Data center facility including external wall penetrating air handling units

Information

  • Patent Grant
  • 11889630
  • Patent Number
    11,889,630
  • Date Filed
    Saturday, December 11, 2021
    3 years ago
  • Date Issued
    Tuesday, January 30, 2024
    10 months ago
  • Inventors
  • Original Assignees
  • Examiners
    • Savani; Avinash A
    • Tighe; Dana K
    Agents
    • Weide & Miller, Ltd.
Abstract
Described herein is a data center that provides for efficient cooling using HVAC units positioned outside of the facility.
Description
BACKGROUND
Field of the Invention

The present invention relates to electronic equipment data center or co-location facility designs and methods of making and using the same in an environmentally aware manner.


Background of the Invention

Data centers and server co-location facilities are well-known. In such facilities, rows of electronics equipment, such as servers, typically owned by different entities, are stored. In many facilities, cabinets are used in which different electronics equipment is stored, so that only the owners of that equipment, and potentially the facility operator, have access therein. In many instances, the owner of the facilities manages the installation and removal of servers within the facility, and is responsible for maintaining utility services that are needed for the servers to operate properly. These utility services typically include providing electrical power for operation of the servers, providing telecommunications ports that allow the servers to connect to transmission grids that are typically owned by telecommunication carriers, and providing air-conditioning services that maintain temperatures in the facility at sufficiently low levels for reliable operation.


There are some well-known common aspects to the designs of these facilities. For example, it is known to have the electronic equipment placed into rows, and further to have parallel rows of equipment configured back-to back so that each row of equipment generally forces the heat from the electronic equipment toward a similar area, known as a hot aisle, as that aisle generally contains warmer air that results from the forced heat from the electronics equipment. In the front of the equipment is thus established a cold aisle.


There are different systems for attempting to collect hot air that results from the electronics equipment, cooling that hot air, and then introducing cool air to the electronics equipment. These air-conditioning systems also must co-exist with power and communications wiring for the electronics equipment. Systems in which the electronics equipment is raised above the floor are well-known, as installing the communications wiring from below the electronics equipment has been perceived to offer certain advantages. Routing wiring without raised floors is also known—though not with systematic separation of power and data as described herein.


In the air conditioning units that are used in conventional facility systems, there are both an evaporator unit and a condenser unit. The evaporator units are typically located inside a facility and the condenser units are typically disposed outside of the facility. These units, however, are not located in standardized, accessible and relatively convenient positions relative to the facility should any of the units need to be accessed and/or removed for repair or replacement. Further, these units are not themselves created using an intentionally transportable design.


SUMMARY

The present invention provides an integrated data center that provides for efficient cooling, as well as efficient wire routing.


In one aspect is provided a facility with an internal area and an external area in an external environment for maintaining electronic equipment disposed in a plurality of cabinet clusters in the internal area at a cool temperature, the facility comprises a building that includes an exterior load wall separating the internal area and the external area and a plurality of exterior wall openings in the exterior load wall. A floor is within the internal area of the building on which the plurality of cabinet clusters are disposed and a plurality of cabinets for holding the electronic equipment therein, the plurality of cabinets are positioned in a plurality of rows within each of a plurality of cabinet clusters so that the electronic equipment disposed within the cabinets emit heated air from the cabinets in each row of each cabinet cluster toward a central hot air area associated with each cabinet cluster. Also part of this embodiment is a plurality of support brackets within each cabinet cluster, disposed along each of the plurality of rows, that together provide support for distribution power wiring and conduits, electronic equipment power wiring and conduits, and communication wiring. A portion of each of the support brackets is disposed above the plurality of cabinets within each cabinet cluster, and some of the distribution power wiring and conduits string across other cabinets in other cabinet clusters. A thermal shield is supported by the at least some of the plurality of support brackets, such that the thermal shield provides a contiguous wall around the central hot air area and defines a hot air containment chamber that traps the heated air within the central hot air area and causes substantially all the heated air within the central hot air area to rise up within the hot air containment chamber.


A plurality of air conditioning units are disposed in the external area outside the building that each receive heated air, emit cooled air, and emit vented air, wherein the vented air is released into the external environment. A warm air escape gap, within the building, is disposed above the hot air containment chamber, such that the warm air escape channel feeds the heated air to the plurality of air conditioning units, the warm air escape gap being lowerly bounded by a false ceiling. Cool air ducts are within the building that couple the plurality of air conditioning units and the cold aisles, the cool air ducts being disposed below the false ceiling and delivering cool air from the plurality of air conditioning units toward the plurality of rows of cabinets within each of the plurality of cabinet clusters. Warm air connectors and cool air duct connectors that respectively connect the warm air escape channel and the cold air ducts to the plurality of air conditioning units, which pass through the plurality of exterior wall openings.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other aspects and features of the present invention will become apparent to those of ordinary skill in the art upon review of the following description of specific embodiments of the invention in conjunction with the accompanying figures, wherein:



FIG. 1A illustrates a floor design used in a data center or co-location facility according to the present invention.



FIG. 1B illustrates floor-based components disposed over the floor design according to the present invention.



FIG. 1C illustrates a perspective cut-away view along line c-c from FIG. 1(a) of FIG. 1(a) according to the present invention.



FIGS. 2A, 2B, C illustrate various cut-away perspective views of the thermal compartmentalization and cable and conduit routing system according to the present invention.



FIGS. 3A and 3B illustrate modular thermal shields used in the thermal compartmentalization and cable and conduit routing system according to the present invention.



FIG. 4 illustrates illustrate a telecommunication bracket used in the thermal compartmentalization and cable and conduit routing system according to the present invention.



FIG. 5A illustrates a top view of a data center or co-location facility according to another embodiment of the present invention.


FIGS. 5B1 and 5B2 illustrate cut-away perspective views of an exterior and interior portion of the data center or co-location facility according to other embodiments of the present invention.



FIGS. 6A and 6B illustrate other telecommunication brackets used in the thermal compartmentalization and cable and conduit routing system according to the present invention.



FIGS. 7A and 7B illustrate a section of a distribution area and the data area within a facility according to an embodiment of the present invention.



FIG. 8 illustrates a power spine that can also be used with the preferred embodiment.



FIGS. 9A, 9B, 9C, 9D, and 9E illustrate an air handling unit according to a preferred embodiment.



FIG. 10 illustrates a control system used by the data center.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention provides data center or co-location facility designs and methods of making and using the same. The data center or co-location facility designs have certain features that will be apparent herein and which allow many advantages in terms of efficient use of space, efficient modular structures that allow for efficiency in the set-up of co-location facility and the set-up of the electronics equipment in the facility, as well as efficient air-conditioning within the facility. Each of these features has aspects that are distinct on their own, and combinations of these features also exist that are also unique.



FIG. 1(a) illustrates a floor design used in a data center or co-location facility according to the present invention. The preferred embodiment discussed herein uses parallel rows of equipment configured back-to back so that each row of equipment generally forces the heat from the electronic equipment towards a hot aisle, thus also establishing a cold aisle in the front of the equipment. The cold aisles in FIG. 1(a) are illustrated at the dotted line block 60, wherein the hot aisles are illustrated at the dotted line block 62. One feature of the present invention is the provision for marking the floor 50 to explicitly show the various areas of the facility. As illustrated, the hot aisle 62 has a central area 52 that is tiled, painted, taped or otherwise marked to indicate that it is center area of the hot aisle 62, also referred to as a central hot air area. The typical dimensions of the central area 52 are typically in the range of 2′-4′ across the width, with a row length corresponding to the number of electronic cabinets in the row. Marking with tiles is preferable as the marking will last, and tiles that are red in color, corresponding to the generation of heat, have been found preferable. Around this center area 52 is a perimeter area 54, over which the cabinets are installed. This perimeter area 54 is marked in another manner, such as using a grey tile that is different in color from the center area 52. Around the perimeter area 54 is an outside area 56, which is marked in yet a different manner, such as using a light grey tile. The placement of these markings for areas 52, 54 and 56 on the floor of the facility, preferably prior to moving any equipment onto the floor, allows for a visual correspondence on the floor of the various hot and cold aisles. In particular, when installing cabinets over the perimeter 54 are, the area that is for the front of the cabinet that will face the cold aisle, and thus the area for the back of the cabinet for the hot aisle, is readily apparent.



FIG. 1(b) illustrates floor-based components disposed over the floor design of the co-location facility according to the present invention. FIG. 1(b) also shows additional area of the floor, which in this embodiment is provided to illustrate interaction of the electronics equipment with the evaporators of the air conditioning units. In the embodiment described with respect to FIG. 1(b), certain features are included so that conventional equipment, particularly conventional air conditioning equipment, can effectively be used while still creating the desired air flow patterns of the present invention as described herein.


