The present invention relates to a fuel injector for delivering fuel to a combustion space of a compression ignition internal combustion engine. In particular, but not exclusively, the invention relates to a fuel injector including a piezoelectric actuator for controlling movement of an injector valve needle.
Piezoelectric actuators comprise a stack of piezoelectric elements which are arranged to control fuel pressure within a control chamber within the fuel injector arrangement. Fuel pressure variations within this control chamber result in the opening or closure of the valve needle.
Known fuel injectors of the type comprising a piezoelectric actuator are either arranged such that a reduction of voltage across the piezoelectric stack initiates an injection event (a so-called “de-energise-to-inject” injector) or are arranged such that an increase of voltage across the piezoelectric stack initiates an injection event (a so called “energise-to-inject” injector).
Known “energise-to-inject” piezo-electric injectors often incorporate a damping chamber to control the oscillation of the needle as it is lifted from its seating. Such a damping arrangement helps improve the control of the valve needle. Such injectors often have damping arrangements in which the fuel that is used for damping shuttles back and forth either to a dead ended damping chamber or to a relatively long passage through the valve needle. This limits the exchange of damping fuel with fresh fuel and means that only relatively light damping can be applied without giving rise to excessive fuel temperatures in the damping chamber.
The applicant's co-pending application EP 05250254 describes an “energise-to-inject” injector which comprises a damping arrangement which damps the opening of the valve needle. The damping chamber comprises a restricted passageway that allows fuel to enter the damping chamber from the accumulator volume. The restricted passageway damps both the valve needle lift and also the valve needle closure. As such, the restricted passageway cannot be made too restrictive otherwise the needle closure will be too slow.
It is with a view to addressing at least one of the aforementioned problems that the present invention provides an improved fuel injector, as set out below.
According to an embodiment of the present invention, there is provided a fuel injector for use in an internal combustion engine. The fuel injector includes an inlet for receiving fuel, an accumulator volume, a valve needle, a valve needle seat, a control chamber, an injector outlet, an actuator arrangement, and damping means for damping opening movement of the valve needle. The accumulator volume is located within the fuel injector and is configured to define a fuel passageway for fuel to flow from the inlet to the injector outlet. The valve needle is engageable with the valve needle seat to control fuel injection through the injector outlet. The actuator arrangement is arranged to control fuel pressure within the control chamber. A surface associated with the valve needle is exposed to fuel pressure within the control chamber such that fuel pressure variations within the control chamber control movement of the valve needle relative to the valve needle seat. The damping means includes a damper chamber containing fuel, a damper valve, a first fluid path that includes a vent passage, and a second fluid path that includes a damping orifice. The damper valve also defines a portion of a first fluid path is characterized as having variable restriction between a first location in the accumulator volume to a first end of the damper chamber. The vent passage defines another portion of the first fluid path between a first location in the accumulator volume to the first end of the damper chamber. The damping orifice defines part of a second fluid path and is characterized as having fixed restriction directly from a second end of the damper chamber to a second location in the accumulator volume spaced apart from the first location. The accumulator volume is configured such that fuel flows past the first location and the second location as fuel flows through the injector outlet. By this arrangement, fuel at the first location and the second location is refreshed. Furthermore, the second fluid path is distinct and separate from the first fluid path. The damping orifice is characterized as having a restricted diameter effective for damping. The damper valve is arranged such that fuel flowing out of the damper chamber flows only through the damping orifice during opening movement and so is restricted so as to damp opening movement of the valve needle. The vent passage is arranged to provide an additional fuel flow path through the damper valve into the damper chamber during closing movement of the valve needle. The first fluid path and the second fluid path connect to the damper chamber at locations that are substantially displaced, thereby providing for a flow of fresh fuel through the damper chamber from the first end of the damper chamber to the second end of the damper chamber.
The present invention provides for a fuel injector comprising an injector needle, the position of which is controlled by fuel pressure variations in a control chamber. The fuel pressure in the control chamber is, in turn, controlled by an actuator arrangement.
