The present application is a National Phase of International Application Number PCT/CN2016/000068, Feb. 1, 2016, and claims the priority of China Application No. 201520094010.6, filed Feb. 10, 2015.
The present invention relates to the field of a hardware tool, and specifically to a damping return hammer.
A traditional hammer structure comprises a grip handle and a hammer head provided in the front of the grip handle, when this structure of the hammer is used, because the hammer and the grip handle are fixedly connected, when the hammer acts directly on a nail or an object needed to be hammered, according to the principle of the acting force and the reacting force of a force, except that the object to be hammered offsets a part of the force, a considerable part of the reacting force will rebound back, which will hence shake the user's arm, hence the user will feel uncomfortable, meanwhile the hammering effect is also discounted. It is an object of the present inventors to minimize the vibration generated by the hammer to the arm when the hammer is used.
It is an object of the present invention to provide a damping return hammer which reduces vibration and improves work efficiency in view of the above-mentioned problems and deficiencies.
The technical solution of the present invention is realized as follows: a damping return hammer comprises a grip handle, a first elastic damping arm and a second elastic damping arm which are provided at the front ends of the grip handle, and hammer heads provided at the fronts of the first elastic damping arm and the second elastic damping arm, the front ends of the first elastic damping arm and the second elastic damping arm are upper and lower respectively, extend at a certain distance forward and are in the same longitudinal section, the two hammer heads are provided at the front ends of the first elastic damping arm and the second elastic damping arm respectively and the midperpendiculars of the hammer heads are coincident, a gap is provided between the two hammer heads and is fitted therein with a rubber energy-storage cushion block.
Furthermore, the connecting relation of the first elastic damping arm and the second elastic damping arm as well as the connecting manner of the first elastic damping arm and the second elastic damping arm as well as the grip handle have a plurality of structure manners, for example, the rear ends of the first elastic dampening arm and the second elastic damper arm are integrally connected to form a rear end integral connecting portion, the rear end integral connecting portion is connected with the grip handle via a socket wrench tooth mouth. Or for example, the first elastic damping arm and the second elastic damping arm are independent members and connected with the grip handle via a connecting piece respectively.
Furthermore, the two hammer heads are integrally connected with the first elastic damping arm and the second elastic damping arm, respectively and the connecting section thereof is thicker, to increase mass. Or the two hammer heads are connected with the first elastic damping arm and the second elastic damping arm via the connecting piece, respectively.
To reduce vibration, the two opposite faces nearest to the two hammer heads are provided thereon with the groove, the two ends of the rubber energy-storage cushion block are provided with the inserting block matched with the grooves, respectively, the rubber energy-storage cushion block, via the inserting block provided at the two ends thereof, is embedded in the grooves provided with the opposite faces between the two hammer heads to be integrally connected with the two hammer heads.
Furthermore, the socket wrench tooth mouth comprises a large sleeve and a small sleeve, the large sleeve and the small sleeve are provided with a large end and a small end, respectively, the outer diameter of the small end of the small sleeve is tightly matched with an inner hole of the small end of the large sleeve, the two outer sides of the small end of the large sleeve are provided with a stop step, respectively, the inner sides of the steps of the large ends of the large sleeve and the small sleeve are provided with limit tooth mouths, respectively; the middle sections of the first elastic dampening arm and the second elastic dampening arm are close to each other and the ends thereof are slightly separated, the rear end integral connecting portions of the first elastic dampening arm and the second elastic damper arm are in a thin arm arc connection, and have the function of a spring piece when in use, the rear end integral connecting portions of the first elastic dampening arm and the second elastic damper arm and the middle close to the middle section are hollowed out to form a forked connecting portion, the inner sides of the rear end of the forked connecting portion are provided with block slots, respectively; the connecting end of the grip handle is provided with a connecting portion, the two sides of the connecting portion are parallel to each other, the connecting portion is provided thereon with a connecting hole, one ring of a stop tooth mouth is provided on the two sides of the connecting portion and at the periphery of the connecting hole, respectively, the two inner sides of the connecting hole are provided with a limit step matched with the stop step respectively provided at the two outer sides of the small end of the large sleeve, respectively, the rear portions of the two sides of the connecting portion are provided with a convex block matched with the block slots respectively provided at the inner side of the rear end of the forked connecting portion, respectively; when in connection, the connecting portion of the connecting end of the grip handle extends into a fork of the forked connecting portion of the first elastic damping arm and the second elastic damping arm, the convex block respectively provided at the rear portions of the two sides of the connecting portion is embedded into the block slots provided at the inner side of the rear end of the forked connecting portion, under the action of external forces, the small ends of the large sleeve and the small sleeve are sleeved into the connecting hole provided at the connecting portion of the grip handle from the two outer sides of the rear end of the forked connecting portion of the first elastic damping arm and the second elastic damping arm, respectively, at this time, the stop step respectively provided at the two outer sides of the small ends of the large sleeve is matched with the limit step respectively provided at the two inner sides of the connecting hole, the outer diameter of the small end of the small sleeve is tightly matched with the inner hole of the small end of the large sleeve, the limit tooth mouths provided at the inner sides of the steps of the large ends of the large sleeve and the small sleeve are engaged with one ring of the stop tooth mouth respectively provided at the periphery of the connecting hole of the grip handle, so that the first elastic damping arm and the second elastic damping arm are firmly connected with the grip handle together, and prevented from relative rotation when in use.
