Damping apparatus

Information

  • Patent Grant
  • 12135067
  • Patent Number
    12,135,067
  • Date Filed
    Tuesday, July 16, 2019
    5 years ago
  • Date Issued
    Tuesday, November 5, 2024
    a month ago
Abstract
A damping apparatus can be self-centering and include one or more pre-compressed and preloaded mechanical springs. A solar tracking apparatus can include a solar panel mounted on a rotating shaft, and a self-centering damping apparatus operatively connected to the rotating shaft to compensate for torque created when the solar panel is rotated at an angle to horizontal. A steering assembly for a zero-turn riding lawn mower can include a pair of steering levers and a self-centering damping apparatus operatively connected to the steering levers.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a national stage application of International Application No. PCT/US2019/041998, filed Jul. 16, 2019, which claims priority to U.S. Provisional Patent Application No. 62/698,372, filed Jul. 16, 2018, which is incorporated by reference herein.


TECHNICAL FIELD

The present invention relates to the mechanical arts. An embodiment of the invention comprises a self-centering damping apparatus. Another embodiment of the invention comprises a solar tracking system comprising a self-centering damping apparatus. Another embodiment of the invention comprises a lawn mower comprising a self-centering damping apparatus.


BACKGROUND

U.S. Pat. No. 5,896,959, which is incorporated herein by reference, discloses a bi-directional damper with a self-centering mechanism. The damper comprises a body 14 and a piston rod 28 positioned partially within the body 14 for reciprocal movement within the body 14. A coil compression spring 102 is disposed outside of the body 14. The spring 102 is not contained within the body 14 that houses the piston rod 28, and is susceptible to contamination from debris and other external elements.


Solar energy can be converted to electric energy through the use of solar (photovoltaic) panels. One or more panels can be attached to a rotating structure to form an array configured to follow the sun. Solar tracking devices can rotate an array of panels to maintain alignment with the sun over the course of a day to maximize energy collection. The weight of the solar panels is centered when the panel is horizontal, but when rotated off horizontal a moment is induced into the rotating member on which the panel is mounted. Existing solar tracking systems compensate for this applied moment with larger motors and gearboxes. A device that can eliminate the need for such larger motors and gearboxes is desirable. U.S. Pat. No. 9,995,506, which is incorporated herein by reference, describes a system for solar tracking for solar array systems.


SUMMARY

One object of the present invention is to provide a damping apparatus comprising a spring, wherein contamination of the spring by debris and other external elements is minimized. Another object of the present invention is to provide a solar tracking system that does not require a large motor or gearbox to compensate for the moment that is induced when a solar panel is rotated off horizontal. These and other objects of the invention can be achieved in one or more embodiments of the invention disclosed herein.


One embodiment of the invention comprises a self-centering damping apparatus.


Another embodiment of the invention comprises a method of solar tracking a solar array using a self-centering damping apparatus.


Another embodiment of the invention comprises a solar tracking system comprising a self-centering damping apparatus.


Another embodiment of the invention comprises a lawn mower comprising a self-centering damping apparatus.


Another embodiment of the invention comprises a damping apparatus comprising a housing defining an interior, the housing having an interior surface and an exterior surface, and a first end and a second end opposite the first end. A rod can be partially positioned within the interior of the housing, and the housing has an opening at the first end for receiving the rod therethrough. The rod moveable between an extended position and a compressed position. A mechanical spring can be operatively connected to the rod and contained within the interior of the housing. The mechanical spring applies force to an outer surface of the rod and the interior surface of the housing.


According to an embodiment of the invention, the mechanical spring is not in direct contact with the rod, and is operatively connected to the rod by at least one retaining member that is attached to the rod and the spring.


According to another embodiment of the invention, the mechanical spring contacts the inner surface of the housing.


According to an embodiment of the invention, the housing is substantially cylindrical, the opening in the first end of the housing is substantially circular, the rod is substantially cylindrical, and the mechanical spring is substantially cylindrical. The mechanical spring has a diameter greater than the opening in the first end of the housing, whereby the spring cannot exit the housing.