A damping means is also provided for damping the opening motion of the valve needle. The damping means comprises a damper chamber which is also exposed to fuel pressure variations. These fuel pressure variations provide damping for the opening motion of the valve needle.
It is noted that the damper chamber and control chamber are separate chambers. This allows the damper chamber to be arranged such that there is a through flow of fuel through the damper chamber. This ensures that the fuel within the damper chamber does not undergo excessive heating during operation of the fuel injector and therefore ensures that the problems associated with the prior art, namely changes in bulk modulus and viscosity, are substantially overcome.
The damping means is additionally arranged such that the closing of the valve needle is damped less than the damping during valve needle opening. This allows the valve needle to be quickly closed. Conveniently, closing of the valve needle is substantially less damped than the damping during needle opening and preferably the closing of the valve needle is substantially undamped.
Conveniently, the injector is arranged such that an increase in fuel pressure within the control chamber causes the valve needle to lift away from the valve needle seat.
The actuator may preferably take the form of a piezoelectric actuator that comprises a stack of piezoelectric elements arranged within an accumulator volume for receiving fuel from the source of pressurised fuel. Such an actuator is arranged such that increases in the stack length result in an increase in pressure within the control chamber. This arrangement is referred to as an “energise to inject” type of fuel injector.
Preferably the valve needle is biased towards its seating such that the injector closes in the event of an injector failure. In order that the needle is biased in this way the damper chamber preferably comprises a spring which serves to urge the valve needle towards its seating.
Conveniently, the fuel injector comprises a sleeve member which partially or fully encloses components of the injector. The sleeve member is in communication with the actuator arrangement such that movement of the actuator is transmitted to the sleeve member. The sleeve member will co-operate with the actuator arrangement such that a force applied to the sleeve by the actuator arrangement will cause pressure within the control chamber to vary.
The sleeve member comprises a bore which, together with a surface associated with the valve needle, partially defines the control chamber.
Conveniently, the damper chamber is in fluid communication with a source of pressurised fuel by means of a restricted, damping orifice in the sleeve member. This restricted (or damping) orifice restricts the flow of fuel into the damper chamber and therefore provides a mechanism for damping the lifting of the valve needle.
Conveniently, the actuator is housed within an accumulator volume, the accumulator volume being in communication with the source of pressurised fuel. Therefore, preferably, the damping orifice from the damper chamber is in fluid communication with the accumulator volume.
Conveniently, the sleeve member defines in part the damper chamber. It is noted however that the damper chamber and control chamber are not in direct fluid communication with one another.
Preferably, the damper chamber further comprises a vent passage (or passages) providing a flow path from the source of pressurised fuel to the damper chamber. The damping means preferably, in this instance, further comprises a valve member which serves to block this flow path when in a seated position. When the valve member is in an unseated position however the flow path is unblocked. The vent passage(s) and valve member provide a means for providing damping during opening of the valve needle and undamped closure of the valve needle.
As the needle is lifting the damper chamber reduces in volume. The damping orifice, which is a restricted orifice, is the only outlet for fuel within the damper chamber during needle lift. Needle opening is therefore damped.
During needle closure the damping orifice restricts the rate at which fuel can enter the damper chamber from the pressurised fuel source. This results in a drop in pressure within the damper chamber which, in turn, causes the valve member to lift from its seating. As the valve member moves to its unseated position the vent passages are uncovered. Fuel from the pressurised source is therefore able to enter the damper chamber via the vent passages (in addition to the damping orifice) and consequently, needle closure is substantially undamped.
It is noted that the spring provided within the damper chamber preferably acts upon the valve member to bias it into contact with the valve needle and into its seated position. In this manner the valve needle is also biased towards its seating. During needle closure the pressure drop within the damper chamber is sufficient to overcome the action of the spring.
Conveniently, the valve member may be provided as an annular valve member that is in close communication with the bore of the sleeve member. In its seated position such an annular valve member forms a substantially fluid tight seal between the inside of the sleeve bore and the valve needle. In its unseated position, fluid is able to flow through the vent passage in the sleeve member and through the centre of the annular valve member into the damper chamber.