Because the invention adopts the structure of the double elastic damping arms and the double hammer heads, and has the gap between the double hammer heads in which the rubber energy-storage cushion block is fitted, when in use, the resulting force of the hammering force and the inertia force of the upper hammer as well as the elastic reset release force of the rubber energy-storage cushion block resulted from the squeezing and energy storage acts on the below hammer, causing the lower hammer to have a greater downward impact force, thereby improving work efficiency. At the same time, the first elastic damping arm and the second elastic damping arm are provided to elastically damp, further reducing the impact force on the grip handle when hammering is carried out.
The invention is further described with reference to the following accompanying drawings.
As shown in
The elasticity and hardness of the rubber energy-storage cushion block 6 are controlled to a suitable degree. The softer the rubber energy storage cushion block 6 is, the worse the synchronization of the energy released by the rubber energy storage cushion block 6 and the resulting effect of the inertia force and the impact force of the rubber energy storage cushion block 6 is, the harder the rubber energy storage cushion block 6 is, the better the synchronization of the energy released by the rubber energy storage cushion block 6 and the resulting effect of the inertia force and the impact force of the rubber energy storage cushion block 6 is. However, it must be based on this to ensure that the rubber energy-storage cushion block 6 has a suitable deformation elasticity. The harder the rubber energy-storage cushion block 6 is, the faster the reset speed after the squeezing and deformation is. The softer the rubber energy-storage cushion block 6 is, the slower the reset speed after the squeezing and deformation is. The hardness of the rubber energy-storage cushion block 6 is proportional to the mass of a hammer body, the greater the mass of the hammer body is, and the smaller the contact surface of the hammer body and the rubber energy-storage cushion block 6 is, the higher the hardness of the rubber energy-storage cushion block 6 is.
As shown in
Another example: the first elastic damping arm 2 and the second elastic damping arm 3 are independent members and connected with the grip handle 1 via a connecting piece, respectively.
Another example: the two hammer heads 4, 5 are connected with the first elastic damping arm 2 and the second elastic damping arm 3 via the connecting piece, respectively.
The above-described examples are preferred embodiments of the present invention, however, the embodiments of the present invention are not limited by the above-described examples, any other changes, modifications, substitutions, combinations, and simplification that do not depart from the spirit and principle of the invention are all intended to be equivalent substitution manners and comprised within the protection scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2015 2 0094010 U | Feb 2015 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2016/000068 | 2/1/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/127728 | 8/18/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
967703 | Bagnall | Aug 1910 | A |
2518059 | Pemmerl | Aug 1950 | A |
2656225 | Saylor | Oct 1953 | A |
4633741 | Yang | Jan 1987 | A |
20060144195 | Tanga | Jul 2006 | A1 |
Number | Date | Country |
---|---|---|
201431613 | Mar 2010 | CN |
201453610 | May 2010 | CN |
103251497 | Aug 2013 | CN |
104669207 | Jun 2015 | CN |
204505183 | Jul 2015 | CN |
1 621 295 | Feb 2006 | EP |
Entry |
---|
International Search Report dated Mar. 24, 2016 from corresponding application No. PCT/CN2016/000068. |
Written Office Action by International Searching Authority dated Mar. 18, 2016 and English translation from corresponding application No. PCT/CN2016/000068. |
Number | Date | Country | |
---|---|---|---|
20180264635 A1 | Sep 2018 | US |