The high side driver 208 acts like a master switch for controlling the power supply to each of the coil drivers 204A-204D. The PWM input 210 may be provided as an alternative communication link (reference number 222 in FIG. 8) for receiving an electronic signal from sensors/modules disposed external of the PCBA 200. The timer 212 may be a watchdog timer that monitors the operation of the microcontroller 202 and resets the microcontroller 202 if needed.


The temperature sensor 218 detects the ambient temperature of the PCBA 200. The temperature sensor 218 provides the information to the microcontroller 202. The microcontroller 202 may then determine the proper operation of the damper system 20 based on the temperature detected. Accordingly, the components disposed on the PCBA 200 are protected from extreme temperatures.


The PCBA 200 receives power from a vehicle battery. The voltage regulator 214 conditions the electrical power from the vehicle battery to a voltage level suitable for the components on the PCBA 200. The protection circuit 216 may be provided as a battery line load dump transient and reverse voltage protection circuit. The protection circuit protects the components of the PCBA 200 from electrical transients which could damage or disrupt proper operation of the components on the PCBA 200.


The PCBA 200 may couple to the power supply and the communication bus via a connector 201 (FIG. 2). The connector 201 may be configured to both electrically and communicably couple the PCBA 200 to the power supply and the communication bus, respectively. Alternatively, the PCBA 200 may be coupled via two separate connectors. One for coupling to the power supply and the other to couple to the communication bus.


With reference to FIGS. 9-13, example methods of integrating the PCBA 200 with the shock absorber 30 are presented. It is readily understood that the present disclosure is not limited to the configuration shown in FIGS. 9-13, and that other suitable configurations may be employed for integrating the PCBA 200 with the shock absorber 30.


With reference to FIG. 9, an internal annular arrangement 300 is presented. In such an arrangement, the PCBA 200 is disposed within the rod guide assembly 50. Specifically the PCBA 200 has a ring-like structure, such that the piston rod 39 (not shown) may extend through the PCBA 200. The annular arrangement is also represented in FIGS. 6 and 7. In such a configuration, the PCBA 200 is directly coupled to the electromagnetic valve 34. Specifically, the coil driver disposed on the PCBA 200 is directly connected to the electromagnetic valve 34, thereby eliminating the need of an electrical connector.


With reference to FIG. 10, an internal vertical arrangement 320 is presented. The PCBA 200 is arranged vertically (i.e., parallel with the piston rod 39) and within the rod guide assembly 50. By arranging the PCBA 200 along a side surface of the rod guide assembly 50, the PCBA 200 is no longer limited to the annular shape. Specifically, the PCBA 200 may have a rectangular or square-like shape. A lead frame 250 provides an electrical connection between the coil drivers disposed on the PCBA 200 and the electromagnetic valve 34. Therefore, the PCBA 200 is connected to the electromagnetic valve 34 by way of the lead frame 250.


With reference to FIG. 11, an inverted-wet arrangement 340 is presented. The PCBA 200 is arranged between the pressure tube 36 and the reserve tube 40. Specifically, in the twin tube type shock absorber, the PCBA 200 may be disposed in the reservoir chamber 52. Such a configuration is provided as “wet” since the PCBA 200 is in contact with hydraulic fluid. For purposes of clarity, the pressure tube 36 and the reserve tube 40 are not shown in FIG. 11. While not shown in the figure, it is readily understood that the PCBA 200 is disposed in a housing that prevents the hydraulic fluid from entering the PCBA 200.


The lead frame 250 couples the PCBA 200 to the electromechanical valve. For example, the lead frame 250 couples the coil driver disposed on the PCBA 200 to an end of the electromagnetic valve 34 that is farthest from the rod guide assembly 50. Thus, the configuration has an inverted arrangement.


With reference to FIG. 12, an external arrangement 360 is presented. The PCBA 200 is arranged along an external surface of the shock absorber 30. The PCBA 200 can be disposed in a housing that protects the PCBA 200 from the environmental elements such as rain, humidity, debris, etc. The PCBA 200 is then coupled to the electromechanical valve 34 via a lead frame 254.


With reference to FIG. 13, a cap arrangement 380 is presented. The PCBA 200 is disposed within a cap 382. The cap 382 is positioned external to the shock absorber 30. More particularly, the cap 382 is attached to an end of the shock absorber 30. The PCBA 200 is disposed in a gap 385 defined between the cap 382 and the shock absorber 30. Specifically, the PCBA 200 can be disposed between the cap, the rod guide 384, and the reserve tube 40.


The cap 382 may or may not be a load bearing structure. Specifically the PCBA 200 has a ring like structure, such that the piston rod 39 (not shown) may extend through both the PCBA 200 and the cap 382. Furthermore, the PCBA 200 is electrically coupled to an electromechanical valve disposed within a valve cavity 386. Based on the distance between the PCBA 200 and the electromechanical valve, the PCBA 200 may be directly connected to the electromechanical valve or may be indirectly connected via, for example, a lead frame.


With reference to FIGS. 14-20, a bumper cap arrangement 500 is presented. The bumper cap arrangement 500 has a PCBA arranged within a gap defined by a bumper cap which is a load bearing structure. More particularly, FIG. 14 shows a damper system 520 having the bumper cap arrangement 500. The damper system 520 is substantially similar to the damper system 20. Accordingly, like numerals may be used to describe like features and components.


A bumper cap assembly 600 is attached to a shock absorber 530. The bumper cap assembly 600 is positioned between a rod guide assembly 550 of the shock absorber 530 and a jounce bumper 602. The jounce bumper 602 is a rubber or elastomeric component that is positioned on a piston rod 539.


With reference to FIGS. 15-17, the bumper cap assembly 600 includes a bumper cap 604, a dirt wiper 606, and an electronic isolator assembly 608. The electronic isolator assembly 608 includes a gasket 610, a PCBA 612, and an isolator 614. The bumper cap 604 houses the electronic isolator assembly 608 (FIG. 16). The bumper cap 604 can be made of glass filed polyamide or polyphathlamide, and is a machined and/or molded component. The bumper cap 604 prevents metal to metal contact during severe jounce travel of the damping system 520.


The bumper cap 604 has an annular cover 616 and a cylindrical body 618. The annular cover 616 defines an aperture 620 for receiving the piston rod 539 of the shock absorber 530. A column 622 extends from the aperture 620.


The bumper cap 604 includes an outer shoulder 624, an inner shoulder 626, and multiple inner ribs 628. The outer shoulder 624 circumferentially extends from an inner surface 630 of the cylindrical body 618. The outer shoulder 624 abuts against the rod guide assembly 550.


The inner shoulder 626 is formed at the end of the column 622. In the assembled condition, a clearance gap is defined between the inner shoulder 626 and the rod guide assembly 550 of the shock absorber 530. During a jounce load, a compressive force is exerted onto the bumper cap 604. As a result, the inner shoulder 626 moves downward and abuts against the rod guide assembly 550, thereby eliminating the clearance gap.


The inner ribs 628 radially extend from the column 622 to the inner surface 630 of the cylindrical body 618, and are disposed along an inner surface 632 of the annular cover 616. The inner ribs 628 provide a continuous transition between the inner shoulder 626 and the outer shoulder 624. The inner ribs 628, the inner shoulder 626 and the outer shoulder 624 control the deflection of the bumper cap 604, such that the bumper cap 604 does not collapse onto the electronic isolator assembly 608 disposed within. More particularly, the outer shoulder 624 maintains contact with the shock absorber 530 during loaded and unloaded operating conditions. The inner shoulder 626 contacts the shock absorber 530 during loaded operating conditions. The inner ribs 628 reinforce the cylindrical body 618 by distributing and absorbing compressive forces placed on the cylindrical body 618.


