1. Technical Field
The present invention relates to a structure and associated method to control data transfer between cores on a system on a chip.
2. Related Art
Electronic components in a circuit typically require complicated protocols to communicate with each other. Complicated protocols may require additional circuitry making the circuit bulky and costly. Therefore there exists a need to create a simple communication protocol.
The present invention provides a semiconductor device, comprising:
a transmitter, receiver, and transmission line formed within the semiconductor device, wherein the transmitter, receiver, and transmission line are adapted to control data transfer between a first core and a second core within the semiconductor device, wherein the transmitter is adapted to send a signal over the transmission line to the receiver adapted to receive the signal, wherein the receiver is further adapted to create an impedance mismatch to indicate that the second core is unable to transfer the data, and wherein the transmitter is adapted to detect the impedance mismatch.
The present invention provides a method for controlling data transfer, comprising:
providing a transmitter, a receiver, and a transmission line for controlling the data transfer between a first core and a second core within a semiconductor device;
sending, by the transmitter, a signal over the transmission line to the receiver;
creating, by the receiver, an impedance mismatch to indicate that the second core is unable to transfer the data between the first core and the second core; and
detecting, by the transmitter, the impedance mismatch.
The present invention advantageously provides a simple communication protocol.
The following process occurs after the receiver 14 has created the impedance mismatch because the second core 25 is not ready for the data transfer. The first core 27 transmits a request voltage signal (herein referred to as incident voltage) for a data transfer over link 34 to the line driver 2 for transmission on the transmission line 29. The incident voltage is also transmitted over link 35 to the voltage comparator 6. The line driver 2 sends the incident voltage over the transmission line 29 in a direction 18 to the line receiver 4. A voltage (herein referred to as reflected voltage) is reflected back over the transmission line 29 in a direction 20 from the line receiver 4 to the voltage comparator 6. The impedance mismatch will cause an amplitude of the reflected voltage to be greater than or less than an amplitude of the incident voltage. The amplitude of the reflected voltage is compared to the amplitude of the incident voltage by the voltage comparator and if said amplitudes differ then an error signal is generated and sent to the first core 27 as to the amplitude mismatch so that the first core 27 may terminate the data flow.
When the second core 25 is ready to transfer the data, the impedance mismatch is disabled by disabling the switch 16 thereby removing the connection between the capacitor 15 and the transmission line 29. Removing the capacitor causes the impedance of the transmission line 29 on the receiver 4 side to be matched with the impedance of the transmission line 29 on transmitter 2 side. The impedance match causes the amplitude of the reflected voltage to be about equal to the amplitude of the incident voltage as detected by the voltage comparator. The voltage comparator sends a signal to the first core 27 as to the matching of said amplitudes so that the first core 27 may establish the data flow.
If step 53 determines that the second core 25 is ready for data transfer, then the incident voltage is sent from the transmitter 12 to the receiver 14 in step 67. In step 69, the reflected voltage is reflected back to the transmitter 12. In step 71, the voltage comparator 6 compares the incident voltage to the reflected voltage. If the incident voltage is found to be about equal to the reflected voltage in step 73 then the data transfer is initiated in step 75.
If step 53 determines that the second core 25 is not ready for data transfer, then the capacitor 15 is connected to the transmission line 29 in step 55 thereby creating the impedance mismatch. In step 57, the incident voltage is sent from the transmitter 12 to the receiver 14. In step 59, the reflected voltage is reflected back to the transmitter 12. In step 61, the voltage comparator 6 compares the incident voltage to the reflected voltage. If the incident voltage is found to be greater than or less than to the reflected voltage in step 63 then the data transfer is disabled in step 65.
While embodiments of the present invention have been described herein for purposes of illustration, many modifications and changes will become apparent to those skilled in the art. Accordingly, the appended claims are intended to encompass all such modifications and changes as fall within the true spirit and scope of this invention.
Number | Name | Date | Kind |
---|---|---|---|
6177807 | Bertin et al. | Jan 2001 | B1 |
6639423 | Martin et al. | Oct 2003 | B1 |
6677778 | Lindsay et al. | Jan 2004 | B1 |
20020078282 | Drerup et al. | Jun 2002 | A1 |
20020138678 | Kim et al. | Sep 2002 | A1 |
20020161959 | Apostol, Jr. et al. | Oct 2002 | A1 |
20020161978 | Apostol, Jr. et al. | Oct 2002 | A1 |
20020190746 | Abrosimov et al. | Dec 2002 | A1 |
20020190762 | Mooney et al. | Dec 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20050076170 A1 | Apr 2005 | US |