According to an embodiment of the invention, the rod has first and second opposed ends. The first end of the rod resides exterior to the housing and the second end of the rod is within the interior of the housing. A clevis or connection head can be attached at the first end of the rod.


According to an embodiment of the invention, the rod has first and second opposed ends. The first end of the rod resides exterior to the housing and the second end of the rod is within the interior of the housing. A piston head can be positioned at the second end of the rod.


According to an embodiment of the invention, the mechanical spring biases the rod to a centered position when the rod is moved to the extension position and biases the rod to a centered position when the rod is moved to the compression position, whereby the dampening apparatus is self-centering.


According to an embodiment of the invention, the mechanical spring is pre-compressed and preloaded.


According to an embodiment of the invention, a groove is formed in the housing, and the groove frictionally engages the retaining member, whereby the spring cannot move beyond the groove.


Another embodiment of the invention comprises a damping apparatus comprising a housing defining an interior, the housing having an interior surface and an exterior surface, and a first end and a second end opposite the first end. A rod can be partially positioned within the interior of the housing and connected to the housing. The housing has an opening at the first end for receiving the rod therethrough. The rod and the housing are moveable between an extended position and a compressed position. A tube assembly contains the rod and the housing. A spring assembly is operatively connected to the exterior surface of the housing, wherein the spring assembly applies force to the exterior surface of the housing.


According to an embodiment of the invention, the spring assembly comprises at least one pre-compressed and preloaded mechanical spring.


According to an embodiment of the invention, the at least one mechanical spring biases the housing and the rod to a centered position when the rod is moved to the extension position and biases the rod to a centered position when the rod is moved to the compression position, whereby the dampening apparatus is self-centering.


According another embodiment of the invention, the spring assembly includes first and second retaining members positioned on the housing on opposite sides of the at least one mechanical spring, and first and second sleeve members positioned on the housing on opposite sides of the mechanical spring. The mechanical spring can be attached to the first and second sleeve members, and the tube assembly can comprise a first tube and a second tube. The first tube can be telescopically positioned within an interior of the second tube and adapted for sliding movement therein. The mechanical spring can be completely contained within the first tube.


According to an embodiment of the invention, the first tube defines a first end distal to the second tube and a second end proximal to the second tube. The first tube has a first groove formed therein proximal to the first end for frictionally engaging the first retaining member or the first sleeve member, and the first tube has a second groove formed therein proximal to the second end for frictionally engaging the second retaining member or the second sleeve member, whereby the mechanical spring cannot move beyond the first and second grooves in the first tube member.


Another embodiment of the invention comprises a solar tracking apparatus comprising a solar panel adapted to absorb solar energy for generating electricity or heat, a rotating shaft operatively connected to the solar panel to rotate the solar panel toward a solar energy source, and a self-centering damping apparatus operatively connected to the rotating shaft. The self-centering damping apparatus compensates for torque induced in the rotating shaft when the rotating shaft rotates the solar panel at an angle to horizontal.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a partially cross-sectioned perspective view of a damping apparatus according to an embodiment of the invention;



FIG. 2 is another partially cross-sectioned perspective view of the damping apparatus of FIG. 1;



FIG. 3 is another partially cross-sectioned perspective view of the damping apparatus of FIG. 1;



FIG. 4 is another partially cross-sectioned perspective view of the damping apparatus of FIG. 1;



FIG. 5 is an exploded perspective view of the damping apparatus of FIG. 1;



FIG. 6 is a another perspective view of the damping apparatus of FIG. 1;



FIG. 7 is a partially cross-sectioned perspective view of a damping apparatus according to another embodiment of the invention;



FIG. 7A is a partial enlarged view of the damping apparatus of FIG. 7;



FIG. 7B is another partial enlarged view of the damping apparatus of FIG. 7;



FIG. 8 is another perspective view of the damping apparatus of FIG. 7;



FIG. 9 is a partially cross-sectioned view of the damping apparatus of FIG. 7;