The bumper cap 604 also includes a snap member 634 formed along an upper inner surface 635 of the cylindrical body 618 (FIG. 18). The snap member 634 aligns with and couples to a groove (not shown) defined around an outer surface of the shock absorber 530. The groove and snap member 634 form a snap-in feature used to attach the bumper cap 604 to the shock absorber 530. The snap-in feature retains the bumper cap 604 on the shock absorber 530 during extreme thermal conditions. The bumper cap 604 may be detached from the shock absorber 530 by simply decoupling the snap member 634 from the groove. The bumper cap 604 can be attached to the shock absorber using various suitable fastening methods, and is not limited to the snap-in-feature.


The bumper cap 604 further defines a seal cavity 636 at the annular cover 616, and includes a retainer 638. The dirt wiper 606 is positioned within the seal cavity 636 and is retained by the retainer 638. The dirt wiper 606 prevents water and dirt from entering the bumper cap 604 by creating a seal between the piston rod 539 and the bumper cap 604. The retainer 638 is fixedly attached to the cylindrical body 618 by way of, for example, ultra-sonic welding, adhesives, and/or other locking methods. Alternatively, instead of a two piece configuration, the bumper cap 604 may be purely one piece design in which the dirt wiper 606 is pressed fit into the seal cavity. Such one piece configuration removes the need for a separate component, but may require secondary machining operations of the seal cavity.


The bumper cap 604 defines a plurality of grooves 640 along an outer surface 642 of the annular cover 616. The groove 640 extends radially outward from the aperture 620. The grooves 640 remove water and dirt that has been blocked by the dirt wiper 606, thereby preventing the foreign debris from accumulating at the annular cover 616. The groove 640 also prevents air from being trapped between the jounce bumper 602 and the bumper cap 604 during deflection, thereby preventing noise or pressurization of the bumper cap interior.


The bumper cap 604 includes a plurality of outer ribs 644 protruding from an outer surface 646 of the cylindrical body 618. The outer ribs 644 extend along an axis parallel with a longitudinal axis of the cylindrical body 618. The outer ribs 644 reinforce the sides of the cylindrical body 618. More particularly, the thickness of the cylindrical body 618 between the outer ribs 644 is thinner than at the outer ribs 644. This allows the bumper cap 604 to stretch over the rod guide assembly 550, while the outer ribs 644 restrain the sides of the cylindrical body 618 from expanding when compressive forces are placed on the bumper cap 604.


A lower seal 648 is positioned at a brim 650 of the cylindrical body. The lower seal 648 is an environmental seal that prevents debris from entering the bumper cap assembly 600. The lower seal 648 interfaces with an outer surface of the rod guide assembly 550. In the example embodiment, the lower seal 648 is provided as a separate component that is arranged within an opening 652 defined by the brim 650. Alternatively, the bumper cap 604 may include multiple lips, as the lower seal. For example, the lips are molded circumferentially along the inner surface 630 of the cylindrical body 618 at the brim 650.


The bumper cap 604 receives the gasket 610, the PCBA 612, and the isolator 614 (i.e., the electronic isolator assembly 608) via the opening 652. The gasket 610, the PCBA 612, and the isolator 614 are disposed in a gap 654 defined by the annular cover 616, the column 622, and the cylindrical body 618. The gasket 610 holds and isolates the PCBA 612. Specifically, the gasket 610 interfaces with an outer portion of the PCBA 612 to hold down the PCBA 612 and maintain the position of the PCBA 612, such that the PCBA 612 does not move within the gap 654.


The PCBA 612 is substantially similar to the PCBA 200. The PCBA 612 includes a connector 656, which is substantially similar to connector 201, and multiple terminals 658. The terminals 658 extend into the rod guide assembly 550 to engage with solenoids (not shown) disposed in the rod guide assembly. The PCBA 612 electrically powers the solenoids via coil drivers in order to actuate the electromagnetic valves 34 of the shock absorber 530.


The isolator 614 isolates the vibrations experienced by the PCBA 612, and also aligns the terminals 658 with the solenoids. Specifically, the isolator includes a port 660 for each of the terminals 658 of the PCBA 612. The ports 660 receive and maintain the position of the terminals 658. In the assembled condition, the ports 660 align with the terminals of the solenoids disposed in the rod guide assembly 550. The terminals 658 are configured to receive the terminals of the solenoids.


To properly align the components of the bumper cap assembly 600 with each other and with the shock absorber 530 various alignment features may be used. For example, the isolator 614 may include one or more tabs 662 that extend from an outer parameter of the isolator 614. The bumper cap 604 defines corresponding notches 664 which align with the tabs 662. The tabs 662 and the notches 664 also prevent the isolator 614 from moving within the gap 654.


The connector 656 also acts as an alignment feature. For example, the gasket 610 includes a lid 666 which aligns with and covers the connector 656. Isolator 614 includes a bracket 668 which aligns and engages with the connector 656. The bumper cap 604 defines a slot 670 which aligns with and receives the connector 656.


In the example embodiment, the electronic isolator assembly is provided as separate components which include the gasket 610, the PCBA 612, and the isolator 614. Alternatively, the gasket 610, the PCBA 612, and the isolator 614 may be encapsulated as a single component that is positioned in the bumper cap 604. For example, FIG. 20 shows an integrated electronic isolator assembly 680 (“integrated assembly”, herein). The integrated assembly 680 includes a PCBA which is encapsulated within a body 682 and a cord 684 extending from the connector 656 to a device external of the shock absorber. The body 682 can be made of rubber or other suitable material. The body 682 performs like a gasket and an isolator to support and isolate the PCBA disposed within. The integrated assembly 680 simplifies assembly of the bumper cap assembly 600, and eliminates the need for various alignment features, such as the notches 664 and the tabs 662. Furthermore, the integrated assembly 680 protects the PCBA during assembly, and also provides additional structural support.


In another variation, the solenoids originally positioned within the rod guide assembly, can be part of the bumper cap assembly. For example, FIGS. 21 and 22 to depict a bumper cap assembly 690 which includes solenoids 692. The solenoids 692 can be separate components that are attached to the terminals of the PCBA 612 via the isolator 614. The rod guide assembly is configured to receive the solenoids 692. Alternatively, the solenoids 692 can be part of the integrated assembly. Specifically, the solenoids are attached to the PCBA, and then the PCBA and solenoids are encapsulated within a body to form the integrated assembly.


The bumper cap arrangement 500 houses the PCBA within the bumper cap 604 which is load bearing structure. The bumper cap assembly 600 includes two seals (e.g., the dirt wiper 606 and the lower seal 648) which prevent debris and water from entering the bumper cap 604, thereby protecting the PCBA 612. The interior space of the bumper cap 604 is utilized to house the electronics of the damping system 520, thereby creating a single unit that can be assembled onto the shock absorber 530.


The bumper cap 604 is a rigid interface between the jounce bumper 602 and the body of the shock absorber and transfers loads to the body of the shock absorber during extreme jounce loads. For example, the walls of the cylindrical body provide structural support by alleviating bending stress placed on the column 622 and the inner ribs 628. The compressive load is evenly distributed between the cylindrical body 618 and the column 622 for optimum rigidity against loading. The outer ribs 644 provided along the outer wall of the cylindrical body 618 prevent geometric instability in the bumper cap 604 by restraining the lower portion of the cylindrical body 618 from expanding, thereby reducing strain and radial deflection of the brim 650 of the bumper cap 604 and maintaining engagement with the shock absorber.


As provided above, the present disclosure is also applicable to electrically adjustable hydraulic shock absorbers that do not include an electromagnetic valve. For example, if the shock absorber utilizes magneto-rheological and electro-rheological damping technologies, the damping module may operate the shock absorber using known methods that utilize the magneto-rheological and electro-rheological damping technologies. Accordingly, instead of the electromechanical valve, the PCBA controls the current supplied to a coil disposed within the shock absorber.


As provided above, the PCBA is an integrated electronic system that electrically powers coil(s) to create a magnetic field. The magnetic field actuates the electromechanical valve (i.e., a hydraulic valve), thereby adjusting the damping characteristic of the shock absorber. By integrating an electronics system with the electrically adjustable hydraulic shock absorber, the complexity of a vehicle damping system/suspension system is reduced. In essence, each damper system 20 includes its own power drive electronics for controlling the damping state of the shock absorber 30.



