The invention relates to a damper for damping a rotational or linear movement of a component, preferably a component moveably mounted in the passenger compartment of a motor vehicle, having a damper housing. Such dampers serve for damping the movement of moving components in the passenger compartment of an automobile, for example glove compartment lids or the like. There is a need to illuminate the interior spaces closed or exposed by the component to be damped. WO 2007/080448 A1 describes a damper having an integrated switch. The switch integrated into the damper can be electrically connected to a light source arranged remotely from the damper, for example in a lining of a glove compartment. For this purpose wiring is led from the damper comprising the switch through the lining to the light source. The switch is operated by a movement of the component, for example the glove compartment lid, and thereby activates the light source, for example on opening the glove compartment lid. With the known device, however, the assembly outlay is relatively high. In addition there is the risk that in operation the electrical wiring will sustain damage (loose contact) and the working of the light source will thereby be impaired (interrupted).
Proceeding from the state of the art as explained, the object of the invention is to provide a damper of the type specified in the introductory part, which is capable of affording a robust supply to an electrical or electronic component, such as a light source, with a simplicity that makes it cost-effective to manufacture and assemble.
According to the invention this object is achieved by the subject matter of claim 1. Advantageous developments are set forth in the dependent claims, in the description and in the figures.
For a damper of the aforesaid type the invention achieves the object in that at least one illumination source and/or at least one sensor as well as an electrical connecting device for connecting the illumination source or the sensor to an electrical supply are integrated into the damper housing. According to the invention, therefore, a component, for example an electronic component, in particular an electrically operated sensor and/or an electrically operated light source, together with an electrical connecting device for the electrical supply to the component are integrated into the damper housing. This means that in contrast to the state of the art there is no need for any illumination or sensor separate from the damper. Instead these are integrated into the damper itself. This allows an easy and thereby cost-effective assembly of the illumination and sensor together with the damper in just one assembly operation. A separate mounting for the light source or sensor on or in the vicinity of the component to be damped is not necessary. This therefore also obviates the need for any separate wiring for the electrical supply to the respective component. Instead the electrical connecting device is likewise integrated into the damper housing. The number of electrical connections is thereby reduced and the electrical supply is more robust. The invention affords an integrated system, which in compact form provides illumination and/or sensors according to the intended purpose.
The illumination source may be a light emitting diode, a light guide or a luminous foil, for example. Light emitting diodes are particularly energy-saving and at the same time have a long service life. In addition they are now available in a variety of different colors, so that the illumination can be individually designed. For example, different automobile manufacturers use different colors for their interior lighting. In the state of the art, on the other hand, bulbs, which normally generate white light, are generally used for illumination. Furthermore, with light emitting diodes there is a flexible choice of light intensity or brightness according to the respective intended application. In the state of the art light guides are sometimes also used for illumination. Light emitting diodes are easier to fit, however. The sensor may be a movement sensor, a temperature sensor or a light sensor, for example. This may be connected to a vehicle immobilizer alarm system. This makes it possible, particularly in the case of a convertible, to monitor the glove compartment.
In order to provide a particularly simple and robust electrical supply, the damper may comprise a plug device in electrical contact with the electrical connecting device, for connection to an external electrical supply. The electrical supply to the illumination source or the sensor can then be achieved simply by a plug-and-socket connection. The damper may furthermore comprise an integrated switch or push button, upon actuation of which the illumination source and/or the sensor are activated or deactivated. This is an especially simple way of linking the movement of the component, for example the opener of a glove compartment or the like, to an activation of the light source or the sensor. However, the damper is also feasible without a switch or push button. Light emitting diodes, in particular, have a very low power consumption and at the same time a very long service life, so that it is feasible to leave light emitting diodes permanently switched on.
In an especially practical embodiment a gear wheel, which is torsionally fixed to a rotor rotatably mounted in the damper housing, is provided in or on the damper housing, wherein the damper comprises a gear rack, preferably moving linearly and meshing with the gear wheel. A movement of the component leads to a movement of the gear rack. This in turn drives the gear wheel, which turns the rotor. The rotation of the rotor is damped. In particular, the rotor exerts a damping force on the gear wheel and the gear rack which force is opposed to the movement of the gear wheel and hence the gear rack, so that the movement of the component is also damped. It is furthermore possible for the switch to comprise a switch housing mounted on the damper housing and two fixed electrical contacts located in the switch housing together with a third moveable electrical contact, also located in the switch housing, wherein the moveable contact is moveable between a position electrically connecting the fixed contacts and a position electrically separating the fixed contacts, and wherein the moveable contact is moveable in response to a relative movement between the gear rack and the switch provided on the damper housing. In the event of a movement of the component to be damped, the damper housing and hence the switch housing located on the former can move relative to the gear rack. This can then be translated into a movement of the moveable contact, for example, by providing a projection on the gear rack or on a gear rack guide, the switch housing, in the event of a relative movement between the gear rack or guide and the switch housing, running over the projection, so that the moveable contact is in turn moved between its two positions. A damper with a damper fluid, for example a silicone fluid, in which the rotor rotates in response to a movement of the gear wheel, may be provided in the damper housing. It is also possible, however, for the rotor to comprise at least one friction element, which as the rotor rotates is in frictional contact with a surface of the damper housing. Alternatively it is also feasible to provide an axial damper in the damper housing. Such axial dampers are known in the art.
