Data acquisition system and method

Information

  • Patent Grant
  • 6560976
  • Patent Number
    6,560,976
  • Date Filed
    Friday, December 7, 2001
    23 years ago
  • Date Issued
    Tuesday, May 13, 2003
    21 years ago
Abstract
A data acquisition system and method includes monitoring a cooling system having a refrigerant compressor, evaporator, and condenser, and employs a number of sensors to monitor various operating parameters of the system. These operating parameters are provided to a computer, which stores predefined operating parameters for a plurality of cooling systems. The computer compares the provided operating parameters of the monitored cooling system with the predefined operating parameters to provide diagnostic results for the monitored cooling system and possible service procedures. If the computer does not recognize the monitored cooling system identifier, a connection is made to a master computer in order look up the predefined operating parameters in a master data base.
Description




FIELD OF THE INVENTION




The present invention relates generally to an apparatus and a method for servicing an air-conditioning system. More particularly, the present invention relates to an apparatus and a method for servicing an air-conditioning system which utilizes a data acquisition system for communicating with the air-conditioning system and a hand held computer which analyzes the information received from the data acquisition system.




BACKGROUND AND SUMMARY OF THE INVENTION




Several air-conditioning service units are available to assist a trained technician in servicing an air-conditioning system. Some prior art units are adapted to be connected to the high- and low-pressure sides of the air-conditioning system and these units include gauges for measuring the high and low side pressures of the system under the appropriate operating conditions. These measured values are then manually compared with known standards for the particular air-conditioning system being tested. From this manual comparison and other observable characteristics of the system, the technician decides whether or not the system is operating properly. If a system malfunction is indicated, the technician determines the possible causes of the malfunction and decides how the system should be repaired.




Expensive and high-end large commercial air-conditioning systems are typically provided with their own sophisticated electronics and a host of internal sensors. The sophisticated electronics and the host of sensors for these large commercial systems simplify the diagnosis for these systems. However, the costs associated with these electronics and the sensors is too much for cost sensitive systems like residential air-conditioning systems and small commercial installations. In these smaller systems, the servicing efficiency is still dependent upon the skill of the technician. The tools that the technician typically uses to help in the diagnosis are pressure gauges, service units which suggest possible fixes, common electronic instruments like multi-meters and component data books which supplement the various service units that are available. Even though these tools have improved over the years in terms of accuracy, ease of use and reliability, the technician still has to rely on his own personal skill and knowledge in interpreting the results of these instruments. The problems associated with depending upon the skill and knowledge of the service technician is expected to compound in the future due in part to the introduction of many new refrigerants. Thus, the large experience that the technicians have gained on current day refrigerants will not be adequate for the air-conditioning systems of the future. This leads to a high cost for training and a higher incident of misdiagnosing which needs to be addressed.




During the process of this diagnosis by the technician, he typically relies on his knowledge and his past experience. Thus, accurate diagnosis and repair require that the technician possess substantial experience. The problem of accurate diagnosis is complicated by the large number of different air-conditioning systems in the marketplace. While each air-conditioning system includes a basic air-conditioning cycle, the various systems can include components and options that complicate the diagnosis for the system as a whole. Accordingly, with these prior art service units, misdiagnosis can occur, resulting in improperly repaired systems and in excessive time to complete repairs.




Although service manuals are available to assist the technician in diagnosing and repairing the air-conditioning systems, their use is time-consuming and inefficient. In addition, the large number of manuals require valuable space and each manual must be kept up to date.




In order to improve over the above described diagnosis procedures, service units have been designed which employ electronic processing means for initially diagnosing the air-conditioning system and, thereafter, if tests or repairs are needed, for guiding the mechanic to correction of its defective operation. When using these prior art service units, the technician identifies what type of system is being diagnosed. The service units are then capable of receiving signals which are indicative of the high and low side pressures of the air-conditioning system. Based upon the observed pressures in relation to the programmed standards for the type of air-conditioning system being tested, the service unit indicates whether or not the system is functioning properly. If the air-conditioning system is not functioning properly, a list of possible defective components and/or other possible causes of the system malfunction are identified. This list could range from a complete self-diagnosis where the problem is clearly identified to interactive dialog that narrows down the possible causes of the problem. The systems that monitor only the high and low pressure side pressures of the air-conditioning system are thus inherently limited in their diagnostic ability. What is needed is an air-conditioning service system which monitors not only the system's pressures, but the system should monitor other conditions such as various temperatures within the system as well as operating parameters of the motor driving the system in order to enable a more accurate diagnosis.




