The present invention relates to apparatus and methods of damping vibrations in structures and in equipment, systems or sub-structures connected or coupled to such structures. In particular the invention has application, although not exclusive application, to apparatus and methods for the selective damping of vibrations in vehicles and vessels such as aircraft, ships and submarines.
By the term “structures” we include assemblies of components made of solid materials joined together by physical contact, fluid media or magnetic influence to meet an overall requirement e.g. a building, bridge, aircraft or ship.
All structures have natural frequencies of vibration or resonance that can be excited by forces applied to the structure. A structure usually has a number of such natural frequencies of resonance each corresponding to a particular mode of vibration. A cylindrical structure for example will have resonant frequencies corresponding to axial, radial and circumferential modes of vibration respectively, the frequencies being determined by the materials and geometrical dimensions of the cylinder. In some structures, where the natural frequencies are excited in an operational or environmental condition in which the structure is to be used, the resulting resonance becomes a problem as it gives rise to noise, vibration or structural damage. In common practice these problems are addressed either by changing the structure:
A novel method of suppressing these resonant vibration problems is described in our UK patent application 2,361,757. This comprises detecting the onset of a particular mode of resonance of a structure and applying a force to it at a selected frequency to dampen that mode.
One feature of the known methods of damping resonant structures is that to be effective the sensing of modes and application of damping solutions have to be applied at, or close to the position in the structure where the resonance is causing maximum vibration amplitudes. Access to the point of maximum amplitude to apply a damping force or damping materials is not always easy or possible, whilst the application of damping materials is limited by space, weight and chemical compatibility. Moreover the application of damping to completed structures also may be limited by cost, down time and contamination of the resonant areas of the structure.
An object of the present invention is to provide apparatus and methods of controlling, from one part of a structure, the amplitude of one or more resonant modes of vibrations of another, remote, part of the structure or of a remote system connected or coupled to it.
According to the present invention in one aspect thereof there is provided selective damping apparatus comprising at least one sensor for detecting, and producing signals indicative of at least the frequency and amplitude of vibrations of a first structural component (“the resonant structure”), having one or more resonant frequencies, at least one vibration generator for generating damping vibrations for application to the resonant structure, a controller for controlling the operation of the vibration generator in delayed response to the signals produced by the at least one sensor, and wherein at least one of said at least one sensor and of said at least one vibration generator is adapted to operate in co-operation with a second structural component (“the non-resonant structure”) relatively insensitive to the resonant frequencies of the resonant structure and connected or coupled to said resonant structure either directly or indirectly via one or more intermediate structural components.
Where there are two or more sensors they may be used to detect the frequency, amplitude and mode of the vibrations of the resonant structure.
The at least one sensor may be an electromechanical device, such as a piezoelectric transducer, accelerometer, strain gauge, velocity and displacement probe, force gauge, photosensitive sensor or proximity sensor depending on the frequency to be measured and physical arrangement where it is to be fitted. The sensor may be responsive to two or more frequencies of resonance of the resonant structure to produce corresponding signals for application to the controller.
The sensor may produce alternating electrical signals at one or more predetermined frequencies and/or amplitudes indicative of the detection of said one or more resonant frequencies, or it may produce an electrical control or trigger signal or pulse in response to that detection.
The vibration generator may be an electromagnetic inertial vibrator or actuator, or an electro-hydraulic inertial vibrator or actuator, or a piezoelectric inertial vibrator or actuator, or a magnetostrictive inertial vibrator or actuator, or an electro-static inertial vibrator or actuator.
The controller may be a digital electronic controller having analogue to digital input and digital to analogue output circuits for the receipt and transmission of input and output alternating analogue signals from the at least one sensor and to the at least one vibration generator respectively and a digital phase delay circuit or software for adjusting the timing and phase of the output signals with respect to the input signals. The phase delay circuit or software may be adapted to adjust the phase of the output signals such that, vibrations generated by the vibration generator cause the resonant structure to be dampened by a periodically varying force having a frequency corresponding to and substantially in phase quadrature with a resonant frequency of the resonant structure.
