1. Field
The present application relates to gas turbines, and more particularly to a system and method to damp vibrations of a gas turbine exhaust system.
2. Description of the Related Art
The turbine exhaust cylinder and the turbine exhaust manifold are coaxial gas turbine casing components connected together establishing a fluid flow path for the gas turbine exhaust. The fluid flow path includes an inner flow path and an outer flow path defined by an inner diameter delimiting an outer surface of the inner flow path and an outer diameter delimiting an inner surface of the outer flow path, respectively. Struts are arranged within the fluid flow path and serve several purposes such as supporting the flow path and providing lubrication for the turbine and rotor bearing. The exhaust flow around the struts causes vibrations of the inner and outer diameter of the turbine exhaust cylinder and the turbine exhaust manifold due to vortex shedding. Vortex shedding are vibrations induced as the exhaust flows past the struts, where the struts partially obstruct the flow of the exhaust in the inner flow path. These vibrations are a potential contributor to damage occurring on the flow path of the turbine exhaust manifold and the turbine exhaust cylinder. This damage to the casing components may require replacement or repair.
Briefly described, aspects of the present disclosure relates to a system for damping vibrations of a gas turbine exhaust manifold and a method to damp vibrations of a gas turbine exhaust.
A first aspect of provides a system for damping vibrations of a gas turbine exhaust. The casing arrangement includes a turbine exhaust manifold connected to the turbine exhaust cylinder establishing a fluid flow path, the fluid flow path including an inner and an outer flow path, a plurality of studs coupled to the inner surface of the inner flow path and oriented radially inward, a damping blanket effective to damp vibrational amplitude, and a constraining layer clamped to the damping blanket by the studs. The clamping layer is clamped with sufficient clamping pressure to provide frictional damping of vibrations of the gas turbine exhaust.
A second aspect of provides a method to damp vibrations of a gas turbine exhaust. The method includes disposing a damping blanket against a flow path of the gas turbine, coupling a plurality of studs to an inner surface of the inner flow path such that the damping blanket is arranged on the plurality of studs, and clamping a constraining layer with sufficient clamping pressure to the damping blanket with the plurality of studs providing frictional damping of vibrations of the gas turbine exhaust. The flow path is defined by an inner and an outer flow path and is bounded radially inward by an outer surface of the inner flow path and radially outward by an inner surface of the outer flow path.
To facilitate an understanding of embodiments, principles, and features of the present disclosure, they are explained hereinafter with reference to implementation in illustrative embodiments. Embodiments of the present disclosure, however, are not limited to use in the described systems or methods.
The components and materials described hereinafter as making up the various embodiments are intended to be illustrative and not restrictive. Many suitable components and materials that would perform the same or a similar function as the materials described herein are intended to be embraced within the scope of embodiments of the present disclosure.
Damage to gas turbine casing components is an issue that may be caused by vibrations within the inner and outer flow path of the gas turbine exhaust system. In particular, vibrations such as panel modes and/or critical modes are excited due to flow induced vibrations. Panel modes are mode shapes of panels. In structural dynamics, mode shapes are three-dimensional deformation shapes of an elastic component. Critical modes are mode shapes that couple with the forcing function or energy input and are especially problematic because they may create damage to the casing components, particularly to the flow path of the gas turbine.
An approach to avoid component damage to the casing components caused by vibrations would be to introduce a damping mechanism to damp the problematic vibrations and transfer the energy associated with these vibrations to heat energy. This type of damping mechanism is known as a frictional damper such that the dynamic energy of the vibration is transferred to heat energy by means of friction. The damping mechanism may reduce the amplitude of the vibrations lessening their severity and capacity to damage the casing components. Existing insulation positioned on the inner surface of the inner flow path used to insulate components outside of the flow path against the heat of the flow path may provide additional functionality as the damping mechanism. The layers of insulation may be preloaded, or compressed, a predefined amount to provide sufficient damping to damp the unwanted vibrations while not disintegrating the insulation.
A front view of an embodiment of the damping mechanism (70) is illustrated in
The backing plate panels (90) may be positioned both in the forward portion of the turbine exhaust manifold (30) and the aft position of the turbine exhaust manifold (30), with reference to the fluid flow direction, and around the struts (40) as seen in
The backing plate panels (90) should be sufficiently rigid in order to maintain a steady compression of the damping blanket. A sufficiently rigid material used as the backing plate may be steel. A thickness of the material may contribute to the rigidity of the backing plate panels (90) where each backing plate panel (90) may include a thickness in the range of 3.0 mm to 13 mm. Using a thickness in this range facilitates the assembly of the backing plate panels (90) as the weight of each backing plate panel (90) would be manageable. Additionally, the size of the backing plate panels (90), height and width, may be decreased to improve ease of assembly and minimize relative thermal growth between adjacent studs.