The unseating of the valve member during valve needle closure allows the fluid within the damper chamber to be recycled and also provides for substantially undamped valve needle closure.
In order to allow the control chamber to track fast changes in the rail pressure of the system the control chamber may be connected to the source of fuel (accumulator volume) by a small orifice. Such an orifice also provides a mechanism for fast auto-closure of the valve needle in the event of faults in the actuator arrangement or associated drive circuit.
According to an embodiment of the present invention, there is provided a fuel injector for use in an internal combustion engine. The fuel injector includes an inlet coupled to a fuel source, a valve needle movable in an opening direction and a closing direction relative to a valve needle seat to control fuel dispensed through an injector outlet, an accumulator volume located within the fuel injector, and a damping means. The accumulator volume is configured to define a fuel passageway for fuel to flow from the inlet to the injector outlet. The damping means includes a damper chamber, a first fluid path, and a second fluid path. The damper chamber contains fuel. The first fluid path is between a first location in the accumulator volume and a first end of the damper chamber. The first fluid path includes a vent passage characterized as having a first restriction. The damping means also includes a second fluid path between a second location in the accumulator volume and a second end of the damper chamber. The second location is spaced apart and distinct from the first location in the accumulator volume. The second end of the damper chamber is substantially opposite the first end of the damper chamber. The second fluid path includes a damping orifice characterized as having a second restriction greater than the first restriction and is effective for damping. The accumulator volume is configured such that fuel flows past the first location and the second location as fuel is dispensed through the injector outlet. By this arrangement, fuel at the first location and the second location is refreshed. The damping means also includes a damper valve arranged series wise in the first fluid path. The damper valve is characterized as having variable restriction. The damper valve is configured such that fuel flowing out of the damper chamber flows only through the second fluid path when the needle moves in the opening direction so as to damp opening movement of the valve needle. The damper valve is also configured so fuel flows through the damper valve when the needle moves in the closing direction such that fuel flows through the first fluid path and the second fluid path when the needle moves in the closing direction. With this arrangement, a flow of fresh fuel is provided through the damper chamber from the first end of the damper chamber to the second end of the damper chamber.
Although the above embodiments of the present invention have been described in relation to a single valve needle injector it is noted that the present invention may also be applied to the inner valve needle of a variable orifice needle (as described in the Applicant's co-pending application EP05250254.9). When the inner valve is lifted in such a variable orifice needle the functionality is as described above.
The present invention may be applied to an injection nozzle for use with a fuel injector as described above.
In order that the invention may be more readily understood, reference will now be made, by way of example, to the accompanying drawings in which:
Referring to
The valve needle 10 is shaped to include an upper guide region which forms a sliding fit within the nozzle body bore 12 so as to guide axial movement of the valve needle 10 as it moves relative to the valve needle seat 16.
The lower end of the nozzle body 14 projects from the actuator housing 18 so that injector outlets 21 (only one of which is shown) provided in said lower end extend into the engine cylinder. The upper end of the actuator housing 18 is received within an upper housing 24 including an inlet 26 for receiving high pressure fuel from a fuel source 25, typically in the form of a common rail. The inlet 26 communicates with a supply passage 28 provided in the upper housing 24. The actuator housing 18 is provided with a through drilling 19, an upper region of which defines an internal volume or “accumulator volume” 30. The supply passage 28 connects with the accumulator volume 30, which is filled with fuel at high pressure. The piezoelectric stack 22 is encapsulated within a sealant coating and received within the accumulator volume 30 so that the stack 22 is exposed continuously to a large hydraulic force due to fuel pressure within the volume 30.
The piezoelectric actuator 20 is also provided with an electrical connector 32 to which a voltage is applied across the stack 22 from an external voltage source (not shown). Being of the energise-to-inject type, the piezoelectric actuator 20 is configured such that, when under non-injecting conditions, a relatively low voltage is applied across the actuator stack 22. With only a relatively low voltage across the stack 22, the stack length is relatively short and the valve needle 10 occupies a position in which it is seated against the valve needle seat 16 so that fuel injection does not take place through the outlets 21. When a relatively high voltage is applied across the piezoelectric stack 22, the stack length is caused to increase and as a result the valve needle 10 lifts away from the valve needle seat 16 to commence injection. Operation of the fuel injector 72 will be described in further detail later.