According to the present invention in a further aspect thereof there is provided a method of selectively damping resonances of a first structural component (“the resonant structure”) of a structure comprising the steps of:
The invention will now be described by way of example only and with reference to the accompanying drawings of which;
Referring first to
The rotation of the propeller (1) and its blades (6) generates a propulsion force which is transmitted through the propeller shaft (2) and the thrust bearings (3) and their thrust blocks (30) to the hull (4) which is thus moved through the water.
Unsteady forces on the propeller blades (6), due to variations in the water flow, vibrate the propeller (1). When the frequency of the vibration equates to a resonant mode of vibration of the blades (6), the amplitude of these vibrations increases resulting in an increase in noise, enhancement of unsteady water flow and potential failure of the blades due to plastic or fatigue fracture. The propeller shaft (2) and the hull (4) are non resonant at the resonant frequency of the propeller blades (6).
The blades' vibration creates an oscillating sound wave at their resonant frequency which travels through the non resonant propeller shaft (2) into the non resonant hull (4) via the thrust bearing (3).
Referring now to
An accelerometer (7) mounted on and for rotation with the propeller shaft (2) in-board of the bearing (5) and having a telemetric link (not shown) to a stationary receiver (7′) mounted adjacent the shaft (2).
The receiver (7′) is connected to an analogue input (9) of a digital controller (8). The controller (8) has an analogue to digital (A to D) signal conversion circuit (not shown) at its interface with the analogue input (9). It has a digital phase-shifting delay circuit (not shown) or software connected to receive digital signals from the A to D circuit and to apply an appropriate time delay and phase shift to those signals by conventional digital signal processing techniques, and a digital to analogue conversion circuit (not shown) connected to receive the delayed and phase shifted digital signals and to provide corresponding analogue output signals at an output (10) of the controller (8).
The output (10) of the controller (8) is connected to a vibration generator (40) comprising a modified thrust metering system (11). The thrust metering system (11) is a conventional system, typically mounted within a ship's thrust block (30) for measuring the thrust force (indicated by the arrow T) on the hull generated by the propeller (1). It is a hydraulic device including thrust pads (12) in fluidic contact with a collar (13) on the shaft (2), which drive pistons (14) in cylinders (15) hydraulically connected to a pressure gauge (16) calibrated to indicate thrust.
The modification to the thrust metering system (11) to enable it to act as a vibration generator, comprises a further piston and cylinder device (17) in which the piston is moved by a solenoid (18) which in turn is connected to respond to the analogue output signals of the controller (8). The piston acts on the hydraulic fluid of the thrust metering system via a hydraulic line (19) connected to the hydraulic lines of the thrust metering system via a T-piece (20).
Other vibration generators could be used. The vibration generator may be for example a vibrator such as the hydraulically actuated vibrator described in GB2 255 387 (Dowty Aerospace Wolverhampton Ltd), or a magnetically supported and driven mass vibration cancelling device as described in GB 1 281 369 (MAS Research Ltd), or an electromagnetic inertial vibrator for example model IV 46 supplied by Gearing and Watson Ltd of Hailsham in East Sussex, or one or more actuators within the structure in a similar manner to that described in the example below.
In operation the accelerometer (7), senses the oscillating sound wave (indicated by arrows v) arriving along the propeller shaft (2) from the resonant propeller blades (6) and sends a corresponding signal via the telemetry link and the receiver (7′) to input (9) of the electronic controller (8).
The electronic controller (8) identifies the propeller blade resonance from the frequency, phase and mode characteristics of the received signal which it digitises. The electronic controller (8) processes the digitised signal to generate an analogue propeller blade resonance damping signal at the output (10), phase corrected to allow for the phase shift due to sound wave transmission times from and to the propeller blades (6) and delays introduced by the electronic controller (8) itself.
The damping signal activates and deactivates the solenoid (18) correspondingly. The solenoid (18) oscillates the piston in the cylinder (17) at a frequency corresponding to the required damping signal. The piston movements vary the pressure of oil in the hydraulic thrust meter system (11) in sympathy. The oscillating pressure in the thrust meter system (11) acts via thrust meter pistons (14) and the thrust pads (12) to create a control sound wave signal in the propeller shaft (2). The control signal sound wave is transmitted axially along the shaft to the propeller blades (6). The control signal is phased to generate a damping force at the propeller blades (6) at the resonant blade frequency and mode of vibration.