As shown in
The mesh layer (140) increases the adhesion to the flow path of the damping mechanism (70) as well as providing additional frictional damping of the vibratory panel modes of the gas turbine exhaust system (10). As is true of a frictional damper, heat is generated by the friction created between the insulation and the mesh layer (140). In order to effectively provide adhesion and frictional damping the mesh layer may (140) include a material with a bidirectional overlap on its surface or it may be woven. The mesh layer (140) may comprise metal or foil and has a thickness in the range of 0.5 mm to 2.0 mm.
Insulation (80), and possibly a plurality of layers which including an outermost layer and an innermost layer, are embodied as the damping blanket (80). In the embodiment of
The insulation used may be ceramic insulation. As an example, the thickness of the insulation may be approximately 75 mm. Various thicknesses may be used and are based on the insulation properties. After being compressed, or preloaded, the thickness of the insulation may be approximately 50 mm, a 33% compression. A compression in the range of 10-50%, based on insulation stiffness and initial thickness, would be effective to damp the undesired vibrations of the turbine exhaust manifold (30). An appropriate amount of compression depends on the insulation type. Ceramic insulation is appropriate for use in the gas turbine exhaust system (10) to keep the internal cavity and the bearing cool. However, the type of insulation used is not limited to ceramic insulation. Other types of insulation, such as foam and metal encapsulated, may be used provided that the insulation type could withstand temperatures in the ranges of 300° C. to 600° C. which is a typical temperature range that exists in the gas turbine exhaust system (10) in normal operation.
As shown in the embodiments of
An embodiment of a radial threaded rod (200) and its corresponding washer (220) is shown in
The system and corresponding method provides a way to provide effective damping of undesired vibrations in the critical areas of the turbine exhaust system flow path and decrease the critical mode response without compromising the components' structural integrity. Additionally, the damping scheme uses existing insulation such that the insulation has the dual functionality as an element in a frictional damper as well as offering protection of the inner cavity from the heat of the flow path.
Referring to
Each of the plurality of studs (100) is disposed away from heat affected zones and spaced in order to effectively attach a backing plate (90) panel, as shown in the illustrated embodiments, and effectively damp the undesired vibrations. As mentioned previously, each stud (100) may comprise a radial threaded rod (200) which may be coupled to the inner surface (75) to the inner flow path (25) by welding. In order to secure the radial threaded rod (200) to the backing plate panel (90), a nut (230) and washer (220) may be used.
The damping blanket may be embodied as insulation (80) as shown in the illustrated embodiments. The insulation (80) may be coupled against the flow path along the inner surface (75) of the inner flow path (25) between the mesh layer (140) and the constraining layer. The insulation (80) may comprise segments and attach to existing attachment positions on flow path of the gas turbine.
The constraining layer may comprise a plurality of backing plate panels (90). The backing plate panels (90) may be disposed axially and/or circumferentially. The placement of the backing plate panels (90) may be determined based on calculations of predicted displacement. The backing plate panels (90) compress the damping blanket (80) to sufficiently damp the undesired vibrations while not disintegrating the material of the damping blanket (80).
In an embodiment, a mesh layer (140) is disposed between an inner surface (75) of the inner flow path (25) and the damping blanket (80). The mesh layer (140) may be attached to the damping blanket (80) via the plurality of studs (100). The plurality of studs (100) penetrates the mesh layer (140) through the holes in the mesh layer (140). Additionally, the mesh layer may be tack welded to the flow path surface at a plurality of locations.
While embodiments of the present disclosure have been disclosed in exemplary forms, it will be apparent to those skilled in the art that many modifications, additions, and deletions can be made therein without departing from the spirit and scope of the invention and its equivalents, as set forth in the following claims.
This application claims the benefit of the priority date of U.S. Provisional Patent Application Ser. No. 62/050,242, titled “DAMPING DESIGN TO REDUCE VIBRATORY RESPONSE IN THE TURBINE EXHAUST MANIFOLD CENTERBODY”, filed Sep. 15, 2014.
Number | Name | Date | Kind |
---|---|---|---|
2710523 | Thompson | Jun 1955 | A |
4848803 | Bachmann | Jul 1989 | A |
5669812 | Schockemoehl | Sep 1997 | A |
6122917 | Senior | Sep 2000 | A |
20130149107 | Munshi | Jun 2013 | A1 |
20130149121 | Munshi | Jun 2013 | A1 |
20130251510 | Runyan | Sep 2013 | A1 |
Entry |
---|
Nelson Stud Welding, Inc., “Stud Welding—CPL Partially Threaded Studs”, Nelson Stud Welding, Inc., Standard Stock Products Catalog, Feb. 2004, p. 22. |
Number | Date | Country | |
---|---|---|---|
20160076397 A1 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
62050242 | Sep 2014 | US |