The present invention provides the art with a diagnostic system which is applicable to the present day air-conditioning systems as well as being adaptable to the air-conditioning systems of the future. The present invention provides a data acquisition system which includes a judicious integration of sensors. The sensors monitor the system's pressures, various temperatures within the system as well as operating parameters for the motor driving the system. By incorporating these additional sensors and specifically the motor operating sensors, the data acquisition system can provide better diagnostic results for the air-conditioning system. The data acquisition system coupled with a hand held computer using sophisticated software provides a reasonable cost diagnostic tool for a service technician. In the very cost sensitive systems like residential air-conditioning systems, this diagnostic tool eliminates the need for having each system equipped with independent sensors and electronics, yet they will still have the capability to assist the technician to efficiently service the air-conditioning system when there is a problem. The diagnostic tool also includes a wireless Internet link with a master computer which contains the service information on all of the various systems in use. In this way, the hand held computer can be constantly updated with new information as well as not being required to maintain files on every system. If the technician encounters a system not on file in his hand held computer, a wireless Internet link to the master computer can identify the missing information.




Other advantages and objects of the present invention will become apparent to those skilled in the art from the subsequent detailed description, appended claims and drawings.











BRIEF DESCRIPTION OF THE DRAWINGS




In the drawings which illustrate the best mode presently contemplated for carrying out the present invention:





FIG. 1

schematically illustrates a typical air-conditioning system in accordance with the present invention;





FIG. 2

schematically illustrates an air-conditioning service system in accordance with the present invention; and





FIG. 3

schematically illustrates the air-conditioning service system shown in

FIG. 2

coupled with the air-conditioning system shown in FIG.


1


.











DESCRIPTION OF THE PREFERRED EMBODIMENT




Referring now to the drawings in which like reference numerals designate like or corresponding parts throughout the several views, there is shown in

FIG. 1

an air-conditioning system for use with the service system in accordance with the present invention and which is designated generally by the reference numeral


10


. Air-conditioning system


10


comprises a compressor


12


which compresses refrigerant gas and delivers it to a condensor


14


where the compressed gas is converted to a liquid. Condensor


14


discharges through a sight glass


16


which provides visual observation of the fill level of refrigerant in the system during operation. Sight glass


16


also normally includes a reservoir for storing liquid refrigerant under conditions of large load fluctuations on the system, and includes a high-pressure filter and desiccant to trap and hold any moisture or solid particles which may be present in the system. From sight glass


16


, the refrigerant is delivered through an expansion valve


18


to an evaporator


20


where the refrigerant is evaporated into gaseous form as the system provides cooling in a well known manner. From evaporator


20


, the refrigerant returns to compressor


12


to again start the above described refrigeration cycle.




For purposes of initial charging system


10


and for periodic servicing of system


10


, compressor


12


has a pair of refrigerant ports


22


and


24


. Port


22


is located at or near the low pressure suction port for compressor


12


and port


24


is located at or near the high pressure discharge port for compressor


12


. Ports


22


and


24


provide connections for pressure gauge readings and for the addition of refrigerant and/or lubricating oil at either the suction side or the discharge side of compressor


12


.




Referring now to

FIGS. 2 and 3

, an air-conditioning service system or apparatus


30


is illustrated. Apparatus


30


comprises a data acquisition system


32


, a hand held computer


34


, a pair of pressure hoses


36


and


38


, and a plurality of sensors


40


. Data acquisition system


32


includes a micro-controller


42


, a pair of pressure sensors


44


and


46


and an Analog to Digital converter


48


. Pressure hose


36


is adapted to be attached to port


22


to monitor the pressure at or near the suction port of compressor


12


. Pressure hose


38


is adapted to be attached to port


24


to monitor the pressure at or near the discharge port of compressor


12


. Each hose


36


and


38


is in communication with sensors


44


and


46


, respectively, and each sensor


44


and


46


provides an analog signal to A/D converter


48


which is indicative of the pressure being monitored. A/D converter


48


receives the analog signal from sensors


44


and


46


, converts this analog signal to a digital signal which is indicative of the pressure being monitored and provides this digital system to micro-controller


42


.