It is also feasible to use the switch to provide a two-way connection, operation of which performs two functions. For example, on activation of the light source or the sensor, an electrical consumer, such as a glove compartment cooling system, for example, might be deactivated, whilst on deactivation of the light source or the sensor the electrical consumer, for example the glove compartment cooling system is re-activated.
In an especially simple embodiment that is inexpensive to produce at least the damper housing may be composed of a plastic material. This also serves to reduce weight. Other components of the damper, such as any gear rack provided and its guide, or the entire damper may be composed of plastic. Furthermore the electrical connecting device may comprise a metallic conduction device integrated into the damper housing, wherein the damper housing is molded on to the conduction device in an injection molding process. Such injection molded enclosure of the conduction device makes it particularly easy to integrate into the damper housing. The metallic conduction device is particularly easy to manufacture in the form of a punched grid. It is also feasible, however, to lay electrical cables in the damper housing, for example. Here the contacting can by provided via a flexible conductor path, such as a cable or a conductive paste. The conduction device can naturally also be fixed by adhesive bonding, clamping, clipping or embossing.
The invention also relates to a damper according to the invention in the mounted state on a component to be damped, wherein the damper is mounted with its damper housing behind a wall, and wherein the wall comprises an opening, against which the illumination source and/or the sensor are situated. The sensor may obviously also be offset rearwards in relation to the interior space defined by the wall. The component may be arranged on a cover (for example a lid or a flap), which either exposes or closes an interior space at least partially delimited by the wall, wherein the damper housing is mounted on the side of the wall remote from the interior space, and wherein the illumination source and/or the sensor faces towards the interior space through the opening in the wall. The housing may grip behind the wall opening, so that the light source or the sensor extend into the interior space of the glove compartment or the like, for example, and illuminate or monitor this. For this purpose the damper housing may comprise at least one projection and the wall may comprise at least one corresponding recess, through which at least one projection of the damper housing can be fed, wherein at least one projection can be rotated into a position engaging behind the wall by rotating the damper housing, so that the damper housing is fixed to the wall. The projections(s) may latch on the wall in the manner of a bayonet catch. Upon a movement of the component, in particular an opening movement exposing the interior space of glove compartment, for example, the switch is operated and the light source or the sensor is activated. If the component is then closed again, the light source or the sensor may be deactivated again. The illumination source may comprise a diffusor, in order to disperse the light generated by the illumination source.
The component may be a lid of a glove compartment, a lid of a center console, a grab handle, a drinks holder, a lid of an ashtray or a sun visor of an automobile, for example. Center consoles, for example, often have a separate illumination, which in the state of the art needs to be wired. At the same time the covers for the center consoles may be axially damped, in order that they cannot drop down undamped. An axial damper, particularly one into which a switch can be integrated, may be used for the damping of such center consoles. This is not absolutely essential, however. In the case of roof grab handles, for example, which are mounted in the passenger compartment on the inside of the vehicle roof, a damper is usually integrated in the pivot axis of the handle. In this application, too, it is possible to provide the damper according to the invention with a switch, operation of which activates the illumination source or the sensor in the body of the damper. It is also possible, for example, to activate an illumination source automatically when the roof grab handle is pulled downward. Feasible components also include components other than automobile components, for example drawer retraction mechanisms in furniture or the like. All in all any kinematic or moving components, the movement of which is to be damped, are feasible, in particular smaller flaps. Also feasible are covers for make-up boxes or mirror and cosmetic sun visors in motor vehicles.
An exemplary embodiment of the invention will be explained in more detail below with reference to schematic figures, of which:
Unless otherwise stated, in the figures the same reference numerals denote the same items.
An illumination source 32, in this case a light emitting diode 32, is integrated into the damper housing 12. It can clearly be seen from the enlarged representation in
It will be pointed out that in the example shown in
The damper 10 according to the invention functions as follows: Under a movement of the glove compartment lid, a tensile or compressive force is exerted on the projections 20, 22 and thereby on the gear rack 18 located on the linear guide 16. This leads to a movement of the gear rack 18 in its longitudinal direction. This in turn results in a rotation of the gear wheel 14 meshing with the gear rack 18 and accordingly in a rotation of the rotor arranged in the damper housing 12. The rotation of the rotor leads to a damping force in opposition to the rotation of the gear wheel 14 and thereby of the gear rack 18 and ultimately of the glove compartment lid. At the same time it also results in a relative movement between the gear rack 18 with its linear guide 16 and the damper housing 12 with the switch housing 28 located thereon. In particular, the switch housing 28 with its switch stud 30 traverses on the upper side of the linear guide 16. If the glove compartment lid is closed, for example, the damper housing 12 and thereby the switch housing 28 moves toward the left in the representation shown in
Although this is not represented in the figures, its is naturally also feasible for the light emitting diode 32 to be replaced by another, preferably electronic component, in particular a movement sensor or the like, which may be coupled to a vehicle alarm system, (for example a temperature sensor, light sensor etc.).
The invention, in a form that is easy to manufacture and assemble, allows a robust supply to a component, especially an electronic component, as a function of the movement of a damped component.
Number | Date | Country | Kind |
---|---|---|---|
10 2009 042 053.3 | Sep 2009 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2010/047629 | 9/2/2010 | WO | 00 | 3/7/2012 |