The present invention is directed to dark look LED automotive lighting. More particularly, the present invention is directed to dark look LED automotive lighting, used as but not limited to external signal lighting.
Automobile manufacturers are constantly improving vehicles by improving reliability, improving performance and developing devices which may be useful in succeeding generations of vehicles. As an aspect of vehicle design, automotive lighting evolves as vehicles improve. As automotive lighting evolves, there is a general need to minimize power consumption and to enhance performance and reliability, while at least maintaining and perhaps improving conspicuity. With respect to automotive lighting, it is important to have lighting schemes which not only have a pleasing appearance, but for the benefit of prospective customers, differentiate vehicles using those lighting schemes from other vehicles.
Since LEDs draw relatively little current, can last the life of a vehicle, illuminate almost instantaneously and produce little heat; LEDs are of interest as automotive lighting arrangements evolve. An attractive and distinct appearance is important for LED lamps located on the rear of the vehicle because drivers necessarily focus most of their attention on the rear surface of vehicles in front of them. This is because tail lamps of preceding vehicles indicate the presence of preceding vehicles at night, and brake, turn and hazard lamps at any time caution following vehicles.
Ambient sunlight is a consideration when designing automotive lighting because ambient sunlight can obscure signal lamp functions when reflected therefrom. Since individual LEDs are typically not as bright as individual incandescent bulbs currently used as signal lamps on automotive vehicles, the reflection of ambient sunlight from signal lamps is a concern.
In view of the aforementioned considerations, the present invention is directed to an automotive lamp comprising an array of light emitting diodes (LEDs) supported within the lamp. A bezel having a dark surface for absorbing visible light from external sources is positioned adjacent to the LEDs. The dark surface of the bezel has a high gloss finish or other reflective area at least adjacent the LEDs to reflect light from the LEDs, while the dark surface absorbs visible light from external sources. A lens of light transmitting material covers the array of LEDs.
In a further aspect of the invention, the dark surface is substantially black and the lens is clear.
In another aspect of the invention, the automotive lamp is a rear combination lamp assembly including a first array of LEDs which emit red light to function both as a tail light and as a brake light. The rear combination lamp assembly further comprises a second array of LEDs that in one embodiment emit amber light to provide turn and emergency signals which flash. A bezel surrounds the LEDs and is substantially black in color to absorb incoming light from exterior sources, such as sunlight, and includes a gloss finish to reflect light rearwardly from the LEDs. The bezel is mounted in a housing and a lens is positioned over the bezel and the arrays of LEDs.
In a preferred arrangement of the LEDs within the rear combination lamp assembly, the LEDs are arranged in vertical columns and at least a rearwardly facing reflector is positioned adjacent to the columns of LEDs.
In a preferred embodiment of energizing the LEDs, the LEDs of the first array are connected to a power supply which is connected with both a road light control system and a brake system in a vehicle. The power supply has a first mode of a reduced duty cycle for illuminating the LEDs of the first array only as taillights, and has a second mode activated by the braking system for delivering current at a higher percentage of the duty cycle to the LEDs of the first array. This illuminates the LEDs of the first array more brightly then when used as tail lights in order to provide brake lights. In still a further aspect of the invention, the power supply is connected to the second array of LEDs that emit flashing amber or red light and provides current thereto at a higher percentage of the duty cycle to contrast with the tail lights provided by the first array, as well as to be visible in conjunction with the second array, if the first array is brightly lit indicative of the vehicle's brakes being applied.
In still another aspect of the invention, the aforedescribed automotive lamp is used as a center, high mounted, stop lamp (CHMSL) comprising an array of red light emitting LEDs surrounded by a bezel which is substantially black in color to absorb incoming light from exterior sources while having a gloss finish providing reflector elements adjacent to the LEDs to reflect light from the array of red LEDs rearwardly. The bezel is mounted by a housing and a lens is positioned over the bezel and the array of red LEDs.
In further aspects of the CHMSL the red LEDs are arrayed in a line and the lens is clear.
In still another aspect of the invention the aforedescribed automotive lamps are utilized in combination in an arrangement of rear signal lamps on an automotive vehicle.