FIGS. 23-25 depict an alternate shock absorber 700 incorporating a PCBA housing 704. PCBA housing 704 is attached to a rod guide 708 and coupled to the top of shock absorber 700 via snap fingers 710. PCBA housing 704 is covered with a bumper cap 714. Bumper cap 714 provides protection for PCBA housing 704 during axial loading on the top of shock absorber 700. Bumper cap 714 may be attached to PCBA housing 704 via snap fingers, an adhesive, a press-fit, or some other method. PCBA housing 704 serves to attach a PCBA 718 (FIG. 25) to the top of shock absorber 700 and protect PCBA 718 from the outside environment. PCBA housing 704 also provides an electrical connection between PCBA 718, a jumper harness 722 and three solenoids 726 located inside of the rod guide 708. Jumper harness 722 connects supplies PCBA 718 with power and communication signals from the vehicle. Solenoids 726 are located inside of rod guide 708 and are driven by PCBA 718 to allow the damping setting of the shock absorber 700 to be changed.


As best shown in FIGS. 25-27, PCBA housing 704 interfaces with rod guide 708 via three alignment pins 730, three solenoid terminal housings 734, multiple-ridge terminal seals 738, a connector receptacle 742, an o-ring 746, and a plurality of snap fingers 710.


PCBA housing 704 includes a carrier or lower housing 750 and a lid 754. Each of lower housing 750 and lid 754 are molded from a plastic material such as PA66 injection grade nylon. Lower housing 750 may be colored black while lid 754 is colored white to assist with laser welding. Lid 754 includes a substantially planar bottom surface 756 bounded by an inner recess 758 and an outer recess 760. Lower housing 750 is cup-shaped including an outer wall 764 and an inner wall 766 interconnected by a bottom wall 790. Distal end surfaces of inner wall 766 and outer wall 764 mate with surfaces of lid 754 defining recesses 758 and 760. A 360 degree laser weld, or a similar bonding method, sealingly fixes lid 754 to lower housing 750.


Lid 754 includes a circumferentially extending groove 770 in receipt of a seal 772. Cap 714 includes a surface 774 defining a pocket in receipt of at least a portion of PCBA housing 704. Seal 772 is placed in biased engagement with surface 774. As best shown in FIG. 26, lid 754 includes a plurality of radially extending ribs 776 to increase the structural rigidity of the lid and reduce flexural bending of groove 770 when assembled.


Lower housing 750 includes a pocket 780 in receipt of PCBA 718. Lands 784, 786 are formed on outer wall 764 and inner wall 766, respectively, to support PCBA 718. Each solenoid terminal housing 734 includes a first portion 788 extending downwardly from bottom wall 790 that at least partially defines pocket 780. A second portion 792 of each solenoid terminal housing 734 extends on the opposite side of bottom wall 790. As previously described, each multiple-ridge terminal seal 738 surrounds first portion 788 of solenoid terminal housing 734. Upper surfaces 793 of each solenoid terminal housing 734 also provide support for PCBA 718.


Alignment pins 730 and first portions 788 of solenoid terminal housings 734 are integrally formed with lower housing 750 and axially protrude from bottom wall 790. Outer wall 764 extends a sufficient length to sealingly engage o-ring 746. Snap fingers 710 are integrally formed with and axially extend from outer wall 764. Snap fingers 710 are circumferentially spaced apart as well as sized and shaped to lock into a groove 794 formed on an external surface of rod guide 708. Each snap finger 710 also includes an integrally molded secondary locking feature which interfaces with cap 714 to maintain engagement of snap fingers 710 with groove 794 of rod guide 708. The secondary locking feature may include a small bump or protrusion 797 that interfaces with bumper cap 714.


It should be appreciated that many of the features described in relation to shock absorber 700 pertain to improving the robustness of an electronically controller shock absorber when considering the harsh environment in which the shock absorber is placed. Sealing electronics from the environment is a priority. Shock absorber 700 includes an integrated connection system which allows PCBA 718 to be electrically connected to a source of power, a number of inputs such as sensors or controllers and various outputs. The present disclosure describes fully sealed connections. Shock absorber 700 also includes a unique set of features for retaining PCBA housing 704 to the top of shock absorber 700 to assure that PCBA housing 704 does not become disconnected from the shock absorber during use that may lead to an interrupted electric connection between PCBA 718 and solenoid 726.


The sealing system includes positioning of PCBA 718 within sealed PCBA housing 704 as previously described. It should also be appreciated that prior to laser welding lid 754 to lower housing 750, PCBA 718 may be encapsulated by a thermally conductive and compliant material positioned within pocket 780. The thermally conductive and compliant material may be positioned on opposite sides of PCBA 718 to aid in heat dissipation, vibration isolation, and provide another sealing method.


An alternate arrangement (not shown) may only require lower housing 750 and the thermally conductive and compliant encapsulation material without the use of lid 754. The encapsulation material may extend proximate to surface 774 of bumper cap 714 and may be generally shaped as lid 754.


To further increase the resistance to contaminant ingress, a dual terminal sealing system has been integrated into PCBA housing 704. A primary seal includes o-ring 746, seal 772, and a wiper seal 800. Wiper seal 800 includes a first lip 804 and may include a second lip 806 placed into biased engagement with an axially movable rod 810. Wiper seal 800 includes a radially outwardly extending flange 814 positioned and retained within an internal circumferentially extending groove 816 of bumper cap 714. The primary seal set restricts contaminants from reaching solenoid terminal housings 734.


A second seal set includes three multiple-ridge terminal seals 738. Each terminal seal 738 surrounds one solenoid terminal housing 734 and biasedly engages an inner cylindrical wall 820 of rod guide 708.


As best shown in FIGS. 29 and 30, pin receptacles 830 are positioned within apertures 832 extending through solenoid terminal housing 734. Each pin receptacle may include an enlarged diameter central portion 834 that is surrounded by the plastic material of lower housing 750. Pin receptacles 830 may be overmolded to permanently secure the receptacles 830 within the lower housing 750. Each receptacle 830 has a pin aperture 838. Pin receptacles 830 each include electrically conductive fingers 842 that radially inwardly extend into pin apertures 838. The radially inwardly extending fingers 842 define an effective size when in a free state that is smaller than an outer diameter of the pin or post for which they receive. For example, PCBA 718 includes a plurality of terminals 846 each having electrically conductive pins 848 downwardly extending therefrom. Pins 848 extend a distance sufficient to enter apertures 838 and biasedly engage fingers 842 to provide an electrical conductive connection between terminal 846 and pin receptacles 830. In similar fashion, each solenoid 726 includes electrically conducting pins 852 that extend into apertures 832 and biasedly engage electrically conductive fingers 856. When each of the components are positioned relative to one another as depicted in FIG. 30, electricity may be conducted from the left most pin 852 through the left most receptacle 830 to the left most terminal pin 848. A similar conducting path exists on the right side of FIG. 30 connecting lower right pin 852, right receptacle 830 and right terminal pin 848.



FIG. 29 depicts electrical terminals 860 fixed to lower housing 750. Portions of electrical terminals 860 extend into connector receptacle 742 while opposite end portions extend into pocket 780. PCBA 718 includes electrical connectors (not shown) sized and shaped to electrically connect to the portions of terminal 860 positioned within pocket 780. Terminals 860 may be subsequently inserted and assembled into a previously molded lower housing 750 or may be overmolded concurrently while lower housing 750 is being formed. Connector receptacle 742 may be integrally formed with the PCBA housing 704. Alternatively, the connector receptacle 742 may be integrally formed with the carrier or lower housing 750, the lid 754, or the cap 714.