Before describing the components in FIG. 1(b), an aspect of the present invention is to isolate the hot air exhaust from the areas that require cooling as much as possible, and to also create air flows in which the air moves through the exhaust system, into the air conditioning system, through the air conditioning ducts and out to the cool equipment in a very rapid manner. In particular, the amount of circulation established according to the present invention moves air at a volume such that the entire volume of air in the facility recirculates at least once every 10 minutes, preferably once every 5 minutes, and for maximum cooling once every minute. It has been found that this amount of recirculation, in combination with the air flows established by the present invention, considerably reduce the temperature in the facility in an environmentally efficient manner.


Cabinets 110 shown in FIG. 1(b) are placed generally over the sides of the perimeter 54 as described, in rows. Different rows are thus shown with cabinets 110(a-f), with each letter indicating a different row. Also included within the rows are telecommunications equipment 170 to which the electronics equipment in each of the cabinets 110 connect as described further herein, as well as power equipment 180, containing circuit breakers as is known to protect against energy spikes and the like, that is used to supply power along wires to the electronics equipment in each of the cabinets 110 connect as described further herein. Air conditioning units include the evaporator units 120 (1-6) that are shown being physically separated by some type of barrier from the area 56 described previously with respect to FIG. 1(a). The condenser units of the air conditioning system that receive the warmed refrigerant/water along lines 122 and are disposed outside the walls of the facility are not shown. This physical separation is implemented in order to establish warm exhaust channel area 240 separate from the physical space, which warm air area will connect to a separate warm air area in the ceiling and allow the warm air to flow into the exhaust channel area 240 and enter into intake ducts of evaporator air conditioning equipment 120, as will be described. This feature allows the usage of conventional evaporator air conditioning equipment that has air intakes at the bottom of the unit, as well as allows for usage of different air conditioning equipment types, while still maintaining an efficient airflow throughout the entire facility.



FIG. 1(c) illustrates a perspective cut-away view along line c-c from FIG. 1(a) of the FIG. 1(a) co-location facility according to the present invention. Additionally, illustrated are the false ceiling 140 and the actual ceiling 150, which have a gap that is preferably at least 1.5-3 feet and advantageously at least 15 feet, as the higher the ceiling the more the warm air rises (and thus also stays further away from the equipment in the cabinets 110). The false ceiling 140 is preferably made of tiles that can be inserted into a suspended ceiling as is known, which tiles preferably have are drywall vinyl tiles, which exhibit a greater mass than many conventional tiles. Also shown are arrows that illustrate the air flow being centrally lifted upward from the hot air area containment chamber 210 formed by the thermal shields 400 to the area between the false ceiling 140 and the actual ceiling 150, and the flow within the ceiling toward the warm exhaust channel area 240, and then downward into the warm exhaust channel area 240 with the wall 130 separating the area 56 and the warm exhaust channel area 240. Also shown are arrows that take cold air from the cold air ducts 310 and insert the air into the cold aisles 60.


Though the arrows in the drawing are directed straight downward, the vents themselves can be adjusted to allow for directional downward flow at various angles. In a preferred embodiment, each of the vents have a remote controlled actuator that allows for the offsite control of the vents, both in terms of direction and volume of air let out of each vent. This allows precise control such that if a particular area is running hot, more cold air can be directed thereto, and this can be detected (using detectors not shown), and then adjusted for offsite.



FIGS. 2(a)-(c) illustrate various cut-away perspective views of the thermal compartmentalization and cable and conduit routing system according to the present invention. In particular, FIG. 2(a) illustrates a cut away view of a portion of the hot air area containment chamber 210, which rests on top of the cabinets 110, and is formed of a plurality of the thermal shields 400 and 450, which are modular in construction and will be described further hereinafter. Also illustrated are shield brackets 500 that are mounted on top of the cabinets 110, and provide for the mounting of the shields 400 and 450, as well as an area on top of the cabinets 110 to run power and telecommunications cables, as will be described further herein.


Before describing the cabling, FIG. 2(b) and FIG. 4 illustrate the shield and cabling support bracket 500, which is made of structurally sound materials, such as steel with a welded construction of the various parts as described, molded plastic, or other materials. Ladder rack supports 510, 520, 530, 540 and 550 are attached to back vertical support 502 of the shield and cabling support bracket 500 and used to allow ladder racks 610, 620, 630, 640, and 650 respectively, placed thereover as shown. The ladder racks are intended to allow for a segregation of data and electrical power, and therefore an easier time not only during assembly, but subsequent repair. The ladder racks are attached to the ladder rack supports using support straps shown in FIG. 4, which are typically a standard “j” hook or a variant thereof. As also illustrated in FIG. 4, a support beams structure 506 provides extra support to the ladder rack, and the holes 508 are used to secure the shields 400 and 450 thereto. Horizontal support plate 504 is used to support the support bracket 500 on the cabinets 110.


With respect to the cabling and conduit, these are used to provide electrical power and data to the various servers in the facility. Conduit, containing wiring therein, is used to provide electricity. Cabling is used to provide data. In this system, it is preferable to keep the electrical power and the data signals separated.


Within the system, ladder rack 610 is used for data cabling on the cold aisle side of the thermal shields 400. Ladder rack 620 is used for an A-source power conduit (for distribution of 110-480 volt power) on the cold aisle side of the thermal shields 400. Ladder rack 630 is used for B-source power conduit (for distribution of 110-480 volt power), which is preferably entirely independent of A-source power conduit, on the cold aisle side of the thermal shields 400. Ladder rack 640 is used for miscellaneous cabling on the cold aisle side of the thermal shields 400. Ladder rack 650 is used for data cabling on the hot aisle side of the thermal shields 400.



FIGS. 3(a) and (b) illustrate modular thermal shields 400 and 450, respectively, used in the thermal compartmentalization and cabling and conduit routing system according to the present invention. Both shields 400 and 450 are made of a structurally sound material, including but not limited to steel, a composite, or a plastic, and if a plastic, one that preferably has an air space between a front piece of plastic and a back piece of plastic for an individual shield 400. Shield 400 includes a through-hole 410 that allows for certain cabling, if needed, to run between the hot and cold aisle areas, through the shield 400. A through-hole cover (not shown) is preferably used to substantially close the hole to prevent airflow therethrough. Shield 450 has a 90 degree angle that allows the fabrication of corners.


It should be appreciated that the construction of the cabinets, the shields 400 and 450, and the shield supports 500 are all uniform and modular, which allows for the efficient set-up of the facility, as well as efficient repairs if needed.


Other different embodiments of data center or co-location facilities according to the present invention also exist. For example, while the false ceiling 140 is preferred, many advantageous aspects of the present invention can be achieved without it, though its presence substantially improves airflow. Furthermore, the evaporation units for the air conditioning system can also be located outside the facility, in which case the chamber 240 is not needed, but hot air from the ceiling can be delivered to evaporation units that are disposed above the ceiling, which is more efficient in that it allows the warm air to rise. If the complete air conditioning equipment is located outside, including the evaporators, the refrigerant/water lines 122 that are used to exchange the refrigerant/water if the evaporators are disposed inside the facility is not needed, which provides another degree of safety to the equipment therein.


It is noted that aspects of the present invention described herein can be implemented when renovating an existing facility, and as such not all of the features of the present invention are necessarily used.


Data Management Center and Integrated Wiring System


In one aspect, the embodiments herein are directed to an overall data management center, including the building itself, interior aspects of the building, as well as equipment purposefully located outside yet in close proximity to the building, which equipment is used for purposes of providing both building cooling as well as supplemental power, as described further herein. In one particular aspect, the center core of the building that contains the electronics equipment is purposefully created in a manner that provides only essential equipment and ducts needed to provide power, communications, and air flow, while putting into periphery areas of the building and outside, other equipment that could interfere with the electronics equipment, whether due to that other equipment requiring extremely high power and/or water or other liquids to function, all of which can have a detrimental impact on the electronics equipment.



FIG. 5(a) illustrates a top view of a portion of a data center or co-location facility 580 according to another embodiment of the present invention. In this embodiment, unlike the embodiment shown in FIG. 1(a)-(c), the condenser air conditioning units 800 and heat expulsion chamber 900 are all disposed outside of the exterior walls 582 of the facility, as will be described further herein. There is also additional equipment disposed outside of the exterior walls 582, including evaporation units 591 that feed cooled water along lines 592 to the air conditioning units 800 as described further herein, as well as backup diesel generators 594 for supplying backup power along a transmission line 596 in the case of power outage from remotely supplied power on the national power grid.