Sensors


40


are adapted to monitor various operating characteristics of compressor


12


. Several sensors


40


monitor specific temperatures in the system, one sensor monitors compressor supply voltage, one sensor monitors compressor supply amperage and one sensor monitors the rotational speed (RPM) for compressor


12


. Typical temperatures that can be monitored include evaporator refrigerant temperature, condenser refrigerant temperature, ambient temperature and conditioned space temperature. The analysis of parameters like compressor voltage, compressor current, compressor RPM and discharge temperature can provide valuable information regarding the cause of the problem. Each sensor


40


is connected to A/D converter


48


and sends an analog signal indicative of its sensed parameter to A/D converter


48


. A/D converter


48


receives the analog signals from sensors


40


and converts them to a digital signal indicative of the sensed parameter and provides this digital signal to micro-controller


42


.




Micro-controller


42


is in communication with computer


34


and provides to computer


34


the information provided by micro-controller


42


. Once computer


34


is provided with the air-conditioning system configuration and the sensed parameters from sensors


40


,


44


and


46


, a diagnostic program can be performed. The air-conditioning system configuration can be provided to computer


34


manually by the technician or it can be provided to computer


34


by a bar code reader


50


if the air-conditioning system is provided with a bar code label which sufficiently identifies the air-conditioning system.




In order for the diagnostic program to run, computer


34


must know what the normal parameters for the monitored air conditioning system should be. This information can be kept in the memory of computer


34


, it can be kept in the larger memory of a master computer


52


or it can be kept in both places. Master computer


52


can be continuously updated with new models and revised information as it becomes available. When accessing the normal parameters in its own memory, computer


34


can immediately use the saved normal parameters or computer


34


can request the technician to connect to master computer


52


to confirm and/or update the normal parameters. The connection to the master computer


52


is preferably accomplished through a wireless Internet connection


54


in order to simplify the procedure for the technician. Also, if the particular air conditioning system being monitored is not in the memory of computer


34


, computer


34


can prompt the technician to connect to master computer


52


using wireless Internet connection


54


to access the larger data base which is available in the memory of master computer


52


. In this way, computer


34


can include only the most popular systems in its memory but still have access to the entire population or air-conditioning systems through connection


54


. While the present invention is being illustrated utilizing wireless Internet connection


54


, it is within the scope of the present invention to communicate between computers


34


and


52


using a direct wireless or a wire connection if desired.




The technician using apparatus


30


would first hook up pressure hose


36


to port


22


and pressure hose


38


to port


24


. The technician would then hook up the various temperature sensors


40


, the compressor supply voltage and current sensors


40


and the compressor RPM sensor


40


. The technician would then initialize computer


34


and launch the diagnostics application software. The software on start-up prompts the technician to set up the test session. The technician then picks various options such as refrigerant type of the system and the system configuration, like compressors and system model number, expansion device type or other information for the configuration system. Optionally this information can be input into computer


34


using a barcode label and barcode reader


50


if this option is available. The software then checks to see if the operating information for the system or the compressor model exists within its memory. If this information is not within its memory, computer


34


will establish a wireless connection to master computer


52


through wireless Internet connection


54


and access this information from master computer


52


. Also, optionally, computer


34


can prompt the technician to update the existing information in its memory with the information contained in the memory of master computer


52


or computer


34


can prompt the technician to add the missing information to its memory from the memory of master computer


52


.