FIG. 27 illustrates additional features of PCBA housing 704. It should be appreciated that each of alignment pins 730 are circumferentially spaced apart from one another in a predetermined pattern. Similarly, solenoid terminal housings 734 are circumferentially spaced apart from one another in a predetermined pattern. Connector receptacle 742 is positioned at a unique orientation relative to the two patterns previously described. Accordingly, a unique singular orientation exists to properly align and couple lower housing 750 to rod guide 708. The various alignment features are important to assure a robust electrical connection between pin receptacles 830 and pins 852. For example, alignment pins 730 are sized and shaped to be the first mating features between rod guide 708 and PCBA housing 704. An assembler begins to couple PCBA housing 704 to rod guide 708. If PCBA housing 704 is incorrectly aligned with rod guide 708 during the coupling procedure, the electrical connections between solenoids 726 and solenoid terminal housing 734 may potentially be damaged. Once the alignment pins 730 being to enter associated apertures 868, proper alignment between solenoid terminal housings 734 and solenoids 726 is assured. PCBA housing 704 continues to be axially translated toward rod guide 708 to electrically connect solenoids 726 with PCBA 718. More particularly, pins 852 are inserted into and electrically coupled to receptacles 830.


As the assembly of PCBA housing 704 to rod guide 708 continues, snap fingers 710 are radially outwardly deflected and tabs 796 are axially translated past a lip 798 of rod guide 708. Further axial translation of PCBA housing 704 results in tabs 796 snapping into groove 794 thereby fixing PCBA housing 704 to rod guide 708. Protrusions 797 are positioned to engage or be very closely spaced apart from bumper cap 714 after the cap is assembled over PCBA housing 704. The close spacing between protrusions 797 and bumper cap 714 restricts snap fingers 710 from bending and possibly allowing tabs 796 to become dislodged from groove 794. A robust coupling and retention system is provided.


After PCBA housing 704 has been coupled to rod guide 708, jumper harness 722 may be axially inserted within connector receptacle 742 to electrically couple jumper harness 722 to electrical terminal 860. A portion of connector receptacle 742 is configured as a deformable lock tab 874. Jumper harness 722 includes a catch 878 which cooperates with lock tab 874 to retain jumper harness 722 in electrical engagement with electrical terminals 860 during operating of shock absorber 700. A user may deflect lock tab 874 to separate jumper harness 722 from PCBA housing 704, if desired.



FIG. 31 depicts an alternate electrically adjustable shock absorber 900. Shock absorber 900 includes a tube (not shown in FIG. 31) that defines a fluid chamber (not shown in FIG. 31) similar to pressure tube 36 and working chamber 44, respectively, described in relation to FIGS. 2 and 3. Further, a piston assembly (not shown in FIG. 31) is positioned within tube that divides fluid chamber into a first working chamber (not shown in FIG. 31) and a second working chamber (not shown in FIG. 31). Piston assembly, first working chamber, and second working chamber referred to herein are similar to piston assembly 38, first working chamber 46, and second working chamber 48, respectively, described in relation to FIGS. 2 and 3. Additionally, a piston rod similar to piston rod 39, shown in FIGS. 2 and 3, is attached to piston assembly. Piston rod is guided by a rod guide 903 during a travel of piston rod. Piston rod projects out of tube. Rod guide 903 may be similar in design and operation to rod guide 708 that is shown in FIG. 25.


Shock absorber 900 also includes an electronically-controlled valve (not shown in FIG. 31) positioned within the rod guide 903. Electronically-controlled valve is used for controlling a damping state of shock absorber 900, based on system requirements. Further, electronically-controlled valve is similar to electronically-controlled valve 34 explained in relation to FIGS. 2 and 3.


Shock absorber 900 incorporates a bumper cap assembly 901. Bumper cap assembly 901 includes a carrier housing 904. Carrier housing 904 defines an aperture 909 that partially receives piston rod. Carrier housing 904 engages with rod guide 903 and is disposed above rod guide 903. Carrier housing 904 serves to receive a circuit board 902 of bumper cap assembly 901 at a top portion of shock absorber 900 and protects circuit board 902 from outside environment. More particularly, circuit board 902 is positioned around piston rod. Circuit board 902 is similar to PCBA 200 explained in relation to FIGS. 6 and 7. Circuit board 902 actuates the electronically-controlled valve. More particularly, circuit board 902 includes power drive functionalities for actuating, de-actuating, and controlling an operation of electronically-controlled valve in order to change a damping state of shock absorber 900.


Circuit board 902 is in communication with electronically-controlled valve via at least one solenoid 905. Though only one solenoid 905 is illustrated in FIG. 31, it should be noted that shock absorber 900 may include any number of solenoids 905 as per requirement. The solenoid 905 is driven by circuit board 902 to change the damping state of shock absorber 900. Further, a number of terminal pins 912 are positioned between electronically-controlled valve and circuit board 902. One such terminal pin 912 is illustrated in the accompanying figure. Terminal pin 912 connects the circuit board 902 with electronically-controlled valve. Terminal pin 912 is directly connected to circuit board 902 to establish an electrical connection between circuit board 902 and solenoid 905 associated with electronically-controlled valve.


It should be noted that a single terminal pin 912 or multiple terminal pins 912 may be associated with a single solenoid, without limiting the scope of the present embodiment. Although a single terminal pin 912 is illustrated herein, shock absorber 900 may include a number of terminal pins 912 that may be circumferentially spaced apart from one another in a predetermined pattern. Thus, carrier housing 904 described herein allows electrical connection to be established between circuit board 902 and solenoid 905 that is located inside rod guide 903 by supporting circuit board 902 and terminal pin 912 therein.


Further, carrier housing 904 may also provide an electric connection between a jumper harness and circuit board 902. Jumper harness is similar to jumper harness 722 that is explained in relation to FIGS. 23, 24, and 25. Jumper harness supplies circuit board 902 with power and communication signals from the vehicle. Jumper harness is axially inserted within a connector receptacle 907 to electrically couple jumper harness with circuit board 902. Connector receptacle 907 is similar to connector receptacle 742 that is explained in relation to FIG. 25.


In the illustrated embodiment, carrier housing 904 is embodied as a load bearing component. More particularly, when jounce loading is exerted on shock absorber 900, carrier housing 904 experiences compressive axial loads along a first load path “F1” and a second load path “F2”. Further, carrier housing 904 transfers the compressive axial loads to rod guide 903. In one example, carrier housing 904 may be molded from a plastic material such as PA66 injection grade nylon.


Carrier housing 904 includes structural features that minimize deflection and transfer energy to shock absorber 900, thereby protecting circuit board 902 and other electrical components within carrier housing 904. More particularly, carrier housing 904 includes an outer column 906 and an inner column 908. Outer column 906 is located radially outwards with respect to inner column 908. Outer column 906 may include a substantially cylindrical body. Further, inner column 908 may include a cylindrical body that is concentrically disposed with respect to outer column 906. In some embodiments, inner and outer columns 908, 906 may be integrally formed with carrier housing 904. For example, inner column 908 and outer column 906 may be integrally molded with carrier housing 904. Alternatively, inner column 908 and outer column 906 may be manufactured as separate components that are assembled with carrier housing 904, such that each of inner and outer columns 908, 906 is concentrically disposed within carrier housing 904. Further, each of inner and outer columns 908, 906 and carrier housing 904 may be made of the same material or different materials. In one example, each of inner and outer columns 908, 906 and carrier housing 904 may be made of plastic. In another example, each of inner and outer columns 908, 906 may be made of metal whereas carrier housing 904 may be made of plastic.


A bumper cap 910 of bumper cap assembly 901 is further mounted on carrier housing 904. Bumper cap 910 rests on top surfaces 929 and 931 of the inner and outer columns 908, 906, respectively, such that top surfaces 929, 931 are in contact with an inner surface 926 of bumper cap 910. Bumper cap 910 may therefore engage with inner and outer columns 908, 906.