FIG. 5(b)
1 illustrates a cut-away perspective view of an exterior and interior portion (with a 90° rotation for illustrative purposes of the interior portion) of the data center or co-location facility 580, with the exterior wall 582 being explicitly illustrated. Shown are two of the cabinet clusters 590-1A and 590-2A, and the corresponding hot air area containment chambers 210 and cold air ducts 310, which are respectively connected to the warm exhaust outlets 240-0 and cold duct inlets 310-I. The warm exhaust outlets 240-0 and cold duct inlets 310-I connect to heat expulsion chamber 900 and condenser units 800, respectively.



FIG. 5(b)
2 provides a slightly varied embodiment, in which the cold duct inlets 310-I and warm exhaust outlets 240-0 are each at the same level as the condenser units 800 and heat expulsion chamber 900, respectively, and the warm exhaust outlets 240-0 contain a 90° angled area, which allows for better hot air flow into the heat expulsion chambers 900.


Within the facility there are provided distribution areas 584 and 588, as shown in FIG. 5(a), as well as data center equipment areas 586, which equipment areas 586 each contain an array of cabinet clusters 590 (shown in one of the rows as cabinet clusters 590-1, 590-2, 590-3 . . . 590-N), since within each cabinet cluster 590, various cabinets 110 containing different electronic equipment are disposed in rows, thereby allowing each cabinet cluster 590 to be locked, as well as the cabinets 110 within the cabinet cluster 590. It is apparent that three consecutive cabinet clusters, such as 590-1, 590-2 and 590-3 correspond to the three identified clusters that are disposed around the associated hot air area containment chambers 210(a), 210(b) and 210(c) in FIG. 1(B). As is illustrated, the electronics equipment within each cabinet 110 of a cabinet cluster 590 is connected in a manner similar to that as described in FIGS. 2(a)-(c) previously.


It is noted that the cabinet cluster may have an actual physical perimeter, such as a cage built with fencing that can be locked and still permits airflow therethrough, or alternatively need not have an actual physical perimeter, in which case the orientation of the cabinets 110 and corresponding other structures as described previously with reference to FIGS. 1(a-c) can also define this same space.


The manner in which the distribution power wires and conduits, electronic equipment control wires and conduit, data cabling, and miscellaneous cabling is distributed to the cabinet clusters 590 from one of the distribution areas 584 or 588 will be described further hereinafter. As shown in FIG. 5(a), telecommunications and power distribution equipment, further described herein, is used to then feed the appropriate signals and power to the telecommunications equipment and power equipment that is stored within each cabinet cluster 590 (i.e. telecommunications equipment 170 and power equipment 180 described in FIG. 1(B)). The manner in which the distribution power wires and conduits, electronic equipment control wires and conduit, data cabling, and miscellaneous cabling is distributed to the cabinet clusters 590 from one of the distribution areas 584 and 588 will be described further hereinafter.


The array of cabinet clusters 590, and the density of the cabinets 110 and the electronics equipment therein, require substantial amounts of power and transmission capacity, which in turns requires substantial amounts of wiring, particularly for power. As described herein, as a result there is described an improved telecommunication bracket 600, which substantially rests over each of the cabinets in the cabinet clusters 590, in order to more easily accommodate the distribution power wires and conduits, as well as telecommunication wires and conduits, as well as control wires and conduits, that are then distributed from the distribution areas 584 and 588 to the telecommunications equipment 170 and power equipment 180 that is within each of the different cabinet clusters 590. As shown in FIG. 5A and FIG. 8, the distribution area 588 contains PDU's 598, described in further detail elsewhere herein, and the distribution area 584 contains transformers to step down the power grid power that is normally at 12477 volts to a 480 volt level, for transmission of 480 volt power to the PDU's 598. Also within distribution area 584 are uninterruptable power supplies in case an outage of power from the power grid occurs, as well as equipment for testing of the various power equipment that is conventionally known.


While FIG. 1B illustrates one configuration of equipment with the cabinet cluster (with the telecommunications equipment 170 and the power equipment 180 within the center of a row), FIG. 7A also shows an alternative configuration of equipment for a cabinet cluster 590, which still contains the same cabinets 110, telecommunication equipment 170 and power equipment 180. In particular, rather than having the power equipment 180 centrally located within a row, in this alternate configuration the power equipment 180 is disposed at an end of each of the rows that are within a cabinet cluster 590. The telecommunication equipment, within this embodiment, can be located anywhere within the row of cabinets 110, within whichever one of the cabinets 110 makes most sense given the usage considerations for that cabinet cluster 590.


In another variation of the FIG. 7A embodiment, the power equipment 180, instead of being somewhat separated from the cabinets 110 within a cluster 590, instead abut right next to one of the cabinets 110. This, along with the doors 593 shown in FIG. 7A then being attached between adjacent power equipment at the end of the cabinet row instead of at the end cabinet, keep all the equipment in a tightly configured space. In any of the embodiments shown, whether FIG. 1C, 7A or as described above, the thermal shield 400 that creates the hot air area containment chamber 210 above the cabinets, coupled with the doors that seal off the area between the rows of cabinets 110 within a cluster 590, provide an environment that prevents the hot air within the hot air area 52 from escaping out into the main data center floor, and ensures that the hot air instead travels up through the hot air area containment chamber 210 and into the gap disposed between the false ceiling 140 and the actual ceiling 150.


Within equipment area 586 is thus established an array of cabinet clusters 590, which cabinet clusters align with each other to allow for the overhead stringing of telecommunications and power wiring as described herein. Within each cabinet cluster 590, as also shown in FIG. 1B, is telecommunications equipment 170 to which the electronics equipment in each of the cabinets 110 connect, as well as power equipment 180 used to connect the electronics equipment to power. The array of cabinet clusters 590, each also containing brackets, such as brackets 500 or 600, as described herein. For a larger size data center as illustrated in FIG. 5(a) that contains a very large array of cabinet clusters 590, brackets 600 are preferable, as they allow for additional conduit support areas. These brackets 600, discussed further herein with respect to FIGS. 6(a-b), contain ladder racks 510, 520, 530 and 540 that are used for stringing power and telecommunication wiring within each cabinet cluster 590, as well as contain additional vertical support with conduit clamps that are used to hold power and telecommunication lines that pass from each cabinet cluster 590 to other central telecommunication and power distribution areas, as discussed further herein, as well as to hold power and telecommunication lines that pass over certain of the cabinet clusters 590 in order to be strung to other of the cages areas 590. Still further, these same brackets 600, being preferably mounted over the cabinets 110, and at least having a significant portion of the bracket disposed over the cabinets 110, are used to mount the thermal shield within the cabinet cluster 590, the thermal shield providing a contiguous wall around the central hot air area of the cabinet cluster 590, and defining a warm exhaust channel that traps the heated air within the central hot air area and causes substantially all the heated air within the central hot air area to rise up within the warm exhaust channel. These brackets 600 also preferably span from the top of the cabinets 110 to the bottom of the false ceiling 140 to provide further stability.


It is apparent that the power and telecommunication lines that pass from each cabinet cluster 590 to other more central telecommunication and power distribution areas will necessarily pass, in some instances, over other cabinet clusters 590. Since the vertical support 610 with conduit clamps 620 are above the ladder racks 510, 520, 530 and 540 for each of the brackets 600, as well as above each of the cabinets 110, this allows for long runs of power and telecommunication lines that pass from each cabinet cluster 590 to other more central telecommunication and power distribution areas to exist without interfering with the wiring that exists within each cabinet cluster 590. Furthermore, by creating a sufficient area of vertical support and conduit clamps, it is then possible to run additional power and telecommunication lines from certain cabinet clusters 590 to other more central telecommunication and power distribution areas without having to re-work existing wiring. This makes expansion much simpler than in conventional designs.



FIGS. 6a-b illustrate in detail two different embodiments of the telecommunication bracket 600 referred to above that is used in the thermal compartmentalization and cable and conduit routing system according to the present invention. This bracket 600 serves the same purpose as the bracket 500 illustrated and described previously with respect to FIG. 4, and as such similar parts of the bracket 600 are labeled the same and need not be further described herein. This bracket 600, however, additionally provides additional vertical support 610 that allows for the running of additional wiring and conduits.


In FIG. 6A, this additional vertical support 610 includes conduit clamps 620 that allow the clamping of the additional conduits to the additional vertical support 610.


In FIG. 6B, the bracket 600A has in addition to the vertical support 610 a support beam 506A (which extends upwards from the support beam 506 shown in FIG. 4), and racks 630, 632, 634, 636, 638, and 640 therebetween. Each of the racks 630, 632, 634, 636, 638, and 640 have room for at least 4 different 4″ conduits to run wiring or cabling therethrough. Whether the conduit clamps or additional conduit racks are used, both provide for conduit holding, and holding of the wires or cables within the conduits.