FIG. 10 is a perspective view of the damping apparatus of FIG. 7;



FIG. 11 is another perspective view of the damping apparatus of FIG. 7;



FIG. 12 is a front elevation view of a solar tracking apparatus according to an embodiment of the invention;



FIG. 13 is another front elevation view of the solar tracking apparatus of FIG. 12; and



FIG. 14 is another front elevation view of the solar tracking apparatus of FIG. 12.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

A damping apparatus according to a preferred embodiment of the invention is illustrated in FIGS. 1-6 and shown generally at reference numeral 10. The apparatus 10 comprises a piston rod 12 positioned within a hollow, cylindrical housing 14. A circular opening 13 is formed at one end of the housing 14 to allow for sliding movement of the piston rod 12 therethrough, as shown in FIGS. 1-4.


A pre-compressed and preloaded mechanical spring 16 is operatively connected to the inner surface of the housing 14 and the outer surface of the rod 12. The spring 16 can be connected to the rod 12 via fastening members, such as a pair of e-clips 21, 22. As shown in FIGS. 1 and 2, one end of the spring 16 is attached to one e-clip 21, and the opposite end of the spring 16 is attached to the other e-clip 22. A pair of grooves 31, 32 can be formed in the housing 14, and the e-clips 21, 22 can be positioned in the grooves 31, 32, respectively. The spring 16 contacts the inner surface of the housing 14, but does not directly contact the rod 12, thus minimizing wear on the sealing surface of the rod 12.


The spring 16 is completely contained within the housing 14, as shown in FIGS. 1-4. The portion of the piston rod 12 supporting the spring 16 cannot move beyond the housing 14. E-clip 21 has a diameter greater than the opening 13 in the housing 14. The opening 13 is shaped and sized to conform to the diameter of the piston rod 12, such that there is no exposure of the spring 16 to debris and other contaminating elements external to the housing 14.


The housing 14 can include a cylindrical sealing member 18 positioned at an end of the housing 14 and defining the opening 13 through which the piston rod 12 is positioned through, as shown in FIGS. 2-4. The sealing member 18 provides a tight seal to prevent debris from entering into the housing 14.


A bump stop 19 can be positioned next to the sealing member 18, as shown in FIGS. 1-4. The bump stop 19 can be a disc made of a resilient material. The sealing member 18 and the bump stop 19 each have a central opening through which the piston rod 12 can be positioned therethrough. The bump stop 19 absorbs impact from the e-clip 21 when the piston rod 12 is fully extended, thereby protecting the sealing member 18. A piston head 15 is positioned on an end of the piston rod 12 that is contained within the housing 14 and distal to the housing opening 13, as shown in FIGS. 1-4.


A fastener such as a clevis 41 can be attached to the opposite end of the piston rod 12 proximate to the housing opening 13, as shown in FIGS. 1-4. A second clevis 42 can be attached at the end of the housing 14 that is distal to the first clevis 41, as shown in FIGS. 2-4.


The force of the spring 16 is applied to the outer diameter of the rod 12 and the inner diameter of the housing 14. The force is applied throughout the complete stroke of the piston rod 12, not just at the end of travel, allowing the spring 16 to be pre-compressed. With the spring 16 pre-compressed, the apparatus 10 can be assembled in a conventional manner.


The spring 16 applies force to the piston rod 12 during both compression and extension strokes. If the piston rod 12 is pulled outward in an extension stroke, as shown in FIG. 3, the force of the spring 16 biases the piston rod 12 back in a compression motion to a centered position, shown in FIG. 2. Conversely, if the piston rod 12 is pushed inward in a compression stroke, shown in FIG. 4, the spring 16 biases the rod 12 back in an extension motion to the centered position. As such, the damping apparatus 10 is self-centering.


Alternatively, one of the connections between the spring 16 and the inner diameter of the housing 14 can be omitted, such that the force of the spring is unidirectional in either the extending or compressing direction. In one alternative embodiment, e-clip 21 can be omitted from the apparatus 10, and the spring 16 is connected to the housing 14 by only e-clip 22. In another alternative embodiment, e-clip 22 can be omitted, and the spring 16 is connected to the housing 14 by only e-clip 21.