During operation of shock absorber 900, inner and outer columns 908, 906 are subjected to compressive axial loads. More particularly, inner and outer columns 908, 906 experience compressive axial loads along first and second load paths “F1” and “F2”. During an operation of shock absorber 900, bumper cap 910 transfers compressive axial loads to inner and outer columns 908, 906 along first and second load paths “F1” and “F2” as top surfaces 929, 931 of inner and outer columns 908, 906 are in contact with inner surface 926 of bumper cap 910.


In some examples, inner and outer columns 908, 906 may be designed such that compressive axial loads are evenly distributed between inner and outer columns 908, 906 for optimum rigidity against loading. Further, a thickness of each of the inner and outer columns 908, 906 may be decided based on an amount of compressive axial loads experienced by shock absorber 900.


It should be appreciated that many of the features described in relation to shock absorber 900 pertain to improving the robustness of electrically adjustable shock absorber 900 when considering the harsh environment in which the shock absorber 900 is placed. Sealing electronics from the environment is a priority. Shock absorber 900 includes an integrated connection system which allows circuit board 902 to be electrically connected to a source of power, a number of inputs such as sensors or controllers, and various outputs. The present disclosure describes fully sealed connections.


Carrier housing 904 includes a pocket 911 that receives circuit board 902. Pocket 911 is defined between inner and outer columns 908, 906. Shock absorber 900 also includes a unique set of features for retaining circuit board 902 at the top portion of shock absorber 900 to assure that circuit board 902 does not disconnect from shock absorber 900 during use that may lead to an interrupted electric connection between circuit board 902 and solenoid 905. More particularly, this embodiment describes a sealing system that allows positioning of circuit board 902 within carrier housing 904. The sealing system includes encapsulation of circuit board 902 by a thermally conductive and compliant material 914 positioned within pocket 911. The thermally conductive and compliant material 914 is disposed on each of an upper side 923 and a lower side 924 of circuit board 902 to aid in heat dissipation, vibration isolation, and protection of circuit board 902 from contamination. On upper side 923 of circuit board 902, the thermally conductive and compliant material 914 may extend proximate to inner surface 926 of bumper cap 910.


Carrier housing 904 described in the present embodiment also aligns terminal pin 912 that connects circuit board 902 with electronically-controlled valve, via solenoid 905. Carrier housing 904 also provides lateral support to terminal pin 912 during assembly and operation of shock absorber 900. In the illustrated embodiment, terminal pin 912 directly mates or connects with circuit board 902. More particularly, terminal pin 912 extends from a top surface of rod guide 903 and is received within a receiving portion 913 of carrier housing 904. Receiving portion 913 is radially disposed between inner and outer columns 908, 906. Further, terminal pin 912 extends substantially parallel to inner and outer columns 908, 906 such that only a small portion of terminal pin 912 extends above receiving portion 913. The receiving portion 913 also provides side support for terminal pin 912 to aid in attachment of the terminal pin 912 to circuit board 902.


Receiving portion 913 includes a support section 921. As illustrated, support section 921 engages with terminal pin 912 for supporting and aligning terminal pin 912 within carrier housing 904. Receiving portion 913 also includes an opening 925 defined in a lower section 927 of receiving portion 913. Opening 925 surrounds a length “L” of terminal pin 912. Further, opening 925 is filled with a thermally conductive and compliant material 917 along length “L” of terminal pin 912 for aligning and supporting terminal pin 912 within receiving portion 913. The thermally conductive and compliant material 917 ensures that terminal pin 912 does not bend or fail during assembly and operation as terminal pin 912 is embodied as a thin and long pin. An arrangement for connection of terminal pin 912 described in this embodiment eliminates requirement of separate terminal housings or sockets that are typically disposed in carrier housing 904 for aligning and supporting terminal pin 912 within carrier housing 904. Elimination of terminal housings reduces a quantity of electrical connections in shock absorber 900, thereby simplifying a construction as well as cost associated with design and manufacturing of shock absorber 900.


Further, a thermally conductive and compliant material 915 is also disposed in counterbores 916 located above electronically-controlled valve thereby sealing electric connections. In various examples, thermally conductive and compliant material 914, 915, and 917 may include a potting compound such as thermosetting plastics, silicone rubber gels, or epoxy, without limiting the scope of present embodiment.


In some embodiments, to further increase a resistance to contaminant ingress, a sealing member 928 in the form of an O-ring may be disposed in carrier housing 904 for restricting contaminants from reaching circuit board 902. Sealing member 928 is disposed between support section 921 and rod guide 903.


Further, bumper cap assembly 901 includes bumper cap 910 that is mounted on carrier housing 904. As mentioned above, bumper cap 910 engages with the inner column 908 and the outer column 906. Bumper cap 910 slidably receives the piston rod and also encompasses carrier housing 904. Bumper cap 910 is used to cover and protect components such as carrier housing 904, circuit board 902, terminal pin 912, and/or other components of bumper cap assembly 901. Bumper cap 910 transfers externally applied compressive axial loads directly to inner and outer columns 908, 906 of carrier housing 904 which can withstand and transfer compressive axial loads to rod guide 903.


Bumper cap 910 described herein includes a simplified cross-sectional profile and is cost effective. Bumper cap 910 may be made of a plastic material or a metal. Since the bumper cap 910 is not embodied as a load bearing structure, the bumper cap 910 may be made of a low grade plastic material or a low grade metal thereby reducing cost of manufacturing shock absorber 900. Further, as bumper cap 910 includes a simplified design, bumper cap 910 may be manufactured using a low cost molding process.


In one example, bumper cap 910 includes a two piece construction. More particularly, a dirt wiper 919 is installed within bumper cap 910. Dirt wiper 919 is retained within bumper cap 910 by a retainer 918. Retainer 918 may be welded to bumper cap 910. More particularly, when bumper cap 910 is made of metal, the retainer 918 may be welded to bumper cap 910 by spot welding. Further, when bumper cap 910 is made of plastic material, retainer 918 may be welded to bumper cap 910 by sonic welding. In another example, bumper cap 910 is embodied as a unitary component such that retainer 918 and dirt wiper 919 are integrally formed with the bumper cap 910.


Bumper cap 910 may be coupled to rod guide 903 using different coupling techniques based on a material that is used to manufacture bumper cap 910. For example, when bumper cap 910 is made of metal, an outer body 920 of bumper cap 910 includes a crimp 922 that allows bumper cap 910 to couple with rod guide 903. Crimp 922 is a small bump or protrusion that interfaces with rod guide 903 for coupling and locking bumper cap 910 with rod guide 903. Further, when bumper cap 910 is made of plastic material, bumper cap 910 is coupled with rod guide 903 by a snap-fit arrangement, an interference-fit arrangement, such as a press-fit. Alternatively, bumper cap 910 may be bonded to rod guide 903. Coupling techniques described above also ensure a robust coupling and retention of bumper cap 910 with rod guide 903. More particularly, coupling techniques described above prevent removal of bumper cap 910 during operation of shock absorber 900 and further protect electronics assembly of shock absorber 900 from tampering or disassembly by an end user.


During an assembly process of shock absorber 900, rod guide 903 receives solenoid 905 with terminal pin 912 of solenoid 905 extending above top surface of rod guide 903. Further, carrier housing 904 is axially inserted and attached to rod guide 903. During attachment of carrier housing 904 with rod guide 903, receiving portion 913 assists in alignment and also guides terminal pin 912 to avoid bending of terminal pin 912. Further, the thermally conductive and compliant material 917 is disposed in opening 925 along length “L” of terminal pin 912 to encapsulate terminal pin 912 for providing rigidity and support to terminal pin 912.


As the assembly of carrier housing 904 continues, circuit board 902 is inserted into carrier housing 904 and mated with terminal pin 912. It should be noted that receiving portion 913 provides side support for terminal pin 912 when circuit board 902 is being attached to carrier housing 904. Further, carrier housing 904 is filled with thermally conductive and compliant material 914. More particularly, upper and lower sides 923, 924 of circuit board 902 are filled with thermally conductive and compliant material 914. Counterbores 916 are also filled with thermally conductive and compliant material 915 to isolate components within carrier housing 904 from rod guide 903 thereby sealing the electrical connections. Bumper cap 910 is then installed over carrier housing 904 and pressed to a positive stop against carrier housing 904 by coupling bumper cap 910 with rod guide 903.