Referring now to
The piezoelectric stack 22 is surrounded by a sleeve which includes an end piece 40. An upper surface of the sleeve 38 abuts the underside of the end piece 40 so that, as the stack length is varied in use, movement of the stack 22 is transmitted to the sleeve 38.
A control chamber 42 for fuel is defined by a surface of the sleeve 38 and the upper end surface of the nozzle body 14. Fuel pressure within the control chamber 42 acts on a thrust surface 44 of the needle 10 in an upward direction. An outer surface of the nozzle body 14 defines a clearance with the radially inner side of the sleeve 38 through which fuel is able to flow into the control chamber 42.
A valve needle spring 46 is received within a damper chamber 48 defined within an upper end of the sleeve 38. The damper chamber 48 is filled with high pressure fuel which, together with the valve needle spring force, serves to urge the valve needle 10 into engagement with the valve needle seat 16. The pressure of fuel within the damper chamber 42 also serves to resist opening movement of the valve needle 10.
One end of the valve needle spring 46 abuts the underside of the upper surface of the sleeve 38 and the other end of the spring 46 abuts a damper valve arrangement 50, 52. The damper valve arrangement includes an annular damper valve 50 located within the damper chamber 48 and engageable with a valve seating 52 defined by an upper surface of the valve needle 10. The annular damper valve 50 defines a means for aiding rapid closure of the valve needle 10 at the end of injection, as discussed further below. The damper valve 50 is provided with a central drilling 53, one end of which communicates with the damper chamber 48 and the other end which communicates with a recessed portion 56 of the upper end of the needle 10.
The damper chamber 48 is provided with a radially extending drilling 54 to provide a fluid communication path between the damper chamber 48 and the stack chamber (accumulator volume) 30. The drilling (or damper orifice) 54 is of restricted diameter such that it provides a means for damping the opening of the valve needle 10 as described below.
The sleeve 38 is provided with further radially extending drillings 57 (vent passages). The damper valve 50 is subject to fuel pressure variations within the damper chamber 48 such that, in the event that the pressure within the chamber 48 varies sufficiently, the damper valve 50 may move from its seating 52 against the action of the spring 46 such that an additional flow path is opened between the damper chamber 48 and the accumulator volume 30 via the vent passages 57. The movement of the damper valve 50 and the flow path through the vent passages 57 is described in more detail below.
A fuel delivery means is provided between the accumulator volume 30 and the valve needle tip 11 to enable high pressure fuel to flow towards the region of the valve needle seat region at 16. The fuel delivery means includes an upper pair of radially extending drillings 58 in the nozzle body 14, an annular groove 60 provided at the upper end of the valve needle 10 and additional flutes (one of which is shown as feature 61 in
From the foregoing description it will be appreciated that the inlet 26, the supply passage 28, the accumulator volume 30, the radial flow paths 58 in the nozzle body 14, the flutes 61 on the valve needle 10 and the fuel delivery chamber 62 together provide a flow path to permit high pressure fuel that is delivered to injector at the inlet 26 to flow to the valve needle tip 11 in the region of the seat 16.
Starting from the non-injecting condition shown in
Considering the forces acting on the valve needle 10, the net upward force acting on the valve needle 10 in the opening direction is determined by fuel pressure in the control chamber 42 which acts on the thrust surface 44 and by hydraulic forces acting on the valve needle 10 due to fuel pressure within the delivery path 60, 62. The net downward force acting on the valve needle 10 in the closing direction is determined by fuel pressure within the damper chamber 48 and the valve needle spring force. When the piezoelectric stack 22 is in its contracted state, fuel pressure within the control chamber 42 is sufficiently low that the net downward force on the valve needle 10 exceeds the net upward force and, thus, the valve needle 10 remains seated against the valve needle seat 16.