The controller (8) ensures that the damping force is substantially proportional to the velocity of the blades, due to the resonance, and is applied to oppose this motion of the blades. The maximum damping force is applied when the velocity of the blades is at or near its maximum. This velocity is substantially 90° out of phase with the force exciting this resonance. It will be appreciated that relatively minor deviations from the precise phase of the maximum velocity (eg ±10°) will not greatly affect the damping effect of the damping force because the velocity of movement of the blades (6) does not vary rapidly near the maximum velocity in each cycle.
Many modifications and variations on the methods and apparatus described in the example will now suggest themselves to ones skilled in the art. For example it will be appreciated that although an application of the invention has been described with reference to the resonant vibrations of a marine vessel's propeller blades, the concept could equally be applied in other situations, for example, to the selective damping of turbulent airflow induced vibrations in aircraft wings. In the aircraft application detection of these vibrations could be effected within the aircraft fuselage by a sensor attached to a main wing spar and dampening forces could be applied to the wing remotely via an actuator acting on a inboard section of the wing spar remote from the source of vibrations at the wing tip, or via the aircraft's hydraulic undercarriage system, using the wheels as inertial shakers.
It is well know that the turbulent airflow induced vibrations of an aircraft's wing are speed dependent. In practice this limits the maximum safe speed of an aircraft to below that which would otherwise be achievable given the capability of modern jet engines. To exceed this maximum safe speed would risk wing structural vibrations leading to catastrophic failure of the aircraft structure. By damping the resonant frequencies of wing structures in a manner according to the invention it is likely that aircraft could fly at speeds closer to those theoretically possible given modern jet engine performance.
Other applications could include the remote selective damping of bridge or building resonances by sensing those resonances or applying corrective vibrations at non resonant parts of the bridge or building connected or coupled to the resonant part.
Number | Date | Country | Kind |
---|---|---|---|
0202348.9 | Feb 2002 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB03/00277 | 1/24/2003 | WO | 00 | 7/27/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/065142 | 8/7/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4033541 | Malueg | Jul 1977 | A |
4633982 | Swigert | Jan 1987 | A |
4819182 | King et al. | Apr 1989 | A |
5291975 | Fenn et al. | Mar 1994 | A |
5379923 | Sagastegui et al. | Jan 1995 | A |
5431261 | Olgac | Jul 1995 | A |
5473698 | Garnjost et al. | Dec 1995 | A |
5613009 | Miyazaki et al. | Mar 1997 | A |
5620068 | Garnjost et al. | Apr 1997 | A |
5713438 | Rossetti et al. | Feb 1998 | A |
5845236 | Jolly et al. | Dec 1998 | A |
5906254 | Norris et al. | May 1999 | A |
5954169 | Jensen | Sep 1999 | A |
6009985 | Ivers | Jan 2000 | A |
6189223 | Haug | Feb 2001 | B1 |
6193206 | Yasuda et al. | Feb 2001 | B1 |
6473951 | Nakaminami et al. | Nov 2002 | B1 |
6518721 | Mayama | Feb 2003 | B2 |
6537003 | Rostoker | Mar 2003 | B1 |
6700688 | Vaganov | Mar 2004 | B2 |
20030047395 | Patton | Mar 2003 | A1 |
Number | Date | Country |
---|---|---|
21 24 029 | Nov 1972 | DE |
40 07 442 | Sep 1990 | DE |
198 12 748 | Aug 1999 | DE |
0 821 180 | Jan 1998 | EP |
0 999 379 | May 2000 | EP |
2 677 415 | Dec 1992 | FR |
2228778 | Sep 1990 | GB |
2255387 | Nov 1992 | GB |
2 361 757 | Oct 2001 | GB |
2361757 | Oct 2001 | GB |
630053332 | Mar 1988 | JP |
06 280931 | Jan 1994 | JP |
WO 9922361 | May 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20050126849 A1 | Jun 2005 | US |