The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.


In this application, including the definitions below, the term module may be replaced with the term circuit. The term module may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC); a digital, analog, or mixed analog/digital discrete circuit; a digital, analog, or mixed analog/digital integrated circuit; a combinational logic circuit; a field programmable gate array (FPGA); a processor (shared, dedicated, or group) that executes code; memory (shared, dedicated, or group) that stores code executed by a processor; other suitable hardware components that provide the described functionality; or a combination of some or all of the above, such as in a system-on-chip.


Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.


The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


When an element is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element, it may be directly on, engaged, connected or coupled to the other element, or intervening elements may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element, there may be no intervening elements present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.


Although the terms first, second, third, etc. may be used herein to describe various elements and/or components, these elements and/or components should not be limited by these terms. These terms may be only used to distinguish one element or component from another. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element or component discussed could be termed a second element or component without departing from the teachings of the example embodiments.


Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.

Claims
  • 1. A bumper cap assembly for an electrically adjustable hydraulic shock absorber having a rod guide, a piston rod guided by the rod guide, and an electronically-controlled valve positioned within the rod guide for controlling a damping state of the shock absorber, the bumper cap assembly comprising: a circuit board positioned around the piston rod, the circuit board adapted to actuate the electronically-controlled valve;a carrier housing receiving the circuit board and engaged with the rod guide, the carrier housing including at least one column; anda bumper cap mounted on the carrier housing and engaged with the at least one column;wherein the at least one column is adapted to transfer compressive axial loads from the bumper cap to the rod guide during an operation of the shock absorber.
  • 2. The bumper cap assembly of claim 1, wherein the carrier housing further includes a receiving portion for receiving at least one terminal pin therethrough, wherein the at least one terminal pin connects the circuit board with the electronically-controlled valve, and wherein the at least one terminal pin is directly connected to the circuit board.
  • 3. The bumper cap assembly of claim 2, wherein the receiving portion further includes a support section that engages with the at least one terminal pin for supporting and aligning the at least one terminal pin.
  • 4. The bumper cap assembly of claim 2, wherein the receiving portion further defines an opening that surrounds a length of the at least one terminal pin, wherein the opening is filled with a thermally conductive and compliant material.
  • 5. The bumper cap assembly of claim 2, wherein the receiving portion is radially disposed between the inner column and the outer column.
  • 6. The bumper cap assembly of claim 3, further comprising a sealing member disposed between the support section and the rod guide.
  • 7. The bumper cap assembly of claim 1, wherein the carrier housing includes a thermally conductive and compliant material encapsulating the circuit board.
  • 8. The bumper cap assembly of claim 1 wherein the at least one column comprises an inner column and an outer column located radially outwards with respect to the inner column.
  • 9. An electrically adjustable hydraulic shock absorber, comprising: a tube defining a fluid chamber;a piston assembly positioned within the tube and dividing the fluid chamber into a first working chamber and a second working chamber;a piston rod attached to the piston assembly and projecting out of the tube;a rod guide for guiding the piston rod;an electronically-controlled valve positioned within the rod guide for controlling a damping state of the shock absorber;a circuit board positioned around the piston rod, the circuit board adapted to actuate the electronically-controlled valve;a carrier housing receiving the circuit board and engaged with the rod guide, the carrier housing including at least one column; anda bumper cap mounted on the carrier housing and engaged with the at least one column;wherein the at least one column is adapted to transfer compressive axial loads from the bumper cap to the rod guide during an operation of the shock absorber.
  • 10. The shock absorber of claim 9, further comprising at least one terminal pin for connecting the circuit board with the electronically-controlled valve, the at least one terminal pin being directly connected to the circuit board, wherein the carrier housing further includes a receiving portion for receiving the at least one terminal pin therethrough.
  • 11. The shock absorber of claim 10, wherein the receiving portion further includes a support section that engages with the at least one terminal pin for supporting and aligning the at least one terminal pin.
  • 12. The shock absorber of claim 10, wherein the receiving portion further defines an opening that surrounds a length of the at least one terminal pin, wherein the opening is filled with a thermally conductive and compliant material.
  • 13. The shock absorber of claim 10, wherein the receiving portion is radially disposed between the inner column and the outer column.
  • 14. The shock absorber of claim 11, further comprising a sealing member disposed between the support section and the rod guide.
  • 15. The shock absorber of claim 9, wherein the carrier housing includes a thermally conductive and compliant material encapsulating the circuit board.
  • 16. The shock absorber of claim 9, wherein the rod guide further defines a counterbore located above the electronically-controlled valve, wherein the counterbore of the rod guide is filled with a thermally conductive and compliant material.
  • 17. The bumper cap assembly of claim 9 wherein the at least one column comprises an inner column and an outer column located radially outwards with respect to the inner column.
  • 18. An electrically adjustable hydraulic shock absorber, comprising: a tube defining a fluid chamber;a piston assembly positioned within the tube and dividing the fluid chamber into a first working chamber and a second working chamber;a piston rod attached to the piston assembly and projecting out of the tube;a rod guide for guiding the piston rod;an electronically-controlled valve positioned within the rod guide for controlling a damping state of the shock absorber;a circuit board positioned around the piston rod, the circuit board adapted to actuate the electronically-controlled valve;at least one terminal pin connecting the circuit board with the electronically-controlled valve, the at least one terminal pin being directly connected with the circuit board;a carrier housing receiving the circuit board and engaged with the rod guide, the carrier housing including at least one column, and a receiving portion for receiving the at least one terminal pin therethrough; anda bumper cap mounted on the carrier housing and engaged with the at least one column;wherein the at least one column is adapted to transfer compressive axial loads from the bumper cap to the rod guide during an operation of the shock absorber.
  • 19. The shock absorber of claim 18, wherein the receiving portion further includes a support section that engages with the at least one terminal pin for supporting and aligning the at least one terminal pin.
  • 20. The shock absorber of claim 18, wherein the receiving portion further defines an opening that surrounds a length of the at least one terminal pin, wherein the opening is filled with a thermally conductive and compliant material.
  • 21. The shock absorber of claim 18, wherein the carrier housing includes a thermally conductive and compliant material encapsulating the circuit board.
  • 22. The shock absorber of claim 18, wherein the rod guide further defines a counterbore located above the electronically-controlled valve, wherein the counterbore of the rod guide is filled with a thermally conductive and compliant material.
  • 23. The bumper cap assembly of claim 18 wherein the at least one column comprises an inner column and an outer column located radially outwards with respect to the inner column.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 15/615,053 filed on Jun. 6, 2017. The entire disclosure of the above application is incorporated herein by reference.