In both the brackets 600 of FIGS. 6a-b, the additional wiring/conduit is distribution power wires and conduits and other wire/conduit for control uses, for example. As explained hereafter, the distribution power wires and conduits can run from various power equipment units 180 disposed in each of the cabinet clusters 590 to various other high power distribution units (PDUs) 598 disposed within the distribution area 588, as shown in FIG. 7A.



FIG. 7A also illustrates the distribution of power PDUs 598 within a section of the distribution area 588 to power equipment 180 in an end cabinet cluster 590-1 within a section of the data equipment center area 586 via distribution power wires and conduit (one shown as 597). In particular, as is shown, distribution power wires and conduit goes from each of the PDUs 598A and 598B to the power equipment unit 180A within the end cabinet cluster 590-1, and distribution power wires and conduit also goes from both the PDUs 598A and 598B to the power equipment unit 180B within the end cabinet cluster 590-1, so that redundant power can be provided to the electronic equipment within each row. Since power is provided to each piece of power equipment 180 from two different sources, these power equipment units can also be called redundant power panels, or RPP's. In addition, distribution power wires and conduit go from each of PDUs 598A and 598B over the end cabinet cluster 590-1 to further cabinet clusters 590-2, 590-3 to 590-N. The array of cabinet clusters 590 are aligned as shown in FIG. 5(a) so that the brackets 600 in different cabinet clusters 590 nonetheless can together be used to string distribution power wires and conduit and other wires/fibers with conduits as needed.


In a preferred configuration of the power equipment 180 shown in FIG. 7A provides redundant 120 volt AC power from each RPP 180 to the electrical equipment in each of the cabinets 110 within the row of the cabinet cluster 590. Within the RPP 180 are circuit breakers as is known to protect against energy spikes and the like, as well as energy sensors associated with each circuit so that a central control system, described hereinafter, can monitor the energy usage at a per circuit level. In a typical implementation, there are 42 slot breaker panels that are associated each with 120 c/208 v power that is then supplied to each of the electronic components as needed, in wiring that uses one of the ladder racks 630 or 640 as discussed previously to the necessary cabinet 110. Of course, other power configuration schemes are possible as well.


In a preferred configuration for a module of cabinet clusters 590, as schematically shown in FIG. 7B, there are three different PDUs 598 that each receive 480 vAC 3-phase power and provide 120 vAC 3-phase power service to each of 8 different RPPs 180 via the distribution power wires and conduits. This allows, for a completely used module, 6 different cabinet clusters 590 to be serviced from 12 RPP's 180, two in each cage, and 3 different PDU's 598. By providing redundancy of both RPP's 180 (×2) and PDUs 598 (×3), this allows for maximum power usage of the various components with sufficient redundancy in case any one of the PDU's 598 or any circuit on an RPP 180 fails.


A lock-related aspect of the present invention with respect to the RPPs 180 as well as the PDU's 598 is that since there are three circuits from the PDU's t the RPP's, within a dual RPP each side of the cabinet will have separate lock, such that all locks of a particular circuit can be opened by the same key, but that key cannot open locks of any of the other two circuits. This is an advantageous protection mechanism, as it prohibits a technician from mistakenly opening and operating upon a different circuit than a circuit he is supposed to service at that time.



FIG. 8 shows a power spine 599 that can also be used with the preferred embodiment to provide power from the power grid to each of the PDU's 598. As illustrated, rather than running the power spine through the roof as is conventionally done, in this embodiment the power spine 599 is run along a corridor within the distribution area 588 that channels all of the main building wiring and electrical components. This advantageously reduces stress on the roof and building structure, as the weight of the power spine and related components are supported internally within the corridor structure as shown.


Data Center Air Handling Unit


Another aspect of the data center is the air handling unit that provides for efficient cooling.


As is illustrated in FIGS. 5(a) and 5(b)1-2, one condenser unit 800 is paired with one heat expulsion chamber 900, and each are preferably independently movable. As is further illustrated, the condenser units 800 are built to a size standard that allows for transport along US state and interstate highways. Further, the heat expulsion chamber 900 is preferably sized smaller than the condenser unit 800, but still having dimensions that allow for transport using a semi-trailer. When transported to the facility 500, the condenser unit 800 is first placed into position, as shown here on posts 588, but other platforms can also be used. As shown in this embodiment, the heat expulsion chamber unit 900 is placed over the condenser unit 800, though other placements, such as adjacent or below, are also possible. Connections of power conduit, miscellaneous cabling, and water needed for proper operation of the condenser units 800 and expulsion chamber 900 is preferably made using easily attachable and detachable components.


With this configuration, the units 800 and 900 are located in standardized, accessible and relatively convenient positions relative to the facility 580 should any of the units 800/900 need to be accessed and/or removed for repair or replacement. Further, these units 800/900 are themselves created using an intentionally transportable design.



FIGS. 9A-9E provide further details regarding the condenser unit 800 and its paired heat expulsion chamber 900. In particular, as shown, the air conditioning apparatus includes the condenser unit 800 and its paired heat expulsion chamber 900. The heat expulsion chamber 900 receives heated air, and emits vented air, and the vented air is released into the external environment, while the condenser unit 800 emits cooled air.


The heat exchange unit 900 contains an exhaust fan 910, controlled by a VFD fan control and I/O signals block 1330 shown in FIG. 10, that emits heat from the heated air as the vented air, thereby allowing return air to pass through a return damper 920, which return damper 920 has a return damper actuator associated therewith.


The condenser unit 800 includes an outside air inlet 810, and has associated an outside air damper 812, thereby allowing outside air to pass therein. This outside air damper 812 is preferably coated with a neoprene seal to prevent pollution particles from passing through the damper 812 when in a closed position, as well as contains a spring-loaded mechanism closing lever that will automatically close the outside air damper 812 upon a removal of power, so that outside air is prevented from intake before backup generators 594 have to start, since after a power-grid power failure condition, before the back-up generators start, uninterruptable power supplies will supply building power, giving a period for the outside air damper 812 to close.


A filter chamber 820, which includes an air intake area 822 coupled to the heat expulsion unit 900 and the outside air inlet 810, is configurable, via the AHU control system 1000, described hereinafter, to receive the return air, the outside air, as well as a mixture of the return air and the outside air, the filter chamber resulting in filtered air. In a preferred implementation of the filters 824 within the filter chamber 820 are included a MERV 7 screen filter 824A with a MERV 16 bag filter 824B therebehind, which allows replacement of the screen filter 824A without replacement of the bag filter 824B, and vice-versa.


The condenser unit 800 includes an air cooling area 830 over which the filtered air passes to create the cooled air. For ease of nomenclature, all of the air within the air cooling area 830 is referred to as filtered air, and only upon emission from the condenser unit is it referred to as cooled air. That notwithstanding, it is understood that along various stages of the air cooling area 830, the filtered air will get progressively cooler in temperature.


The air cooling area 830 of the condenser unit 800 includes a direct cooling coil 840 filled with a gas for direct expansion, such as R134 gas, over which the filtered air passes, the gas being circulated through a condenser 842 disposed in another area of the condenser unit housing, but still in the external area, outside of the building.


The air cooling area 830 also includes an indirect cooling coil 850 filled with cooled water over which the filtered air passes, the cooled water being circulated through an evaporation unit 590 also disposed in the external area, via a water line 592 as shown in FIG. 5(a). Optionally, though not shown, another coil that is cooled by a chiller could be included.


Also shown in FIGS. 9A-9E is that the air cooling area also has an evaporator 860 that provides a water wall through which the filtered air can pass. An evaporator bypass 862 allows all or some of the filtered air to bypass the evaporator 860, and a bypass damper 880 is opened to allow 100% bypass of the evaporator 860, in which case the evaporator damper 890 is then fully closed. Filtered air can also be partially bypassed, or all go through the evaporator 860, depending on the percentage opening of each of the dampers 880 and 890.


Also within the air cooling area 830 is a fan 870, shown as a fan array of multiple fans, operable to push the filtered air through the air cooling area 830, as well as an outlet damper 880 controllable by an actuator and operable to control an amount of the cooled air delivered from the air cooling area 830.


As shown and mentioned previously the heat exchange unit 900 is contained within a first housing, and the condenser unit 800 is contained within a second housing.