In order to initiate injection, the voltage applied across the piezoelectric stack 22 is increased to a relatively high level (the “injecting voltage level”). As a result, the length of the piezoelectric stack 22 is increased, causing the end of the stack 22 to transmit movement to the sleeve 38. The sleeve 38 is thus caused to move downwardly within the accumulator volume 30, causing the internal volume of the control chamber 42 to be reduced. As a result, fuel pressure within the control chamber 42 is increased.
As fuel pressure within the control chamber 42 increases, a point is reached at which the upwardly directed force acting on the coupled needle 10 is sufficient to overcome the force due to fuel pressure within the damper chamber 48 acting in combination with the valve needle spring force. When this condition occurs, the valve needle 10 starts to lift from the valve needle seat 16 as shown in
The upward force on the valve needle 10 due to fuel pressure within the delivery path 60, 62 also acts to lift the needle 10. As the valve needle 10 starts to lift from the valve needle seat 16, fuel within the delivery chamber 62 is able to flow through the outlets 21 into the engine cylinder, and injection takes place into the engine cylinder.
As the valve needle 10 starts to lift to commence injection, the volume of the damper chamber 48 will reduce and fuel will flow through the damping orifice 54 into the accumulator volume 30. As the damper orifice 54 is of restricted diameter the flow of fuel through the orifice will be restricted and the lifting of the needle 10 will therefore be damped. Damping of opening movement of the valve needle 10 has been found to be advantageous as it avoids unwanted oscillation and overshoot of the valve needle at the desired lift.
The flow of fuel from the damper chamber 54 during needle lifting is indicated by the arrow 64. The motion of the needle 10 is indicated by the arrow 66 and the motion of the sleeve 38 is indicated by the arrow 68.
In order to terminate injection, the voltage across the piezoelectric stack 22 is reduced from the injecting voltage level to the initial voltage level, thereby reducing the length of the stack 22. As a consequence, the sleeve 38 is retracted upwards. As a result, fuel pressure within the control chamber 42 is reduced and a point is reached at which fuel pressure within the control chamber 42 is reduced to a sufficiently low level that the force of the valve needle spring 46, acting in combination with fuel pressure within the damper chamber 48, is sufficient to overcome the opening forces acting on the valve needle 10 to return the valve needle 10 against its seat 16. Injection of fuel through the outlet openings 21 is therefore terminated.
Whilst damping of opening movement of the valve needle 10 has been found to be advantageous, it is preferable for closing movement of the valve needle 10 to be achieved very rapidly. As the voltage across the stack 22 is decreased to the initial voltage level, the piezoelectric stack 22 starts to contract which increases the volume of the damper chamber 48. As the damper chamber volume starts to increase, fuel pressure within the damper chamber 48 starts to decrease and a point is reached at which the annular damper valve 50 is caused to lift away from its damper valve seating 52, as shown in
The movement of the damper valve 50 away from its seating 52 opens an additional flow path for fuel in which fuel from the accumulator volume 30 is able to flow through the vent passages 57, past the damper valve seating 52, through the central drilling 53 and into the damper chamber 48 at a relatively high rate. This flow of fuel is in addition to fuel flowing back into the damper chamber 48 through the restricted damping orifice 54. The provision of the additional flow path for fuel to enter the damper chamber 48 allows fuel pressure within the damper chamber 48 to increase relatively quickly, assisting closing movement of the valve needle 10 and preventing any significant damping of said movement.
The flow of fuel into the damper chamber 48 via the vent passages 57 is shown in
It is noted that the damper arrangement described above in relation to
Referring again to
The damping means 74 includes a damper chamber 48 containing fuel to be used for damping. A first fluid path is generally illustrated by arrows 70 (
It should be appreciated that the accumulator volume 30 is configured such that fuel flows past the first location 78 and the second location 80 in the direction of arrow 76 as fuel is dispensed through the injector outlet 21. As such, the fuel present at the first location 78 and the second location 80 is refreshed when the injector 72 is operated to dispense fuel. The damping means 74 also includes a damper valve 50 arranged series wise in the first fluid path 70. The damper valve 50 may be characterized as having variable restriction. As illustrated in
Referring to
The injection nozzle 112 includes a nozzle body 136 provided with first and second outlets, 138 and 140 respectively, which are spaced axially along the main nozzle body axis so that the second outlet 140 adopts a higher axial position along the nozzle body 136 than the first outlet 138. The first outlet 138 is of relatively small diameter to present a relatively small flow area for fuel being injected into the engine, and the second outlet 140 is of relatively large diameter so as to present a larger flow area for fuel being injected into the engine. Only a single first outlet 138 and a single second outlet 140 are shown, but in practice a set of more than one first outlet and a set of more than one second outlet may be provided. For the purpose of the following description, therefore, reference will be made to a set of first outlets 138 and a set of second outlets 140.