US Referenced Citations (298)
Number Name Date Kind
2409349 Focht Oct 1946 A
2473043 Whisler, Jr. Jun 1949 A
3896908 Petrak Jul 1975 A
3945474 Palmer Mar 1976 A
4317105 Sinha et al. Feb 1982 A
4352417 Stinson Oct 1982 A
4468050 Woods et al. Aug 1984 A
4552324 Hrusch Nov 1985 A
4564214 Tokunaga et al. Jan 1986 A
4576258 Spisak Mar 1986 A
4589528 Axthammer et al. May 1986 A
4591186 Ashiba May 1986 A
4633983 Horvath Jan 1987 A
4696489 Fujishiro et al. Sep 1987 A
4723640 Beck Feb 1988 A
4726453 Obstfelder et al. Feb 1988 A
4749070 Moser Jun 1988 A
4776437 Ishibashi et al. Oct 1988 A
4788489 Kobayashi et al. Nov 1988 A
4846317 Hudgens Jul 1989 A
4850460 Knecht et al. Jul 1989 A
4867476 Yamanaka et al. Sep 1989 A
4872537 Warner Oct 1989 A
4892328 Kurtzman et al. Jan 1990 A
4909536 Hale Mar 1990 A
4913457 Hafner et al. Apr 1990 A
4943083 Groves et al. Jul 1990 A
4958706 Richardson et al. Sep 1990 A
4969662 Stuart Nov 1990 A
4973854 Hummel Nov 1990 A
4984819 Kakizaki et al. Jan 1991 A
4986393 Preukschat et al. Jan 1991 A
4988967 Miller et al. Jan 1991 A
5038613 Takenaka et al. Aug 1991 A
5058715 Silberstein Oct 1991 A
5067743 Kokubo et al. Nov 1991 A
5092626 Athanas et al. Mar 1992 A
5106053 Miller et al. Apr 1992 A
5123671 Driessen et al. Jun 1992 A
5133434 Kikushima et al. Jul 1992 A
5133574 Yamaoka et al. Jul 1992 A
5143185 Klein et al. Sep 1992 A
5154442 Milliken Oct 1992 A
5160162 Mouri et al. Nov 1992 A
5189614 Mitsuoka et al. Feb 1993 A
5200895 Emura Apr 1993 A
5242190 Morris Sep 1993 A
5285878 Scheffel et al. Feb 1994 A
5293968 Schuelke et al. Mar 1994 A
5299488 Kadlicko et al. Apr 1994 A
5337863 Lizell Aug 1994 A
5350187 Shinozaki Sep 1994 A
5350983 Miller et al. Sep 1994 A
5360089 Nakamura et al. Nov 1994 A
5360230 Yamada et al. Nov 1994 A
5363945 Lizell et al. Nov 1994 A
5383679 Nakamura et al. Jan 1995 A
5390121 Wolfe Feb 1995 A
5396973 Schwemmer et al. Mar 1995 A
5404973 Katoh et al. Apr 1995 A
5430648 Sasaki Jul 1995 A
5435421 Beck Jul 1995 A
5439085 Woessner Aug 1995 A
5485417 Wolf et al. Jan 1996 A
5487455 Feigel Jan 1996 A
5488556 Sasaki Jan 1996 A
5497325 Mine Mar 1996 A
5497862 Hoya Mar 1996 A
5532921 Katsuda Jul 1996 A
5570762 Jentsch et al. Nov 1996 A
5577579 Derr Nov 1996 A
5590898 Williams et al. Jan 1997 A
5597054 Nagai et al. Jan 1997 A
5632503 Raad et al. May 1997 A
5638275 Sasaki et al. Jun 1997 A
5653315 Ekquiest et al. Aug 1997 A
5655633 Nakadate et al. Aug 1997 A
5656315 Tucker et al. Aug 1997 A
5657840 Lizell Aug 1997 A
5690195 Kruckemeyer et al. Nov 1997 A
5725239 de Molina Mar 1998 A
5775470 Feigel Jul 1998 A
5803482 Kim Sep 1998 A
5833036 Gillespie Nov 1998 A
5845672 Reuter Dec 1998 A
5860497 Takahashi Jan 1999 A
5878851 Carlson et al. Mar 1999 A
5890081 Sasaki Mar 1999 A
5913391 Jeffries et al. Jun 1999 A
5934421 Nakadate et al. Aug 1999 A
5937976 Grundei Aug 1999 A
5950775 Achmad Sep 1999 A
5967268 de Molina et al. Oct 1999 A
5987369 Kwak et al. Nov 1999 A
5996745 Jones, Jr. et al. Dec 1999 A
6003644 Tanaka Dec 1999 A
6036500 Francis et al. Mar 2000 A
6092011 Hiramoto Jul 2000 A
6095489 Kaneko Aug 2000 A
6105740 Marzocchi et al. Aug 2000 A
6109400 Ayyildiz et al. Aug 2000 A
6135250 Forster et al. Oct 2000 A
6155391 Kashiwagi et al. Dec 2000 A
6213262 Bell Apr 2001 B1
6273224 Achmad Aug 2001 B1
6296091 Hamilton Oct 2001 B1
6298958 Hwang Oct 2001 B1
6302248 Nakadate Oct 2001 B1
6321888 Reybrouck et al. Nov 2001 B1
6343677 Bell Feb 2002 B2
6427986 Sakai et al. Aug 2002 B1
6460664 Steed et al. Oct 2002 B1
6464053 Hoebrechts et al. Oct 2002 B1
6496761 Ulyanov et al. Dec 2002 B1
6533294 Germain et al. Mar 2003 B1
6588726 Osterhart et al. Jul 2003 B2
6616124 Oliver et al. Sep 2003 B2
6651878 Grundei Nov 2003 B2
6655512 Moradmand et al. Dec 2003 B2
6672436 Keil et al. Jan 2004 B1
6707290 Nyce et al. Mar 2004 B2
6708803 Jensen Mar 2004 B2
6782980 Nakadate Aug 2004 B2
6814193 Grundei Nov 2004 B2
6851528 Lemieux Feb 2005 B2
6879898 Ghoneim et al. Apr 2005 B2
6904344 LaPlante et al. Jun 2005 B2
6959797 Mintgen et al. Nov 2005 B2
6964325 Maes Nov 2005 B2
6978872 Turner Dec 2005 B2
7032912 Nicot et al. Apr 2006 B2
7168709 Niwa et al. Jan 2007 B2
7214103 Kim et al. May 2007 B2
7234574 Matsunaga et al. Jun 2007 B2
7234707 Green et al. Jun 2007 B2
7273138 Park Sep 2007 B2
7286919 Nordgren et al. Oct 2007 B2
7318595 Lamela et al. Jan 2008 B2
7347307 Joly Mar 2008 B2
7374028 Fox May 2008 B2
7389994 Trudeau et al. Jun 2008 B2
7413062 Vandewal Aug 2008 B2
7416189 Wilde et al. Aug 2008 B2
7475538 Bishop Jan 2009 B2
7493995 Sas et al. Feb 2009 B2
7604101 Park Oct 2009 B2
7611000 Naito Nov 2009 B2
7621538 Nordmeyer et al. Nov 2009 B2
7628253 Jin et al. Dec 2009 B2
7644933 Brookes et al. Jan 2010 B2
7654369 Murray et al. Feb 2010 B2
7654370 Cubalchini, Jr. Feb 2010 B2
7680573 Ogawa Mar 2010 B2
7722405 Jaklin et al. May 2010 B2
7743896 Vanhees et al. Jun 2010 B2
7770983 Park Aug 2010 B2
7775333 Or et al. Aug 2010 B2
7849983 St. Clair et al. Dec 2010 B2
7878311 Van Weelden et al. Feb 2011 B2
7896311 Jee Mar 2011 B2
7912603 Stiller et al. Mar 2011 B2
7926513 Ishibashi et al. Apr 2011 B2
7931282 Kolp et al. Apr 2011 B2
7942248 St. Clair et al. May 2011 B2
7946163 Gartner May 2011 B2
7946399 Masamura May 2011 B2
7967116 Boerschig Jun 2011 B2
7967117 Abe Jun 2011 B2
7992692 Lee et al. Aug 2011 B2
7997394 Yamaguchi Aug 2011 B2
8056392 Ryan et al. Nov 2011 B2
8075002 Pionke et al. Dec 2011 B1
8113521 Lin et al. Feb 2012 B2
8116939 Kajino et al. Feb 2012 B2
8132654 Widla et al. Mar 2012 B2
8136644 Sonsterod Mar 2012 B2
8160774 Li et al. Apr 2012 B2