A preferred embodiment of the invention comprises a method of using the damping apparatus 10, wherein the damping apparatus can be used in a zero-turn riding lawn mower to provide self-centering damping force on the steering assembly of the mower. In another method of use according to another embodiment of the invention, the damping apparatus 10 can be used to provide damping of a solar (photovoltaic) panel array.


The spring 16 is completely contained within the housing 14, thereby protecting the spring 16 from debris and contamination from other elements external to the housing 14. As such, debris affecting output forces is minimized.


The spring 16 remains inside the housing 14 at all times. A lubricant such as oil can be provided within the housing 14. The oil lubricates the spring 16, thereby reducing frictional forces of the damping apparatus 10.


The damper apparatus 10 can be made from any suitable materials, such as metal, plastic, ceramic and composite materials. The damping apparatus 10 can be made using any suitable technique, including but not limited to, machining. Exemplary methods for making a damper apparatus are described in U.S. Pat. No. 7,631,922, which is incorporated herein by reference.


An embodiment of the invention comprises a lawn mower comprising the damper apparatus 10. The damper apparatus 10 provides self-centering damping force on the steering of the mower. The lawn mower can be a zero-turn riding lawn mower having a pair of steering levers, and a damper apparatus 10 can be operatively connected to each of the steering levers. Each damper apparatus 10 can be attached to each steering lever of the mower via either the first clevis 41 or second clevis 42.


A self-centering damping apparatus according to another embodiment of the invention is illustrated in FIGS. 7-11, and shown generally at reference numeral 50. The apparatus 50 comprises a piston rod 52 positioned within a hollow, cylindrical damper housing 54. A circular opening 53 is formed at one end of the housing 54 to allow for the piston rod 52 to be inserted therethrough, as shown in FIGS. 7 and 7A.


A spring assembly is operatively connected to the housing 54. The spring assembly can comprise a pair of pre-compressed and preloaded mechanical springs 56, 57 can be operatively connected to the outer surface of the housing 54. Alternatively, the apparatus 50 can include only one spring or more than two springs. The springs 56, 57 can be connected to the outer surface of the damper housing 54 by outwardly extending retaining members 61, 62, and sleeve members 71, 72, 73 positioned on the housing 54, as shown in FIGS. 7, 7A and 7B. The retaining members 61, 62 can be external retainer rings, e-clips or other like retaining members 61, 62. The outwardly extending sleeve members 71, 72, 73 can be washers, bushings, sleeve bearings or other like fixed sleeve members 71, 72, 73.


The springs 56, 57 are completely contained within a hollow, cylindrical tube 55. The tube 55 is preferably made of metal, as shown in FIGS. 7 and 9. At least a portion of the damper housing 54 is contained within the tube 55. The tube 55 can have an opening through which the damper housing 54 is positioned, as shown in FIGS. 7 and 7B. The washer 72 positioned on the housing 54, shown in FIG. 7B, can act as a sealing member preventing debris and other contaminating elements from entering into the tube 55 and damaging the springs 56, 57.


A cover 58 can be positioned over a portion of the exterior surface of the tube 55, as shown in FIG. 6. The cover 58 is preferably a plastic tube. The tube 55 and the cover tube 58 together completely contain the damper housing 54, as shown in FIGS. 7 and 9. In an alternative embodiment, the damping apparatus 50 does not include the cover 58, and the housing 54 and piston rod 52 are completely contained within the tube 55. Fasteners 81, 82, such as connection heads, can be attached at opposite ends of the piston rod 52.