Once the test session is set up, the software commands micro-controller


42


to acquire the sensed values from sensors


40


,


44


and


46


. Micro-controller


42


has its own custom software that verifies the integrity of the values reported by sensors


40


,


44


and


46


. An example would be that micro-controller


42


has the ability to detect a failed sensor. The sensors values acquired by micro-controller


42


through A/D converter


48


are reported back to computer


34


. This cycle of sensor data is acquired continuously throughout the test session. The reported sensed data is then used to calculate a variety of system operating parameters. For example, superheat, supercooling, condensing temperature, evaporating temperature, and other operating parameters can be determined. The software within computer


34


then compares these values individually or in combination with the diagnostics rules programmed and then based upon these comparisons, the software derives a set of possible causes to the differences between the measured values and the standard operating values. The diagnostic rules can range from simple limits to fuzzy logic to trend analysis. The diagnostic rules can also range from individual values to a combination of values.




For example, the current drawn by compressor


12


is related to the suction and discharge pressures and is unique to each compressor model. Also, the superheat settings are unique to each air-conditioning system. Further, the diagnostic rules are different for different system configurations like refrigerant type, expansion device type, compressor type, unloading scheme, condensor cooling scheme and the like. In some situations, the application of the diagnostic rules may lead to the requirement of one or more additional parameters. For example, the diagnostic system may require the indoor temperature which may not be currently sensed. In this case, the technician will be prompted to acquire this valve by other means and to input its value into the program. When the criteria for a diagnostic rule have been satisfied, then a cause or causes of the problem is displayed to the technician together with solutions to eliminate the problem. For example, a high superheat condition in combination with several other conditions suggests a low refrigerant charge and the solution would be to add refrigerant to the system. The technician can then carry out the suggested repairs and then rerun the test. When the system is again functioning normally, the test results and the sensed values can be saved for future reference.




While sensors


40


are disclosed as being hard wired to A/D converter


48


, it is within the scope of the present invention to utilize wireless devices to reduce the number of wiring hookups that need to be made.




Also, while apparatus


30


is being disclosed as a diagnostic tool, it is within the scope of the present invention to include an automatic refrigerant charging capability through hoses


36


and


38


if desired. This would involve the addition of a control loop to meter refrigerant into the system from a charging cylinder. Accurate charging would be accomplished by continuously monitoring the system parameters during the charging process.




While the above detailed description describes the preferred embodiment of the present invention, it should be understood that the present invention is susceptible to modification, variation and alteration without deviating from the scope and fair meaning of the subjoined claims.