The nozzle body 136 is provided with an axially extending blind bore 142 which defines a first, upper delivery chamber 144 for receiving fuel under high pressure from the nozzle supply chamber 130. The axial bore 142 also defines, at its blind end, a second, lower delivery chamber 146 for fuel. Toward its blind end, the internal surface of the bore 142 is of frustro-conical form and here defines a valve seating surface, indicated generally as 148, for both the inner and outer valves 116, 118.
The first and second coaxial valves 116, 118 are arranged concentrically within the bore 142 to allow control of the flow of fuel between the upper delivery chamber 144 and the first and second sets of outlets, 138, 140 respectively. The first valve member takes the form of a first inner valve, or valve needle 116, movement of which controls whether or not fuel is delivered through the first outlets 138. The second valve member takes the form of an outer valve 118, movement of which controls whether or not fuel is delivered through the second outlets 140. The outer valve is in the form of a sleeve having an axially extending through bore 150. The outer valve 118 includes an enlarged region 118a at its upper end for co-operation with the adjacent region of the nozzle body bore 142 to guide sliding movement of the outer valve 118, in use. The inner valve needle 116 and the outer valve 118 are engageable with respective seatings, defined by the valve seating, as described further below. In
At its upper end, the inner valve needle 116 is coupled to a carrier member 152, or inner valve carrier member, which extends along the valve bore 150, with the inner valve needle 116 being received within a lower portion of the bore 150. The inner valve needle 116 includes an upper stem 116a having a relatively small diameter, which is received within a lower region of the carrier member 52 to couple the parts together in a secure fashion (e.g. by means of a screw thread connection or an interference fit). The inner valve needle 116 is shaped to include a collar, either integrally formed therewith or carried as a separate part, which co-operates with the bore 150 in the outer valve 118 so as to guide sliding movement of the inner valve needle 116. The carrier member 152 terminates, at its upper end, in an enlarged head 152a.
The outer valve 118 is further provided with radially extending drillings 156, outer ends of which communicate with the upper delivery chamber 144 and inner ends of which communicate with flats or grooves provided on the outer surface of the inner valve needle 116. The radially extending drillings 156 and the flats together define a flow passage means for allowing fuel to flow between the upper delivery chamber 144 and the lower delivery chamber 146.
The actuation means of the injector further includes a transmitting means for transmitting an actuation force, due to extension or contraction of the piezoelectric stack 122, to the inner and outer valves 116, 118 to permit their independent movement. The transmitting means includes a sleeve member 158, which is carried by an end piece 160 of the piezoelectric stack 122, and the injection control chamber 120 for receiving fuel at injection pressure. The actuator piston 158 takes the form of a sleeve defining a piston bore 162 that defines, at its upper end, a first damper chamber 164 for housing a first, inner valve spring 166. The enlarged head 152a of the carrier member 152 is received within the lower portion of the piston bore 162 so that the inner valve spring 166 serves to urge the inner valve needle 16 into engagement with its seating 148.
A skirt 168 extends downwardly from the base of the sleeve 158 to define an enlarged recess for receiving, in a sliding fit, an upper extension 136a of the nozzle body 136. The arrangement is such that the lower surface 152b of the enlarged head 152a of the carrier member 152 faces the upper end surface 118a of the outer valve 118. The control chamber 120 of the load transmitting means is therefore defined within the recess by a surface of the sleeve 158, the upper surface 118a of the outer valve 118, the lower surface 152b of the enlarged head 152a of the carrier member 152 and the upper surface 136b of the nozzle body extension 136a.