Various other features and attendant advantages of the present invention will be more fully appreciated as the same becomes better understood when considered in conjunction with the accompanying drawings, in which like reference characters designate the same or similar parts throughout the several views, and wherein:
Referring now to
Referring now to
In
Referring now to
Referring now to
The LEDs 42 and 46 are surrounded by a bezel 50 which is dark in color to absorb rather than reflect exterior light sources such as sunlight (or following headlights), whereby the arrays of LEDs 40 and 44 are not obscured by reflected light rays from exterior light sources (see
The bezel 50 is preferably made of black polycarbonate and the reflective surfaces 52 and 54 may either be at least glossy portions of the black polycarbonate or may be in the shape of small, non-metalized reflector elements surrounding each of the LEDs 42 and 46. In the preferred illustrated embodiment the entire bezel is molded of black polycarbonate with a continuous glossy surface molded therewith.
The bezel 50 is attached to a housing 70 by a pair of metal push-in clips and at least one screw utilizing a rubber sealing gasket (neither of which is shown) so that the bezel is structurally stable with respect to the housing. In a preferred embodiment, the LEDs 42 project through openings 74 in the bezel 50 and the LEDs 46 project through openings 76 in the bezel, the openings 74 and 76 being adjacent the reflective surfaces 52 and 54 of the bezel.
The first array 40 of LEDs 42 is mounted on a stamped metal circuit 80 that is press fitted or otherwise attached to the back surface of the bezel 50. The second array 44 of LEDs 46 is attached to a stamped metal circuit that is also press fitted or otherwise attached to the back surface of the bezel. Alternatively, the stamped metal circuits are attached to surface of the housing.
Disposed over the arrays 40 and 46 of LEDs 42 and 46 is a lens 90. The lens 90 is preferably made of crystal clear (non-colored), medium impact, acrylic plastic having a black acrylic frame around the entire periphery of the lens. The frame is preferably molded integrally to the lens and the combination of the lens and the frame are adhered to the housing 70 using a two-part polyurethane adhesive 91 to combine the housing, lens and lens frame in an integral, closed structure protecting the LEDs 42 and 46. The housing 70 is attached removably to the rear of the vehicle 20 (
As is seen in
Referring now to
As is seen in
Referring now to
When the brake pedal of the vehicle 20 is pressed, the LDMs 130a and 130b change to a second mode during which the duty cycle is increased, preferably to a full duty cycle, which substantially brightens the red LEDs 42 in both rear combination lamps 23a and 23b, signaling a following driver that brakes have been applied in the vehicle 20.
The CHMSL light 34 is not modulated by the LDMs 130a and 130b, but is connected directly to the DC electrical system through a brake pedal detector and is illuminated immediately when the brake pedal is pressed (not shown) with current preferably at a full duty cycle, so that there are three rearwardly facing brake signal lights 32a,32b and 34 (see
The rear turn signal lights 35a and 35b always operate at a full duty cycle and are therefore always bright when flashing to indicate a left turn 35a or a right turn 35b, or when both are flashing in conjunction to indicate an emergency situation. The second LEDs 46 contrast with the first LEDs 42 in the first arrays 40 of the two rear combination lamps 23a and 23b. This contrast indicates to following vehicles that the vehicle 20 is turning or that the vehicle is aware of a hazardous condition. The turn signal lights 35a and 35b flash together when a caution switch in the vehicle 20 is activated to indicate the presence of a hazard to following drivers. The turn signal lights 35a and 35b, positioned inboard of the tail and stop signal lights 31a and 31b, are either red or amber and contrast markedly with the red tail lights 31a and 31b and stop lights 32a and 32b because the turn signal lights 35a and 35b continuously flash.
As seen in
The present invention is also applicable to front parking and directional signal lights configured in substantial similarity with the rear combination lights 23a and 23b, wherein turn signal LEDs have dark bezels with a reflective portion or element adjacent to the LEDs, so as to indicate turns when flashed one at a time to indicate turning direction, or in unison, to indicate an emergency condition. These lights may also be used as parking lights using amber or white LEDs with dark color bezels having reflective surfaces, such as the aforementioned glossy surfaces.
From the foregoing description, one skilled in the art can easily ascertain the essential characteristics of this invention, and without departing form the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions.
Number | Name | Date | Kind |
---|---|---|---|
5172972 | Terao | Dec 1992 | A |
6220733 | Gordon | Apr 2001 | B1 |
20020149312 | Roberts et al. | Oct 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20050146887 A1 | Jul 2005 | US |