Claims
  • 1. A data acquisition system for monitoring a cooling system including a microcontroller, a refrigerant compressor, evaporator, and condenser, said data acquisition system comprising:a computer having a memory containing predefined operating parameters and an input for receiving a monitored operating parameter, and in communication with the microcontroller to receive said monitored operating parameter; a first sensor in communication with the microcontroller and adapted to sense a first operating parameter of the cooling system; a second sensor in communication with the microcontroller and adapted to sense a second operating parameter of the cooling system; and a third sensor in communication with the microcontroller and adapted to sense a motor operating parameter of the cooling system; wherein said monitored operating parameter includes at least one of said first operating parameter, said second operating parameter, and said motor operating parameter, said computer being operable to compare said monitored operating parameter to said predefined operating parameters to diagnose the cooling system.
  • 2. The data acquisition system in accordance with claim 1, wherein said monitored operating parameter includes said motor operating parameter and at least one of said first operating parameter and said second operating parameter.
  • 3. The data acquisition system in accordance with claim 2, wherein said first operating parameter is a low side pressure of the cooling system, said second operating parameter is a high side pressure of the cooling system and said third operating parameter is a supply voltage to the compressor of the cooling system.
  • 4. The data acquisition system in accordance with claim 2, wherein said first operating parameter is a low side pressure of the cooling system, said second operating parameter is a high side pressure of the cooling system and said third operating parameter is a supply amperage to the compressor of the cooling system.
  • 5. The data acquisition system in accordance with claim 2, wherein said first operating parameter is a low side pressure of the cooling system, said second operating parameter is a high side pressure of the cooling system and said third operating parameter is a rotational speed of the compressor of the cooling system.
  • 6. The data acquisition system in accordance with claim 2, wherein said first operating parameter is a low side pressure of the cooling system, said second operating parameter is a high side pressure of the cooling system and said third operating parameter is a temperature of refrigerant in the evaporator of the cooling system.
  • 7. The data acquisition system in accordance with claim 2, wherein said first operating parameter is a low side pressure of the cooling system, said second operating parameter is a high side pressure of the cooling system and said third operating parameter is a temperature of refrigerant in the condenser of the cooling system.
  • 8. The data acquisition system in accordance with claim 1, wherein said memory of said computer includes a data base of predefined operating parameters for a plurality of cooling systems, said computer being operable to compare said monitored operating parameter with said predefined operating parameters of one of the plurality of cooling systems to diagnose the cooling system.
  • 9. The data acquisition system in accordance with claim 1, wherein said monitored operating parameter includes said first operating parameter, said second operating parameter, and said motor operating parameter.
  • 10. The data acquisition system in accordance with claim 9, wherein said first operating parameter is a supply amperage to the compressor, said second operating parameter is a supply voltage to the compressor, and the motor operating parameter is a rotational speed of the compressor.
  • 11. The data acquisition system in accordance with claim 1, further comprising:a master computer disposed remote from said computer; and a wireless connection between said computer and said master computer.
  • 12. The data acquisition system in accordance with claim 11, wherein said wireless connection includes a connection to the Internet.
  • 13. The data acquisition system in accordance with claim 1, wherein said computer provides instructions for repairing the cooling system.
  • 14. The data acquisition system in accordance with claim 1, wherein said computer is a hand held computer.
  • 15. A method for monitoring a system including a refrigerant compressor, evaporator, and condensor, said method comprising:measuring a first operating parameter of the monitored system; measuring a second operating parameter of the monitored system; measuring a motor operating parameter of the monitored system; providing at least one of said first operating parameter, said second operating parameter, and said motor operating parameter to a computer; selecting a set of predefined operating parameters for a system which is equivalent to the monitored system from a data base including a plurality of predefined operating parameters for systems; comparing said set of predefined operating parameters with said provided operating parameter of the monitored system; and providing diagnostic results for said comparing step.
  • 16. The method for monitoring a system in accordance with claim 15, wherein said selecting step includes manually inputting an identifier of the monitored system.
  • 17. The method for monitoring a system in accordance with claim 15, wherein said selecting step includes inputting an identifier of the monitored system with a barcode reader.
  • 18. The method for monitoring a system in accordance with claim 15, wherein said selecting step includes communicating between said computer and a master computer using a wireless connection.
  • 19. The method for monitoring a system in accordance with claim 18, wherein said communicating between said computer and said master computer using a wireless connection includes communicating through the Internet.
  • 20. The method for monitoring a system in accordance with claim 15, wherein said providing diagnostic results includes providing instructions for repairing the monitored system.
  • 21. The method for monitoring a system in accordance with claim 15, further comprising performing a test session prior to comparing said set of predefined operating parameters with said provided operating parameters of the monitored system.
  • 22. The method for monitoring a system in accordance with claim 15, further comprising updating said data base from a master computer through a wireless connection.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 09/721,594 filed on Nov. 22, 2000, U.S. Pat. No. 6,324,854, which is incorporated herein by reference.

US Referenced Citations (14)
Number Name Date Kind
4755957 White et al. Jul 1988 A
4798055 Murray et al. Jan 1989 A
5303560 Hanson et al. Apr 1994 A
5335507 Powell Aug 1994 A
5440890 Bahel et al. Aug 1995 A
5440895 Bahel et al. Aug 1995 A
5511387 Tinsler Apr 1996 A
5528908 Bahel et al. Jun 1996 A
5548966 Tinsler Aug 1996 A
5596507 Jones et al. Jan 1997 A
5630325 Bahel et al. May 1997 A
5875638 Tinsler Mar 1999 A
5924295 Park Jul 1999 A
6179214 Key et al. Jan 2001 B1
Foreign Referenced Citations (2)
Number Date Country
0 453 302 Oct 1991 EP
2 062 919 May 1981 GB
Continuations (1)
Number Date Country
Parent 09/721594 Nov 2000 US
Child 10/012631 US