The present invention relates to the field of dartboard illumination.
Throwing darts is a familiar sport that is enjoyed by millions of people around the world. The game is entertaining and competitive. It is played in homes, recreation centers, restaurants, bars, and other venues. These different venues present a large variety of illumination settings for the game. Thus, the dartboard may be dimly lit, or may present glare to the player, or be cast with uneven shadows, including shadows cast on the board by the darts themselves. Conventionally, special lighting is sometimes provided to illuminate the board, but the provision of special lighting can be expensive, difficult to control, and rarely provides satisfactory illumination. Thus, there is a need for a method and apparatus for dartboard illumination that overcomes these and other limitations of the prior art.
Accordingly, the present invention presents methods and apparatus for dartboard illumination that overcome limitations of the prior art. According to the present invention, easily controllable illumination of the board is provided that is substantially uniform across the dartboard face, and substantially shadow-free and glare-free. Illumination, provided by a distributed light source, or a plurality of light sources, emanates from about the periphery of the dartboard. The light source may be shaped to conform to the circular shape of the board or may be rectangular to be positioned more easily in a cabinet containing the board. The illumination may be emitted by a single distributed light source such as a tubular fluorescent bulb or tubular neon lamp that surrounds the entire periphery or a substantial portion of the periphery of the dartboard to provide omni- or substantially omni-directional illumination. Or the illumination may be emitted by a plurality of discrete sources distributed around the periphery of the board to provide sufficient multi-directional illumination to substantially minimize shadows and glare and provide substantially uniform illumination.
The illumination will emit light from and about the periphery of the board inward toward and across the surface of the board, providing substantially uniform, shadow-free, glare-free illumination thereof. Thus, for example, shadows cast from darts sticking in the board are substantially minimized because of the omni- or multi-directional nature of the illumination.
According to an aspect of the invention, the illumination may be provided using a neon or fluorescent bulb, incandescent bulbs, or other suitable light source, presently existing or to be developed, that is adaptable to achieve one or more objects of the present invention. Thus, the illumination may be white light or light of a desired color, and can further be set to a desired intensity.
According to another aspect of the invention, the illumination is filtered to control the amount of illumination that travels directly from a source to a player. This enables control of the intensity and color of that direct illumination. In fact, the filter can be opaque, so that the indirect illumination that is diffusely reflected off the dartboard is substantially the only illumination from the source visible by the player. Moreover, a reflecting surface may be provided to enhance the amount of illumination that is reflected toward the board. Further, a translucent protective surface is provided to protect the light source from damage by a stray or rebounding dart or other object that could cause breakage, while enabling all or a desired portion of the visible spectrum to transmit through the protective surface to illuminate the board.
The foregoing has outlined rather broadly aspects, features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional aspects, features and advantages of the invention will be described hereinafter. It should be appreciated by those skilled in the art that the disclosure provided herein may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. Persons of skill in the art will realize that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims, and that not all objects attainable by the present invention need be attained in each and every embodiment that falls within the scope of the appended claims.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
Assembly of a preferred embodiment of the present invention is shown in
A cross-sectional view of a portion of the assembly of
Clips 1100 are received through holes at 2100 in tubing 1000. Preferably four clips 1100 are distributed evenly about the circumference of tubing 1000 to hold fluorescent lamp 1200 in place within tubing 1000, but away from the interior wall of tubing 1000. Fluorescent lamp 1200 is preferably formed of tubing that is 1⅛ inch in diameter (T9 size), and formed in a circle of 20-inch diameter, measured from the centerline of the tubing. This enables use of T9 Circline lamp connector 1300, with radius identical to the lamp tubing.
Translucent protector 1400 is molded from vinyl or other suitable material that is transparent or translucent to allow light to pass there through and illuminate the dartboard, while protecting the light from being struck by darts or other objects. Thus, translucent protector 1400 provides a translucent protective surface to prevent physical impact to a source of the illumination, thereby preventing damage to the source. At an end 2400 of protector 1400 is formed a curved surface to conform to the curvature of the exterior wall of tubing 1000. This enables protector 1400 to be secured to tubing 1000 at various, preferably, equally spaced points. Protector 1400 may be secured to tubing 1000 using rivets or other suitable means. For example, commercially available ⅛ inch pop rivets spaced an inch apart may be employed.
A straight segment 2500 of translucent protector 1400 enables the dartboard 1500 to fit snugly within the interior of the circumference of protector 1400, thereby removably mounting the inventive apparatus securely to the dartboard by frictional forces. In the alternative, the dartboard may be secured within the interior of the circumference of protector 1400 with screws, adhesive or other means.
Translucent protector 1400 may be formed from commercially available transparent or translucent vinyl, by cutting a 3 inch wide piece of ⅛ inch to ¼ inch thick vinyl of sufficient length to form a circle of about 18 inches in diameter. Protector 1400 may be translucent across the entire spectrum of visible light, or translucent across only a portion of the spectrum, thereby creating a color filter, to illuminate the dartboard with a desired intensity and color or color segment of the visible spectrum. Moreover, translucent polarized material may be employed as protector 1400 or as a full or partial coating of protector 1400, to filter out a polarization of the illumination passing there through.
Note that tubing 1000 and protector 1400 both serve to protect the source of illumination from damage. Clearly, in an alternative embodiment, tubing 1000 and protector 1400 may be formed from one unitary piece of vinyl or other suitable translucent material to produce a unitary translucent protective element. Then, a reflective, opague, or partially opaque or polarizing material may be applied to that portion of the element that enables control of the intensity, color, and polarization of illumination emanating directly from the source to the player, while affecting the amount of illumination reflected from the protective element toward the dartboard. Moreover, a tinted filter material of a desired opacity characteristic, and/or polarization characteristic, may be applied to the other portion of the element that is interposed between the source and the dartboard to provide a different intensity, color, and polarization of dartboard illumination than would be provided by the transmission of illumination through the translucent element alone.
Ballast 1600 is a standard commercially available ballast designed for operation of a 60 watt fluorescent lamp. Alternatively, a neon lamp, with a tubing formed in a 20 inch diameter circle, may be employed in place of fluorescent lamp 1200, and powered by a 30 milli-watt solid state transformer. Clearly, a source of illumination may be employed that is tinted in color to illuminate the dartboard with a desired color or portion of the visible spectrum. Moreover, the intensity of the illumination may be adjusted by, for example, the use of a dimmer switch in electrical connection with the electrical power supplied to the source.
The assembly of another preferred embodiment of the present invention is illustrated in
Safety apparatus 3600 serves to protect the wall behind the dartboard from miss-thrown darts, and is often a feature of prior art dartboard installations. In this embodiment the lightsource is located further away from the outer periphery of the dartboard, to accommodate the safety apparatus and further reducing the chance of miss-thrown darts hitting the fixture. For this embodiment, a fluorescent lamp of T9 size may be formed into a lamp source with a diameter of 32 inches to be used in conjunction with a Circline-type connector of the same radius or other suitable connector. Clearly, however, the embodiment of
As before with tubing 1000, discussed with reference to
Thus, although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. The invention achieves multiple objectives and because the invention can be used in different applications for different purposes, not every embodiment falling within the scope of the attached claims will achieve every objective.
Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.