8214106 Ghoneim et al. Jul 2012 B2
8267382 Yazaki et al. Sep 2012 B2
8275515 Wright et al. Sep 2012 B2
8317172 Quinn et al. Nov 2012 B2
8393446 Haugen Mar 2013 B2
8430217 Hennecke et al. Apr 2013 B2
8525453 Ogawa Sep 2013 B2
8567575 Jung et al. Oct 2013 B2
8616351 Roessle et al. Dec 2013 B2
8666596 Arenz Mar 2014 B2
8684367 Haugen Apr 2014 B2
8695766 Yamashita et al. Apr 2014 B2
8794405 Yamashita et al. Aug 2014 B2
8844687 Yu et al. Sep 2014 B2
8899391 Yamasaki et al. Dec 2014 B2
8948941 Ogawa Feb 2015 B2
9027937 Ryan et al. May 2015 B2
9150077 Roessle et al. Oct 2015 B2
9163691 Roessle et al. Oct 2015 B2
9188186 Hoven et al. Nov 2015 B2
9217483 Dunaway et al. Dec 2015 B2
9399383 Blankenship et al. Jul 2016 B2
9404551 Roessle et al. Aug 2016 B2
9695900 Roessle et al. Jul 2017 B2
9802456 Hall et al. Oct 2017 B2
20020133277 Koh Sep 2002 A1
20030164193 Lou Sep 2003 A1
20030192755 Barbison et al. Oct 2003 A1
20040090020 Braswell May 2004 A1
20040154887 Nehl et al. Aug 2004 A1
20040199313 Dellinger Oct 2004 A1
20050001472 Bale et al. Jan 2005 A1
20050029063 Neumann Feb 2005 A1
20050056502 Maes Mar 2005 A1
20050056504 Holiviers Mar 2005 A1
20050061593 DeGronckel et al. Mar 2005 A1
20050085969 Kim Apr 2005 A1
20050113997 Kim May 2005 A1
20050173849 Vandewal Aug 2005 A1
20060038149 Albert Feb 2006 A1
20060124415 Joly Jun 2006 A1
20060219503 Kim Oct 2006 A1
20070034466 Paesmans et al. Feb 2007 A1
20070051574 Keil Mar 2007 A1
20070255466 Chiao Nov 2007 A1
20080054537 Harrison Mar 2008 A1
20080243336 Fitzgibbons Oct 2008 A1
20080250844 Gartner Oct 2008 A1
20080264743 Lee Oct 2008 A1
20080277218 Fox Nov 2008 A1
20090071772 Cho Mar 2009 A1
20090078517 Maneyama et al. Mar 2009 A1
20090084647 Maneyama et al. Apr 2009 A1
20090132122 Kim et al. May 2009 A1
20090192673 Song et al. Jul 2009 A1
20090200125 Sonsterod Aug 2009 A1
20090200503 Park Aug 2009 A1
20100001217 Jee et al. Jan 2010 A1
20100044172 Jee et al. Feb 2010 A1
20100066051 Haugen Mar 2010 A1
20100109276 Marjoram May 2010 A1
20100138116 Coombs Jun 2010 A1
20100163354 Braun Jul 2010 A1
20100181154 Panichgasem Jul 2010 A1
20100191420 Honma et al. Jul 2010 A1
20100211253 Morais Dos Santos et al. Aug 2010 A1
20100276906 Galasso et al. Nov 2010 A1
20100301578 Noda et al. Dec 2010 A1
20100326267 Hata Dec 2010 A1
20110035091 Yamamoto Feb 2011 A1
20110056780 St. Clair et al. Mar 2011 A1
20110056783 Teraoka et al. Mar 2011 A1
20110079475 Roessle Apr 2011 A1
20110101579 Polakowski et al. May 2011 A1
20110153157 Klank et al. Jun 2011 A1
20110198172 Whan Aug 2011 A1
20110214956 Marking Sep 2011 A1
20110240424 Beck Oct 2011 A1
20110298399 Ogawa et al. Dec 2011 A1
20120018263 Marking Jan 2012 A1
20120048665 Marking Mar 2012 A1
20120049428 Moore Mar 2012 A1
20120073918 Nishimura et al. Mar 2012 A1
20120073920 Ymasaki et al. Mar 2012 A1
20120181126 de Kock Jul 2012 A1
20120186922 Battlogg et al. Jul 2012 A1
20120228072 Mangelschots et al. Sep 2012 A1
20120305349 Murakami et al. Dec 2012 A1
20130081913 Nowaczyk et al. Apr 2013 A1
20130090808 Lemme et al. Apr 2013 A1
20130228401 Bender et al. Sep 2013 A1
20130234379 Panichgasem Sep 2013 A1
20130263943 Forster Oct 2013 A1
20130275003 Uchino et al. Oct 2013 A1
20130299291 Ewers et al. Nov 2013 A1
20130313057 Tsukahara et al. Nov 2013 A1
20130328277 Ryan et al. Dec 2013 A1
20130340865 Manger et al. Dec 2013 A1
20130341140 Nakajima Dec 2013 A1
20130341842 Weber Dec 2013 A1
20130345933 Norton et al. Dec 2013 A1
20140102842 Roessle et al. Apr 2014 A1
20140125018 Brady et al. May 2014 A1
20140202808 Spyche, Jr. et al. Jul 2014 A1
20140216871 Shibahara Aug 2014 A1
20140231200 Katayama Aug 2014 A1
20140238797 Blankenship et al. Aug 2014 A1
20140239602 Blankenship et al. Aug 2014 A1
20140244112 Dunaway et al. Aug 2014 A1
20140260233 Giovanardi et al. Sep 2014 A1
20140262648 Roessle et al. Sep 2014 A1
20140262652 Roessle et al. Sep 2014 A1
20140262654 Roessle et al. Sep 2014 A1
20140265169 Giovanardi et al. Sep 2014 A1
20140265170 Giovanardi et al. Sep 2014 A1
20140284156 Kim Sep 2014 A1
20140291090 Shimasaki Oct 2014 A1
20140297116 Anderson et al. Oct 2014 A1
20140297117 Near et al. Oct 2014 A1
20140303844 Hoffmann et al. Oct 2014 A1
20150088379 Hirao Mar 2015 A1
Foreign Referenced Citations (53)
Number Date Country
1094855 Nov 2002 CN
1267611 Aug 2006 CN
101025213 Aug 2007 CN
100381728 Apr 2008 CN
101229765 Jul 2008 CN
101509535 Aug 2009 CN
201575099 Sep 2010 CN
101857035 Oct 2010 CN
201636258 Nov 2010 CN
201705852 Jan 2011 CN
102032306 Apr 2011 CN
102076988 May 2011 CN
102109024 Jun 2011 CN
102345700 Feb 2012 CN
103154562 Jun 2013 CN
103168183 Jun 2013 CN
103244495 Aug 2013 CN
103702888 Aug 2013 CN
2013186023 Sep 2013 CN
103429929 Dec 2013 CN
203548687 Apr 2014 CN
103946095 Jul 2014 CN
3406875 Sep 1985 DE
3518858 Nov 1985 DE
3432465 Mar 1986 DE
3518327 Nov 1986 DE
3928343 Feb 1991 DE
4041619 Jun 1992 DE
19853277 May 2000 DE
10025399 Dec 2000 DE
10238657 Mar 2004 DE
112007002377 Aug 2009 DE
1588072 Oct 2005 EP
2105330 Sep 2009 EP
2123922 Feb 1984 GB
2154700 Sep 1985 GB
S60138044 Sep 1985 JP
62-253506 Nov 1987 JP
S6467408 Mar 1989 JP
H0550827 Mar 1993 JP
07-113434 May 1995 JP
7056311 Jun 1995 JP
H0899514 Apr 1996 JP
08-260747 Oct 1996 JP
09-217779 Aug 1997 JP
200267650 Mar 2002 JP
2002-349630 Dec 2002 JP
2008106783 May 2008 JP
2009002360 Jan 2009 JP
201198683 May 2011 JP
2011236937 Nov 2011 JP
9218788 Oct 1992 WO
2010029133 Mar 2010 WO
Related Publications (1)
Number Date Country
20180370320 A1 Dec 2018 US
Continuation in Parts (1)
Number Date Country
Parent 15615053 Jun 2017 US
Child 16103068 US