A groove 91 can be formed on the exterior surface of the tube 55, and a groove 93 can be formed in the interior surface of the tube 55, as shown in FIGS. 7, 7A and 7B. The springs 56, 57 are connected to the tube 55 by the internal retainer ring 63 positioned within the groove 93 formed in the interior surface of the tube 55. As such, the spring assembly 56, 57 cannot move beyond the tube 55. Another groove 92 is formed on the external surface of the cover tube 58, as shown in FIG. 7, thereby reducing the inner diameter of the cover tube 58 at that point. When in the centered (neutral) position, shown in FIG. 7, the washer 71 is frictionally engaged by the reduced inner diameter of the damper housing 54 created by the groove 91, as shown in FIG. 7A. The springs 56, 57 can be connected to the inner surface of the tube 55 by the internal retainer ring 63, as shown in FIG. 7B.


The springs 56, 57 apply force to the damper housing 54 during both extension and compression strokes, shown in FIGS. 10 and 11, respectively. When the rod 52 is pulled outward in an extension stroke, shown in FIG. 10, the force of the springs 56, 57 biases the rod 52 back in a compression motion to a centered position, shown in FIG. 7. When the rod 52 is pushed inward in a compression stroke, shown in FIG. 11, the springs 56, 57 bias the rod 52 back in an extension motion to the centered position, shown in FIG. 7. As such, the damping apparatus 50 is self-centering. During the compression stroke, shown in FIG. 11, the external retaining ring 63 is frictionally engaged by the reduced inner diameter of the cover tube 58 created by the groove 92.


The damper apparatus 50 can be made from any suitable materials, such as metal, plastic, ceramic and composite materials. The damping apparatus 50 can be made using any suitable technique, including but not limited to, machining. Exemplary methods for making a damper apparatus are described in U.S. Pat. No. 7,631,922, which is incorporated herein by reference.


According to an embodiment of the invention, the damping apparatus 50 can be used with a solar array. U.S. Patent Application Publication No. 2019/0072150 describes systems and methods for damping photovoltaic panel arrays, and is incorporated herein by reference.


An embodiment of the invention comprises a solar tracking apparatus 100 comprising the damping apparatus 50, as shown in FIGS. 12-14. The solar tracking apparatus 100 comprises a solar panel 102. The solar tracking apparatus 100 is adapted to rotate the solar panel 102 to orient the panel toward the sun, thereby maximizing energy collection. As shown in FIGS. 12-14, the solar panel 102 can be mounted to a rotatable shaft 104 that is supported on a column 106 and retained by a bearing. The shaft 104 rotates about its center. The solar panel 102 can be rotated about ±60 degrees from horizontal to follow the sun, as shown in FIGS. 12-14. The weight of the solar panel 102 is centered when the panel 102 is horizontal, but when rotated off horizontal a moment is induced into the shaft 104. The mechanical spring force of the damping apparatus 50 compensates for this torque.


The damping apparatus 50 can be connected to the rotating shaft 104, such that movement of the shaft 104 induces movement of the damping apparatus 50. As shown in FIGS. 12-14, the damping apparatus 50 can be connected to the solar panel 102 via the connection heads 81, 82. When the panel 102 is in the horizontal position, shown in FIG. 12, the damping apparatus 50 is in its free length neutral position. When the solar panel 102 rotates at angle from horizontal, as shown in FIG. 13, the damping apparatus 50 moves to the extended position. When the solar panel is rotated in an opposite direction at an angle from horizontal, as shown in FIG. 14, the damping apparatus 50 moves to the compressed position. The spring assembly 56, 57 of the damping apparatus 50 can be sized to match the torque requirement of the shaft 104, effectively neutralizing the torque due to the offset weight of the solar panels 102. As such, the solar tracking apparatus 100 does not require the large motors and gearboxes typically used by existing solar tracking systems to compensate for the applied moment induced by solar panel rotation.


A damping apparatus and method of using same are described above. Various changes can be made to the invention without departing from its scope. The above description of various embodiments of the invention are provided for the purpose of illustration only and not limitation—the invention being defined by the claims and equivalents thereof.