Furthermore, and with reference to FIG. 10, overall air conditioning system for the data center 500 includes a control system 1000. The control system 1000 contains an air handling unit (AHU) and power control system computer 1100, which is operable to automatically control each of the exhaust fan 910, the return damper actuator, the outside air damper actuator, the condenser 842, the bypass damper actuator, the fan 870, and the outlet damper actuator.


Air Handling Control System


As referenced previously, and shown explicitly in FIG. 10, the data center 580 includes a control system 1000. The control system includes an air handling unit (AHU) and power control system (PCS) computer 1100, which as shown obtains signals from many different units, and sends signals to many different units, based upon various software routines run by the AHU/PCS computer 1100. These routines can be integrated with each other, as well as be discrete modules which operate on their own, or a combination of both.


A significant aspect of the present invention is the placement of sensors that can monitor for each/all of temperature, pressure differential, airflow, and humidity. Sensors that monitor these different aspects are placed in different locations throughout the data center.


In particular, having temperature sensors inside the thermal shield 400 (preferably redundant ones at the two ends and the middle of the cluster at least), and at different levels (such as at the middle and top of a cabinet 110, as well as at the middle and top of the thermal shield 400), as well as in stratified locations in the gap between the false ceiling 140 and the actual ceiling 150 (spaced at intervals of between 2-4 feet, as well as outside the thermal shield area, at the outside of cabinets in the cold aisles, allows for precise temperature gradient information throughout the facility.


Humidity sensors are helpful to have at locations that are the same as the temperature sensors, though fewer are needed, as humidity data need not be as precise for overall control of the building thermal environment.


Pressure differential sensors are also preferably located, redundantly, in a number of different areas. These include within the thermal shield below the false ceiling 140, outside the thermal shield below the false ceiling 140, at different locations in the gap between the false ceiling 140 and the actual ceiling 150 (spaced at intervals of between 2-4 feet), at various locations within the cold aisle ducts 310, particularly a header plenum that has a main cold air area to which many of the different condenser units connect, shown best along 310-I in FIG. 5B2 and then distribute cool air to the cooling ducts 310 that form the cold aisles. This allows for sensing of the pressure at various locations, and in particular within the hot air containment chamber 210, outside the hot air containment chamber 210 above the cabinets 110, within the gap between the false ceiling and the actual ceiling 150, and within the cold aisle ducts. This allows for modification of the air handing units 800/900 by the control system 1100. Overall pressure control between the hot air containment chamber 210, the cold aisle, and the gap between the false ceiling and the actual ceiling 150 is achieved by adjusting the air handling units 800/900 so that the pressure is maintained in these different areas within a predetermined range of each other, for example. This also allows for running the facility at a positive pressure differential when outside air is used, at ranges of 1% to 6%, such that as in essence the building breathes out.


Airflow sensors are also preferably located in each of the areas where the pressure differential sensors are noted as being required, in order to ensure that the airflow is stable, as amounts of airflow that are too great, just as pressure differentials that are too great, can adversely affect the electronic equipment.


Areas where these differentials occur the most in the embodiments described herein are at the barrier caused by the thermal shield 400 within each cabinet cluster 590, between the false ceiling and the gap thereover, since heated air from each of the different hot aisle areas 210, associated with each cabinet cluster 590, vent to this large gap area.


Signals from these sensors, as shown by Temperature, Pressure Differential, Airflow, and Humidity Sensor Control and input/output (I/O) signals (block 1310) can then be used to provide damper actuator control (block 1320), VFD fan control and I/O signals (block 1330), evaporator control and I/O signals (block 1340), condenser control and I/O signals (block 1350), evaporator control and I/O signals (block 1360), and optionally chiller control and I/O signals (block 1370). Within the Damper actuator control block is included the dampers associated with the cold aisle ducts, which dampers can be automatically adjusted to fully open, fully closed, or in-between amounts based upon sensing of the current conditions, as described previously.


Still furthermore, the AHU/PCS computer 1100 also monitors power consumption and power production, depending on the devices, to assess overall power usage. As such, electrical energy monitor sensors within the RPP 180 are operated upon by the RPP control and I/O signals block 1410, and provide an indication of the power usage of the electronics devices in the cabinets 110. The PDU 598 is monitored, as is known, and operated upon by the PDU control and I/O signals block 1420. Power load control and I/O signals block 1430 provides monitoring of the transformers and uninterruptable power supplies within the distribution area 584. Backup generator control and I/O signals block 1440 is used for the control of the backup generator 594, whereas telecommunication control and I/O signals block 1450 is used for the control of the telecommunications equipment. Equipment load control and I/O signals block 1460 controls and monitors energy consumption of other equipment within the data center facility


The above control blocks can contain software written to both act upon input signals obtained from other sensors or other units, and ensure that the various different units operate together. The usage of the term I/O signals is intended to convey that for any of the associated sensors, actuators for dampers, VFD for fans, and other mechanisms, that depending on the model used, such devices may output signals, input signals or both.


It is also noted that what occurs with one device will alter which other devices operate. Thus, for example malfunction of a particular circuit in an RPP 180 will cause the AHU/PCS computer 1100 to switch over to the redundant circuit in the same RPP 180 until that circuit is fixed.


It is particularly noted that the above system can monitor and control for certain situations that are particularly significant for data centers. For example, the air flow patterns that are caused, with the inclusion of the false ceiling 140 as shown in FIG. 1C, require assessment of high and low pressure areas. The AHU/PCS computer 1100 can monitor for this, and as a result maintain a balance, thus ensuring that fans and other components that are within the electronics equipment stored in the cabinets 110 isn't damaged.


Also shown in FIG. 10 are building cabinet cluster and cage lock sensors block 1510. This allows for the detection of which cabinet clusters 590, as well as which cabinets 110, are open, based upon sensors that are placed at each of these areas.


Fire and roof water detection leak sensors module 1520 is also shown, as this can be used in conjunction with known systems, and interfaced with the other blocks referred to herein, to ensure that if a fire or leak is detected, that appropriate shut down of equipment in the preferred sequence to avoid damage is done.


Although the present invention has been particularly described with reference to embodiments thereof, it should be readily apparent to those of ordinary skill in the art that various changes, modifications and substitutes are intended within the form and details thereof, without departing from the spirit and scope of the invention. Accordingly, it will be appreciated that in numerous instances some features of the invention will be employed without a corresponding use of other features. Further, those skilled in the art will understand that variations can be made in the number and arrangement of components illustrated in the above figures.

