The invention relates to a damping device, in particular, for damping or preventing pressure shocks, such as pulsations, in hydraulic supply circuits. The damping device is preferably in the form of a silencer having a damping housing surrounding a damping chamber. The damping chamber includes at least one fluid inlet and at least one fluid outlet, as well as a fluid receiving chamber extending between the fluid inlet and fluid outlet. During operation of the device, a fluid flow coming from the fluid inlet in a through-flow direction traverses the damping chamber in the direction of the fluid outlet. At least parts of the fluid receiving chamber extend in at least one direction of extension transverse to the through-flow direction.
Damping devices of this type are prior art. Such hydraulic dampers, also called noise dampers or silencers, are used to reduce the vibrations generated by pressure pulsations. Pressure pulsations are periodically imparted to a related hydraulic system, in particular, as a result of the operation of the hydraulic pumps. As shown in DE 102 17 080 C1, the known damping devices of this kind have a damping housing in the form of a circular cylinder, which is spherically rounded at both axial end sections. A fluid inlet and a fluid outlet are situated at each end section coaxially to the cylindrical axis. In these damping devices, the damping chamber, which the fluid flow traverses from the fluid inlet to the fluid outlet, is provided in the form of a damping tube. The damping tube extends coaxially between the fluid inlet and the fluid outlet, and includes openings in the tube wall to the fluid chamber surrounding the tube. The fluid chamber, in conformity with the cylinder diameter, is expanded radially relative to the axial through-flow direction predefined by the damping tube.
An object of the invention is to provide an improved damping device of the kind under consideration that is simple in design and is distinguished by an advantageous operating behavior.
This object is basically achieved by a damping device according to the invention, having, as an essential characteristic of the invention, a fluid receiving chamber that is directly adjacent to the fluid inlet and to the fluid outlet. In the design, simplified by the omission of the damping tube, a single cavity forms a resonator system formed together from a damping chamber and a fluid chamber. The device according to the invention is distinguished not only by a simplified design, but also by an enhanced efficiency in terms of its fluid volume and weight. As compared to known silencers of this kind, in which an amplification of pulsations between the pump and entry to the silencer may result, this risk is also significantly reduced in the case of the invention.
A particularly high efficiency of the damping effect may be achieved in exemplary embodiments, in which the fluid receiving chamber forms a cavity in the form of a disk within the damping housing. The disk shape may be cylindrical or designed as a polygon or may have any other non-circular shape.
The configuration may be particularly advantageously achieved in that the cavity is closed by two partition walls of the damping housing extending parallel to one another. Parts of the fluid inlet and fluid outlet are aligned with these partition walls in the damping housing. In such configuration, the diameter of the fluid inlet and fluid outlet, formed as damping housing bores, may be of equal size and may correspond to the distance between the two partition walls.
In a particularly advantageous exemplary embodiment of the invention, in which the damping housing is designed in multiple parts, the following components may be provided.
To seal the cavity from the environment, a seal, in particular, in the form of a sealing ring inserted in a circumferential groove, may be disposed on the engagement connection of the cover part, which forms a seal at the central recess of the pot-shaped bottom part.
For a pressure-resistant design of the damping housing, the cover part may include multiple through-bores diametrically opposite its vertical axis, through which fixing screws are passed to affix the cover part to the bottom part.
The fixing screws are preferably disposed uniformly along an outer periphery on the damping housing, which outer periphery encompasses the disk-shaped fluid receiving chamber, while leaving the areas of the fluid inlet and fluid outlet exposed.
To connect to a particular hydraulic system, a seating for a sealing ring, which encompasses the fluid inlet and/or the fluid outlet, may be provided at the fluid inlet and/or at the fluid outlet in the damping housing. The damping housing may be affixed to third components in the manner of a fixing block by multiple fixing bolts, which surround the area of the fluid inlet and/or fluid outlet.
Other objects, advantages and salient features of the present invention will become apparent from the following detailed description, which, taken in conjunction with the drawings, discloses a preferred embodiment of the present invention.
Referring to the drawings that form a part of this disclosure:
Within the damping housing 1, the fluid receiving chamber extends between the fluid inlet 11 and the fluid outlet 13, acts concurrently as a damping chamber, and is formed by a cavity in the form of a disk-shaped space 19. Space 19 has the shape of a circular disk in the form of a flat circular cylinder. One disk face is bordered by a flat or planar wall 21, which forms the inner bottom face of space 19 in the bottom part 3. Bottom part 3 is formed in a pot-shaped manner by a central, hollowed central recess 41. As is most clearly seen from
The upper partition wall of the disk-shaped hollow space 19 in
As shown in
In the fixed state, a cylindrical engagement connection extending coaxially from the flange surface 37 of the cover part 5 engages in the center recess 41 in the bottom part 3, which is delimited by the inner side wall 22 of the pot of the bottom part 3. This engagement in the screw-connected state is shown in
While one embodiment has been chosen to illustrate the invention, it will be understood by those skilled in the art that various changes and modifications can be made therein without departing from the scope of the invention as defined in the claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2014 005 822 | Apr 2014 | DE | national |
20 2014 006 687 U | Apr 2014 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4163461 | Jacobellis | Aug 1979 | A |
4383551 | Lynch | May 1983 | A |
4548713 | Schmid | Oct 1985 | A |
4939405 | Okuyama | Jul 1990 | A |
5070983 | Leigh-Monstevens | Dec 1991 | A |
6148614 | Nix | Nov 2000 | A |
6901964 | Kippe | Jun 2005 | B2 |
7942650 | Kitahara | May 2011 | B2 |
20100107904 | Kelly | May 2010 | A1 |
Number | Date | Country |
---|---|---|
10 2009 030 565 | Dec 2010 | DE |
10 2009 046 578 | May 2011 | DE |
Number | Date | Country | |
---|---|---|---|
20150308602 A1 | Oct 2015 | US |