Claims
  • 1. A damping apparatus comprising: (a) a housing defining an interior, the housing having an interior surface and an exterior surface, and a first end and a second end opposite the first end;(b) a rod partially positioned within the interior of the housing, the housing having an opening at the first end for receiving the rod therethrough, the rod moveable between an extended position and a compressed position; and(c) a single mechanical spring operatively connected to the rod and contained within the interior of the housing, wherein the mechanical spring applies force to an outer surface of the rod and the interior surface of the housing, wherein the mechanical spring biases the rod to a centered position when the rod is moved to the extension position and biases the rod to a centered position when the rod is moved to the compression position, whereby the dampening apparatus is self-centering.
  • 2. The damping apparatus according to claim 1, wherein the mechanical spring is not in direct contact with the rod, and is operatively connected to the rod by at least one retaining member that is attached to the rod and the mechanical spring.
  • 3. The damping apparatus according to claim 2, wherein the mechanical spring contacts the inner surface of the housing.
  • 4. The damping apparatus according to claim 2, wherein the housing is substantially cylindrical, the opening in the first end of the housing is substantially circular, the rod is substantially cylindrical, and the mechanical spring is substantially cylindrical, and further wherein the mechanical spring has a diameter greater than the opening in the first end of the housing, whereby the spring cannot exit the housing.
  • 5. The damping apparatus according to claim 2, wherein the rod has first and second opposed ends, the first end of the rod residing exterior to the housing and the second end of the rod residing within the interior of the housing, and further comprising a clevis or connection head attached at the first end of the rod.
  • 6. The damping apparatus according to claim 2, wherein the rod has first and second opposed ends, the first end of the rod residing exterior to the housing and the second end of the rod residing within the interior of the housing, and further comprising a piston head positioned proximate the second end of the rod.
  • 7. The damping apparatus according to claim 2, wherein the mechanical spring is pre-compressed and preloaded.
  • 8. The damping apparatus according to claim 2, wherein a groove is formed in the housing, and the groove frictionally engages the retaining member, whereby the spring cannot move beyond the groove.
  • 9. A damping apparatus comprising: (a) a housing defining an interior, the housing having an interior surface and an exterior surface, and a first end and a second end opposite the first end;(b) a rod partially positioned within the interior of the housing and connected to the housing, the housing having an opening at the first end for receiving the rod therethrough, the rod moveable between an extended position and a compressed position;(c) a tube assembly containing the rod and the housing; and(d) a spring assembly operatively connected to the exterior surface of the housing, the spring assembly comprising a single mechanical spring, wherein the spring assembly applies force to the exterior surface of the housing, and wherein the mechanical spring biases the rod to a centered position when the rod is moved to the extension position and biases the rod to a centered position when the rod is moved to the compression position, whereby the dampening apparatus is self-centering.
  • 10. The damping apparatus according to claim 9, wherein the mechanical spring is pre-compressed and preloaded.