Claims
  • 1. A facility with an internal area separate from an outdoor environment, the internal area for maintaining electronic equipment disposed in a plurality of cabinet clusters, the facility comprising: a building that includes an exterior load wall separating the internal area from the outdoor environment, the internal area containing a volume of air;one or more wall openings in the exterior load wall;a floor within the internal area on which the plurality of cabinet clusters are disposed;a plurality of cabinets for holding the electronic equipment therein, the plurality of cabinets forming a plurality of rows, the plurality of rows forming the cabinet clusters, the cabinets arranged so that the electronic equipment disposed within the cabinets emit heated air from the cabinets;one or more air conditioning units, located in the outdoor environment, that are configured to receive the heated air, condition the heated air to create cooled air, and emit the cooled air back into the internal area;a warm air escape channel, within the building, that extends through the one or more wall openings that is configured to direct the heated air from the cabinets, through the one or more wall openings to the one or more air conditioning units; anda cool air pathway within the building extending from the one or more air conditioning units through the one or more wall openings and towards the cabinet clusters to provide the cooled air to a cold aisle, wherein the cool air pathway comprises a plurality of air ducts structured to output the cooled air below a ceiling of the cold aisle, the ceiling being disposed opposite the floor.
  • 2. The facility according to claim 1 wherein the one or more wall openings in the exterior load wall are configured to attach to one end of a warm air escape channel connector or a cool air pathway connector.
  • 3. The facility according to claim 2 wherein another end of the warm air escape channel connector or cool air pathway connector is configured to attach to the one or more air conditioning units.
  • 4. The facility according to claim 1 wherein the one or more air conditioning units also receive outdoor air.
  • 5. The facility according to claim 1 wherein the one or more air conditioning units further includes an outdoor air inlet that allows intake of outside air to a filter chamber, and a spring-loaded mechanical closing lever, the spring-loaded mechanical closing lever causing automatic closure of an outside air damper disposed within the outside air inlet upon a disruption in electrical power, thereby preventing intake of the outside air that contains gaseous exhaust to the filter chamber upon the disruption in electrical power.
  • 6. The facility according to claim 1 wherein the heated air emitted from the cabinets is directed toward a central hot air area associated with each cabinet cluster.
  • 7. The facility according to claim 6 further comprising a thermal shield providing a contiguous wall around a hot air containment chamber, that is located above the central hot air area, the thermal shield traps the heated air within the hot air containment chamber and causes substantially all the heated air within the central hot air area to be contained as it rises up from the central hot air area.
  • 8. The facility according to claim 7 wherein the heated air rises up from within the hot air containment chamber into the warm air escape channel.
  • 9. The facility according to claim 1 wherein the one or more air conditioning units are disposed on a ground level support structure.
  • 10. The facility according to claim 1 wherein the one or more air conditioning units recirculate the volume of air at least once every 10 minutes.
  • 11. The facility according to claim 1 wherein the one or more air conditioning units recirculate the volume of air at least once every 5 minutes.
  • 12. The facility according to claim 1 wherein the one or more air conditioning units recirculate the volume of air at least once every minute.
  • 13. A facility with an internal area separate from an outdoor environment, the internal area configured to house electronic equipment disposed in a plurality of cabinet clusters, the facility comprising: a building that includes an exterior load wall separating the internal area from the outdoor environment, the internal area containing a volume of air;one or more wall openings in the exterior load wall;a floor within the internal area on which the plurality of cabinet clusters are disposed;a plurality of cabinets for holding the electronic equipment therein, the plurality of cabinets arranged into a plurality of rows of cabinets, the plurality of rows of cabinets forming a cabinet cluster so that the electronic equipment disposed within the cabinets emits heated air from the cabinets;a thermal shield formed above the plurality of cabinets to direct the heated air into at least one thermal compartment;one or more air conditioning units, located in the outdoor environment, that receive the heated air, condition the heated air to create cooled air, and then emit the cooled air back into the internal area;a ceiling;a false ceiling located beneath the ceiling such that a warm air escape channel is formed between the ceiling and the false ceiling, so that the heated air is lifted upward from the at least one thermal compartment to the warm air escape channel and toward the one or more wall openings and into the one or more air conditioning units; anda cool air pathway within the building, wherein the one or more air conditioning units deliver cooled air through the one or more wall openings into the cool air pathway, the cool air pathway configured to direct the cooled air towards cold aisles of the plurality of rows of cabinets, wherein the cool air pathway comprises a plurality of air ducts structured to output the cooled air below the false ceiling of the cold aisle, the false ceiling being disposed opposite the floor.
  • 14. The facility according to claim 13 wherein the one or more wall openings in the exterior load wall are configured to attach to one end of a warm air escape channel connector or a cool air pathway connector.
  • 15. The facility according to claim 14 wherein another end of the warm air escape channel connector or cool air pathway connector is configured to attach to the one or more air conditioning units.
  • 16. The facility according to claim 13 wherein the one or more air conditioning units further receive outdoor air.
  • 17. The facility according to claim 13 wherein the one or more air conditioning units recirculate the volume of air at least once every 10 minutes.
  • 18. The facility according to claim 13 wherein the one or more air conditioning units recirculate the volume of air at least once every 5 minutes.
  • 19. The facility according to claim 13 wherein the one or more air conditioning units recirculate the volume of air at least once every minute.
PRIORITY CLAIM

This application is a continuation of U.S. patent application Ser. No. 15/871,010 entitled “Data Center Exterior Wall Penetrating Air Handling Technology” filed on Jan. 14, 2018, which is a continuation of U.S. patent application Ser. No. 15/663,169 entitled “Facility Including Externally Disposed Data Center Air Handling Units” filed on Jul. 28, 2017, which is a continuation of U.S. patent application Ser. No. 15/291,005 entitled “Facility Including Externally Disposed Data Center Air Handling Units” filed Oct. 11, 2016, which is a continuation of U.S. patent application Ser. No. 13/732,942 entitled “Electronics Equipment Data Center or Co-Location Facility Designs and Methods of Making and Using the Same” filed Jan. 2, 2013, which is a continuation of U.S. patent application Ser. No. 12/384,109 entitled “Electronic Equipment Data Center or Co-Location Facility Designs and Methods of Making and Using the Same” filed Mar. 30, 2009, which claims priority to U.S. Provisional Patent Application No. 61/040,636 entitled “Electronic Equipment Data Center or Co-Location Facility Designs and Methods of Making and Using the Same,” filed on Mar. 28, 2008, which application is expressly incorporated by reference herein. This application is also a continuation of U.S. patent application Ser. No. 12/138,771 entitled “Electronic Equipment Data Center or Co-location Facility Designs and Methods of Making and Using the Same” filed Jun. 13, 2008, which application claims priority to U.S. Provisional Patent Application No. 60/944,082 entitled “Electronic Equipment Data Center or Co-location Facility Designs and Methods of Making and Using the Same” filed Jun. 14, 2007, which applications are expressly incorporated by reference herein.