The control chamber 120 communicates with the stack volume 124, 134 through a restrictive flow means in the form of a restricted passage or orifice 174 provided in the skirt 168 of the sleeve 158. One end of the restricted passage 174 communicates with the control chamber 120 and the other end of the restricted passage 174 communicates with the stack volume 124, 134. The restricted passage 174 ensures fuel pressure within the control chamber 120 tends to equalise with injection pressure at the end of injection, which has advantages for injector operation as will be described further below.
The sleeve 158 is further provided with a radially extending drilling 176 to provide a communication path between the damper chamber 164 and the stack chamber 124. If the drilling 176 is of restricted diameter, it provides a means for damping movement of the carrier member 152, and hence of the inner valve needle 116, as discussed further below.
One end of the inner valve needle spring 166 abuts the lower surface of the end piece 160 of the piezoelectric stack 122 and the other end of the spring 166 abuts a damper valve arrangement 180, 182. The damper valve arrangement includes an annular damper valve 180 located within the damper chamber 164 and engageable with a valve seating 182 defined by an upper surface of the carrier member 152. The annular damper valve 180 defines a means for aiding rapid closure of the valve needle 116 at the end of injection. The damper valve 180 is provided with a central drilling 183, one end of which communicates with the damper chamber 164 and the other end which communicates with a recessed portion 186 of the upper end of the carrier member 152.
The damper chamber 164 is provided with a radially extending drilling 176 to provide a fluid communication path between the damper chamber 164 and the stack chamber (accumulator volume) 124. The drilling (or damper orifice) 176 is of restricted diameter such that it provides a means for damping the opening of the valve needle 116 as described below.
The sleeve 158 is provided with further radially extending drillings 188 (vent passages). In use, the damper valve 180 is subject to fuel pressure variations within the damper chamber 164. In the event that the pressure within the chamber 164 varies sufficiently, the damper valve 180 may move from its seating 182 against the action of the spring 166 such that an additional flow path is opened between the damper chamber 164 and the accumulator volume 124 via the vent passages 188. The movement of the damper valve 180 and the flow path through the vent passages 188 is described in more detail below.
When the energisation level of the stack 122 is such that the inner valve needle 116 only lifts then the functionality of the damper chamber will essentially be the same as described for the single valve needle embodiment in
As the voltage across the stack 122 is decreased to an initial voltage level, the piezoelectric stack 122 starts to contract which increases the volume of the damper chamber 164. As the damper chamber volume starts to increase, fuel pressure within the damper chamber 164 starts to decrease and a point is reached at which the annular damper valve 180 is caused to lift away from its damper valve seating 182.
The movement of the damper valve 180 away from its seating 182 opens an additional flow path for fuel in which fuel from the accumulator volume 124 is able to flow through the vent passages 188, past the damper valve seating 182, through the central drilling 183 and into the damper chamber 164 at a relatively high rate. This flow of fuel is in addition to fuel flowing back into the damper chamber 164 through the restricted damping orifice 176. The provision of the additional flow path for fuel to enter the damper chamber 164 allows fuel pressure within the damper chamber 164 to increase relatively quickly, assisting closing movement of the valve needle 116 and preventing any significant damping of said movement.
It is noted that the embodiment described in relation to
The damper arrangement described in relation to the injector shown in
It is noted however that when the outer valve needle only is moved there will be some damping of the stack caused by movement of the sleeve alone changing the damper volume.
It will be understood that the embodiments described above are given by way of example only and are not intended to limit the invention, the scope of which is defined in the appended claims. It will also be understood that the embodiments described may be used individually or in combination.
Number | Date | Country | Kind |
---|---|---|---|
06251470.8 | Mar 2006 | EP | regional |
This application is a continuation application of U.S. Ser. No. 11/725,464, filed Mar. 19, 2007, and entitled “DAMPING ARRANGEMENT FOR A FUEL INJECTOR”.
Number | Date | Country | |
---|---|---|---|
Parent | 11725464 | Mar 2007 | US |
Child | 12913994 | US |