  • 11. The damping apparatus according to claim 9, wherein the spring assembly further comprises first and second retaining members positioned on the housing on opposite sides of the mechanical spring, and first and second sleeve members positioned on the housing on opposite sides of the mechanical spring, the mechanical spring attached to the first and second sleeve members, and wherein the tube assembly comprises a first tube and a second tube, the first tube telescopically positioned within an interior of the second tube and adapted for sliding movement therein, the first tube containing the mechanical spring therein.
  • 12. The damping apparatus according to claim 9, wherein the first tube defines a first end distal to the second tube and a second end proximal to the second tube, the first tube having a first groove formed therein proximal to the first end for frictionally engaging the first retaining member or the first sleeve member, and the first tube having a second groove formed therein proximal to the second end for frictionally engaging the second retaining member or the second sleeve member, whereby the mechanical spring cannot move beyond the first and second grooves in the first tube member.
PCT Information
Filing Document Filing Date Country Kind
PCT/US2019/041998 7/16/2019 WO
Publishing Document Publishing Date Country Kind
WO2020/018532 1/23/2020 WO A
US Referenced Citations (73)
Number Name Date Kind
2756071 Riva Jul 1956 A
3758092 McGregor Sep 1973 A
4223564 Fawcett Sep 1980 A
4632228 Oster et al. Dec 1986 A
4667780 Pauliukonis May 1987 A
4895229 Kato Jan 1990 A
4991675 Tosconi et al. Feb 1991 A
5095581 Sarto Mar 1992 A
5220706 Bivens Jun 1993 A
5224689 Georgiev Jul 1993 A
5390903 Fidziukiewicz Feb 1995 A
5450933 Schuttler Sep 1995 A
5501438 Handke et al. Mar 1996 A
5529148 O'Leary Jun 1996 A
5799759 Koch Sep 1998 A
5855363 Svendsen Jan 1999 A
5896959 Jeffries Apr 1999 A
5975228 Parfitt Nov 1999 A
6089966 Latvis, Jr. et al. Aug 2000 A
6098966 Latvis, Jr. Aug 2000 A
6179100 Mintgen et al. Jan 2001 B1
6220406 de Molina Apr 2001 B1
6328291 Marzocchi et al. Dec 2001 B1
6460839 Muller Oct 2002 B2
6491292 Stumm et al. Dec 2002 B2
6564667 Bayer May 2003 B2
6773002 Adoline Aug 2004 B2
6935626 Champ Aug 2005 B2
6942204 Wolf et al. Sep 2005 B2
6978985 Lung et al. Dec 2005 B2
7066455 Adoline Jun 2006 B2
7425188 Ercanbrack et al. Sep 2008 B2
7510175 Chiu Mar 2009 B2
7631922 Armstrong et al. Dec 2009 B2
7975994 Born et al. Jul 2011 B2
7993070 Kull et al. Aug 2011 B2
8146417 Glasson et al. Apr 2012 B2
8459249 Corio Jun 2013 B2
8627933 Six et al. Jan 2014 B2
8714531 Roma May 2014 B2
9057546 Sade Jun 2015 B2
9206873 Kull Dec 2015 B2
9598889 Löhken Mar 2017 B2
9714093 Cuddy Jul 2017 B2
9829034 Armstrong et al. Nov 2017 B2
9917546 Sade Mar 2018 B2
9985154 Needham et al. May 2018 B2
9995506 Doyle Jun 2018 B2
10221915 Kull Mar 2019 B2
10648528 Kull et al. May 2020 B2
10676110 Huck Jun 2020 B2
10848097 Needham et al. Nov 2020 B1
10903782 Needham et al. Jan 2021 B2
11118941 Ehre Sep 2021 B2
11209337 Needham et al. Dec 2021 B1
11416010 Needham et al. Aug 2022 B2
11422575 Needham et al. Aug 2022 B2
20030107028 Martin Jun 2003 A1
20030197502 Nyce et al. Oct 2003 A1
20030213663 Salice Nov 2003 A1
20040113341 McConnell Jun 2004 A1
20050029719 Adoline Feb 2005 A1
20070068753 Schmidt Mar 2007 A1
20090271998 Carlen et al. Nov 2009 A1
20110278778 Qattan Nov 2011 A1
20130206524 Bohrer et al. Aug 2013 A1
20140077429 Battey Mar 2014 A1
20140338659 Corio Nov 2014 A1
20150107583 Doyle Apr 2015 A1
20160265619 Kull Sep 2016 A1
20180037251 Nelson Feb 2018 A1
20190072150 Kull et al. Mar 2019 A1
20200248773 Chandrashekar et al. Aug 2020 A1
Foreign Referenced Citations (3)
Number Date Country
1826455 Aug 2007 EP
1419551 Dec 1965 FR
WO2015077628 May 2015 WO
Non-Patent Literature Citations (3)
Entry
European Patent Office. English translation of foreign patent document FR1419551A. Apr. 13, 2021.
International Search Report for International Application No. PCT/US2019/041998. Nov. 25, 2019.
Written Opinion of the International Searching Authority for International Application No. PCT/US2019/041998. Nov. 25, 2019.
Related Publications (1)
Number Date Country
20210277973 A1 Sep 2021 US