US Referenced Citations (374)
Number Name Date Kind
1363407 Goudie Dec 1920 A
2330769 Wichner Sep 1943 A
2407217 Banneyer Sep 1946 A
2880949 Fuss Apr 1959 A
2891750 Bergquist Jun 1959 A
3192306 Skonnord Jun 1965 A
3202580 Bell Aug 1965 A
3513326 Potts May 1970 A
3521843 Ogle Jul 1970 A
3563882 Kimura et al. Feb 1971 A
3840124 Atwater Oct 1974 A
3963461 Stockford Jun 1976 A
3985957 Torn Oct 1976 A
4028293 Van Den Berg Jun 1977 A
4073099 Van Der et al. Feb 1978 A
4102463 Schmidt Jul 1978 A
4118608 Kussy Oct 1978 A
4158754 Yonezaki et al. Jun 1979 A
4171029 Beale Oct 1979 A
4189990 Kittler Feb 1980 A
4233858 Rowlett Nov 1980 A
4258271 Chappell Mar 1981 A
4320261 Scerbo et al. Mar 1982 A
4434390 Elms Feb 1984 A
4453117 Elms Jun 1984 A
4456867 Mallick et al. Jun 1984 A
4461986 Maynard et al. Jul 1984 A
4467260 Mallick Aug 1984 A
4472920 Simpson Sep 1984 A
4476423 Mallick Oct 1984 A
4528789 Simpson Jul 1985 A
4548164 Ylonen et al. Oct 1985 A
4602468 Simpson Jul 1986 A
4620397 Simpson et al. Nov 1986 A
4663911 Gracia May 1987 A
4797783 Kohmoto Jan 1989 A
4852362 Conry Aug 1989 A
4996909 Vache et al. Mar 1991 A
5003867 Sodec et al. Apr 1991 A
5005323 Simpson et al. Apr 1991 A
5142838 Simpson Sep 1992 A
5237484 Ferchau Aug 1993 A
5271585 Zetena Dec 1993 A
5312296 Aalto et al. May 1994 A
5322646 Wright et al. Jun 1994 A
5438781 Landmann Aug 1995 A
5473114 Vogel Dec 1995 A
5544012 Koike Aug 1996 A
5545086 Sharp Aug 1996 A
5570740 Flores et al. Nov 1996 A
5600924 Forsberg Feb 1997 A
5655377 Mornhed Aug 1997 A
5657641 Cunningham et al. Aug 1997 A
5704170 Simpson Jan 1998 A
5743063 Boozer Apr 1998 A
5769365 Onishi Jun 1998 A
5784847 Wiklund Jul 1998 A
5829267 Fromm et al. Nov 1998 A
5852904 Yu et al. Dec 1998 A
5857292 Simpson Jan 1999 A
5875592 Allman et al. Mar 1999 A
5880544 Ikeda Mar 1999 A
5885154 Napadow et al. Mar 1999 A
5941767 Fukuda et al. Aug 1999 A
5969292 Snider et al. Oct 1999 A
6034873 Stahl et al. Mar 2000 A
6050539 Millen Apr 2000 A
6079941 Lee Jun 2000 A
6129316 Bauer Oct 2000 A
6150736 Brill Nov 2000 A
6224016 Lee et al. May 2001 B1
6231704 Carpinetti May 2001 B1
6301853 Simpson et al. Oct 2001 B1
6365830 Snider, Jr. Apr 2002 B1
6374627 Schumacher Apr 2002 B1
6394398 Reed May 2002 B1
6407533 Bartek et al. Jun 2002 B1
6412260 Lukac Jul 2002 B1
6412292 Spinazzola et al. Jul 2002 B2
6427454 West Aug 2002 B1
6437243 VanderVelde Aug 2002 B1
6453055 Fukumura et al. Sep 2002 B1
6481527 French et al. Nov 2002 B1
6506110 Borisch Jan 2003 B1
6515224 Pedro Feb 2003 B1
6535382 Bishop et al. Mar 2003 B2
6541704 Levenson et al. Apr 2003 B1
6566775 Fradella May 2003 B1
6567769 Chang May 2003 B2
6574970 Spinazzola et al. Jun 2003 B2
6592448 Williams Jul 2003 B1
6616524 Storck et al. Sep 2003 B2
6672955 Charron Jan 2004 B2
6707688 Reyes et al. Mar 2004 B2
6722151 Spinazzola et al. Apr 2004 B2
6742942 Hering et al. Jun 2004 B2
6745579 Spinazzola et al. Jun 2004 B2
6794777 Fradella Sep 2004 B1
6817688 O'Halloran Nov 2004 B2
6822859 Coglitore et al. Nov 2004 B2
6824150 Simione Nov 2004 B2
6833991 Van Gaal Dec 2004 B2
6846132 Kennedy et al. Jan 2005 B2
6848267 Pierson Feb 2005 B2
6859366 Fink et al. Feb 2005 B2
6862179 Beitelmal et al. Mar 2005 B2
6867967 Mok Mar 2005 B2
6897587 McMullen May 2005 B1
6957670 Kajino Oct 2005 B1
6967283 Rasmussen et al. Nov 2005 B2
6980433 Fink et al. Dec 2005 B2
6981915 Moore et al. Jan 2006 B2
7003374 Olin et al. Feb 2006 B2
7033267 Rasmussen et al. Apr 2006 B2
7042722 Suzuki et al. May 2006 B2
7061715 Miyamoto Jun 2006 B2
7085133 Hall Aug 2006 B2
7100827 Olin et al. Sep 2006 B2
7128138 Des Champs Oct 2006 B2
7187265 Senogles et al. Mar 2007 B1
7232236 Vitense et al. Jun 2007 B2
7278273 Whitted Oct 2007 B1
7315448 Bash et al. Jan 2008 B1
7369741 Reagan et al. May 2008 B2
7372695 Coglitore May 2008 B2
7430118 Noteboom et al. Sep 2008 B1
7448945 Bessent Nov 2008 B2
7477514 Campbell et al. Jan 2009 B2
7486511 Griffel et al. Feb 2009 B1
7500911 Johnson et al. Mar 2009 B2
7505849 Saarikivi Mar 2009 B2
7508663 Coglitore et al. Mar 2009 B2
7511959 Belady Mar 2009 B2
7542287 Lewis et al. Jun 2009 B2
7568360 Bash et al. Aug 2009 B1
7574839 Simpson Aug 2009 B1
7601922 Larsen et al. Oct 2009 B2
7604535 Germagian et al. Oct 2009 B2
7641546 Bok et al. Jan 2010 B2
7643291 Mallia et al. Jan 2010 B2
7656660 Hoeft Feb 2010 B2
7667965 Nobile Feb 2010 B2
7675747 Ong et al. Mar 2010 B1
7684193 Fink et al. Mar 2010 B2
7688578 Mann et al. Mar 2010 B2
7716829 Des Champs et al. May 2010 B2
7778030 Chiriac Aug 2010 B1
7787260 Hruby et al. Aug 2010 B2
7789359 Chopp et al. Sep 2010 B2
7804685 Krietzman et al. Sep 2010 B2
7804690 Huang et al. Sep 2010 B2
7862410 McMahan et al. Jan 2011 B2
7881310 Rasmussen et al. Feb 2011 B2
7894190 Davis et al. Feb 2011 B2
7903407 Matsushima et al. Mar 2011 B2
7944692 Grantham et al. May 2011 B2
7954070 Plocher et al. May 2011 B2
7959139 Fukui et al. Jun 2011 B2
7971446 Clidaras Jul 2011 B2
8037644 Hall Oct 2011 B2
8040673 Krietzman Oct 2011 B2
8061087 Ray Nov 2011 B2
8072780 Roy Dec 2011 B1
8113010 Carlson Feb 2012 B2
8144467 Campbell et al. Mar 2012 B2
8159820 Ibori et al. Apr 2012 B2
8180495 Roy May 2012 B1
8209056 Rasmussen et al. Jun 2012 B2
8209993 Carlson et al. Jul 2012 B2
8223495 Carlson et al. Jul 2012 B1
8257155 Lewis Sep 2012 B2
8276397 Carlson et al. Oct 2012 B1
8282451 Taylor Oct 2012 B2
8300410 Slessman Oct 2012 B2
8310832 Vanderveen et al. Nov 2012 B2
8346398 Ahmed et al. Jan 2013 B2
8469782 Roy Jun 2013 B1
8493732 Lineal et al. Jul 2013 B2
8498114 Martini Jul 2013 B2
8509960 Tai et al. Aug 2013 B2
8514572 Rogers Aug 2013 B2
8523643 Roy Sep 2013 B1
8553409 Rehmann et al. Oct 2013 B2
8574046 Nishiyama et al. Nov 2013 B2
8583290 Campbell et al. Nov 2013 B2
8601827 Keisling et al. Dec 2013 B2
8636565 Carlson et al. Jan 2014 B2
8705233 Rehmann et al. Apr 2014 B2
8782234 Pienta et al. Jul 2014 B2
8806238 Jau Aug 2014 B2
8824142 Jewell-Larsen Sep 2014 B2
8853872 Clidaras et al. Oct 2014 B2
9021821 Dunnavant May 2015 B2
9032742 Dunnavant May 2015 B2
9055696 Dunnavant Jun 2015 B2
9081538 Roy Jul 2015 B1
9104387 Eichelberg Aug 2015 B1
9119326 McDonnell et al. Aug 2015 B2
9121618 Fisher et al. Sep 2015 B2
9198331 Roy Nov 2015 B2
9204578 Smith Dec 2015 B2
9282684 Keisling et al. Mar 2016 B2
9301432 Nelson et al. Mar 2016 B2
9313927 Krietzman Apr 2016 B2
9363925 Czamara Jun 2016 B2
9560777 Krietzman et al. Jan 2017 B2
9591790 Eichelberg Mar 2017 B2
9606588 Dean et al. Mar 2017 B2
9629285 Lachapelle et al. Apr 2017 B1
9648784 Keisling et al. May 2017 B2
9867318 Eichelberg Jan 2018 B2
9877414 Vorreiter Jan 2018 B2
20010029163 Spinazzola et al. Oct 2001 A1
20020005457 Lee et al. Jan 2002 A1
20020059804 Spinazzola et al. May 2002 A1
20020108386 Spinazzola et al. Aug 2002 A1
20020121555 Cipolla et al. Sep 2002 A1
20030050003 Charron Mar 2003 A1
20030066638 Qu Apr 2003 A1
20030122379 Woods Jul 2003 A1
20030124971 Williams Jul 2003 A1
20030143942 Kennedy et al. Jul 2003 A1
20030181158 Schell et al. Sep 2003 A1
20030183955 Fields Oct 2003 A1
20030209023 Spinazzola et al. Nov 2003 A1
20030231881 Hering et al. Dec 2003 A1
20040004813 Coglitore et al. Jan 2004 A1
20040020224 Bash Feb 2004 A1
20040050231 Chu Mar 2004 A1
20040099747 Johnson et al. May 2004 A1
20040118137 Patel et al. Jun 2004 A1
20040148934 Pinkerton Aug 2004 A1
20040206101 Bash Oct 2004 A1
20040218355 Bash et al. Nov 2004 A1
20050024826 Bash Feb 2005 A1
20050034468 Dietz Feb 2005 A1
20050099770 Fink May 2005 A1
20050167135 Jackson Aug 2005 A1
20050170770 Johnson et al. Aug 2005 A1
20050185363 Rasmussen et al. Aug 2005 A1
20050225936 Day Oct 2005 A1
20050245132 Huang et al. Nov 2005 A1
20050246057 Olin et al. Nov 2005 A1
20050247072 Narayanamurthy et al. Nov 2005 A1
20050278070 Bash et al. Dec 2005 A1
20060021786 Fetterolf et al. Feb 2006 A1
20060026954 Truong Feb 2006 A1
20060055175 Grinblat Mar 2006 A1
20060056127 Lewis Mar 2006 A1
20060065000 Belady Mar 2006 A1
20060066163 Melfi Mar 2006 A1
20060072277 Schmidt et al. Apr 2006 A1
20060082263 Rimler et al. Apr 2006 A1
20060146520 Vitense et al. Jul 2006 A1
20060158037 Danley Jul 2006 A1
20060185931 Kawar Aug 2006 A1
20060187636 Fink et al. Aug 2006 A1
20060236487 Dean Oct 2006 A1
20060260338 Van Gilder et al. Nov 2006 A1
20060276121 Rasmussen et al. Dec 2006 A1
20060277501 Plocher et al. Dec 2006 A1
20060281061 Hightower Dec 2006 A1
20070021050 Kennedy Jan 2007 A1
20070032979 Hamann et al. Feb 2007 A1
20070040263 Towada Feb 2007 A1
20070064389 Lewis et al. Mar 2007 A1
20070078635 Rasmussen et al. Apr 2007 A1
20070082195 Goecke et al. Apr 2007 A1
20070094946 Schoeny May 2007 A1
20070105445 Manto et al. May 2007 A1
20070129000 Rasmussen et al. Jun 2007 A1
20070130969 Peterson Jun 2007 A1
20070135032 Wang Jun 2007 A1
20070146994 Germagian Jun 2007 A1
20070171613 McMahan et al. Jul 2007 A1
20070211443 Wechter et al. Sep 2007 A1
20070213000 Day Sep 2007 A1
20070243425 Spaner Oct 2007 A1
20070253181 Bersiek Nov 2007 A1
20070267247 Tartsch Nov 2007 A1
20070274043 Shabany Nov 2007 A1
20080029250 Carlson et al. Feb 2008 A1
20080035810 Lewis Feb 2008 A1
20080055848 Hamburgen et al. Mar 2008 A1
20080055850 Carlson et al. Mar 2008 A1
20080094797 Coglitore Apr 2008 A1
20080137266 Jensen Jun 2008 A1
20080198549 Rasmussen Aug 2008 A1
20080264688 Chopp et al. Oct 2008 A1
20080266794 Malone Oct 2008 A1
20080299890 Orrell Dec 2008 A1
20080305733 Noteboom et al. Dec 2008 A1
20090051545 Koblasz Feb 2009 A1
20090061756 Germagian et al. Mar 2009 A1
20090064551 Schroder et al. Mar 2009 A1
20090195977 Fink et al. Aug 2009 A1
20090197684 Arezina et al. Aug 2009 A1
20090228726 Malik Sep 2009 A1
20090229510 Sutter Sep 2009 A1
20090235097 Hamilton Sep 2009 A1
20090239460 Lucia et al. Sep 2009 A1
20090239461 Lewis et al. Sep 2009 A1
20090241578 Carlson Oct 2009 A1
20090277605 Vangilder et al. Nov 2009 A1
20090308579 Johnson et al. Dec 2009 A1
20090319650 Collins Dec 2009 A1
20090326721 Sugiyama Dec 2009 A1
20100003911 Graczyk et al. Jan 2010 A1
20100016730 Tanaka et al. Jan 2010 A1
20100048119 Tashiro Feb 2010 A1
20100061057 Dersch Mar 2010 A1
20100061059 Krietzman et al. Mar 2010 A1
20100110626 Schmitt et al. May 2010 A1
20100136895 Sgro Jun 2010 A1
20100139887 Slessman Jun 2010 A1
20100144265 Bednarcik et al. Jun 2010 A1
20100151781 Slessman et al. Jun 2010 A1
20100154448 Hay Jun 2010 A1
20100165565 Hellriegal et al. Jul 2010 A1
20100165572 Fink Jul 2010 A1
20100170277 Schmitt et al. Jul 2010 A1
20100187832 Holland Jul 2010 A1
20100190430 Rodriguez et al. Jul 2010 A1
20100201230 Schweitzer et al. Aug 2010 A1
20100216388 Tresh et al. Aug 2010 A1
20100028610 Caveney et al. Sep 2010 A1
20100223085 Gauthier et al. Sep 2010 A1
20100223800 Morrison et al. Sep 2010 A1
20100245083 Lewis Sep 2010 A1
20100248609 Tresh et al. Sep 2010 A1
20100267325 Matser et al. Oct 2010 A1
20100304657 Gallmann et al. Dec 2010 A1
20100314849 Realegeno-Amaya Dec 2010 A1
20100328889 Campbell et al. Dec 2010 A1
20110009047 Noteboom et al. Jan 2011 A1
20110014862 Honold et al. Jan 2011 A1
20110031071 Takeuchi Feb 2011 A1
20110078480 Calo et al. Mar 2011 A1
20110094978 Bailey et al. Apr 2011 A1
20110105010 Day May 2011 A1
20110122570 Beck et al. May 2011 A1
20110143644 Mcmahan et al. Jun 2011 A1
20110156480 Park Jun 2011 A1
20110157829 Wormsbecher et al. Jun 2011 A1
20110189936 Haspers et al. Aug 2011 A1
20110195652 Smith Aug 2011 A1
20110232209 Boersema Sep 2011 A1
20110239679 Dechene et al. Oct 2011 A1
20110239681 Ziegler Oct 2011 A1
20110239683 Czamara et al. Oct 2011 A1
20110306288 Murayama Dec 2011 A1
20120012283 Bean, Jr. Jan 2012 A1
20120014060 Slessman Jan 2012 A1
20120014061 Slessman Jan 2012 A1
20120018966 Moore et al. Jan 2012 A1
20120031585 Salpeter Feb 2012 A1
20120041569 Zhang Feb 2012 A1
20120147552 Driggers Jun 2012 A1
20120162906 Jai Jun 2012 A1
20120167600 Dunnavant Jul 2012 A1
20120229972 Bean, Jr. Sep 2012 A1
20120255710 Maselli Oct 2012 A1
20120276834 Peng et al. Nov 2012 A1
20120281357 Peng et al. Nov 2012 A1
20120297807 Canney et al. Nov 2012 A1
20120300391 Keisling Nov 2012 A1
20120300398 Eckberg et al. Nov 2012 A1
20120327592 Godrich et al. Dec 2012 A1
20120331317 Rogers Dec 2012 A1
20130148291 Slessman Jun 2013 A1
20130340361 Rogers Dec 2013 A1
20140137491 Somani et al. May 2014 A1
20140211411 Slaby Jul 2014 A1
20140254089 Eichelberg Sep 2014 A1
Foreign Referenced Citations (2)
Number Date Country
2228024 Aug 1990 GB
WO02052107 Jul 2023 WO
Non-Patent Literature Citations (14)
Entry
Paul Leslie, Vision Fire & Security, “Very early warning smoke detection—why and how it is applied to mission-critical facilities”, July 20005, 7 pages.
Sun Microsystems, Sun Microsystems Date Center Site Planning Guide, Date Centers' Best Practices, Sun Microsystems, Inc., Part No. 805-5863-13, Copyright 2003, Jan. 2003, Revision A, 106 pages.
International Search Report dated Aug. 7, 2014 in corresponding PCT/US14/30716.
Intel, publication date, if any, unknown, “Air-Cooled High-Performance Data Centers: Case Studies and Best Methods”, white paper, dated Nov. 2006, pp. 1-20.
Complaint, “Switch v. Aligned Date Centers”, 2017, U.S. District Court for the Eastern District of Texas, Marshall Division (Civil Action No. 2:17-CV-574-JRG). Litigation concerning U.S. Pat. No. 9,622,389 with invalidity allegation based on U.S. Pat. No. 8,636,565 (US2008/0055850).
Proffitt, M. “Rack-Level Power and Cooling Designs: Staying Ahead of the Curve”, Jan. 2003, Ecn Magazine p. 33.
Beaty, D. “Cooling Data Centers with Raised-Floor Plenums”, Sep. 2005, HPAC Engineering pp. 58-65.
Fink, J. “Impact of High Density Hot Aisles on IT Personnel Work Conditions”, 2005, APC White Paper #123 pp. 1-15.
Dunlap, K. “Maximizing Data Center Cooling—Auditing and understanding data center cooling performance”, Jan. 2005, Energy User News pp. 10, 12.
Dunlap et al., The Advantages of Row and Rack-Oriented Cooling Architectures for Data Centers, 2006, APC White Paper #130 pp. 1-21.
Greenberg et al., “Best Practices for Data Centers: Lessons Learned from Benchmarking 22 Data Centers”, 2006, ACEEE Summer Study on Energy Efficiency in Buildings pp. 376-387.
Rasmussen, N. “Cooling Strategies for Ultra-High Density Racks and Blade Servers”, 2006, APC White Paper #46 (Revision 5) pp. 1-22.
Hannaford, P. “Ten Cooling Solutions to Support High-Density Server Deployment”, 2006, APC White Paper #42 (Revision 2) pp. 1-16.
Domich, K. “Data-center power and cooling strategies”, May 2007, Infostor pp. 32-33.
Related Publications (1)
Number Date Country
20220104409 A1 Mar 2022 US
Provisional Applications (2)
Number Date Country
61040636 Mar 2008 US
60944082 Jun 2007 US
Continuations (5)
Number Date Country
Parent 15871010 Jan 2018 US
Child 17548515 US
Parent 15663169 Jul 2017 US
Child 15871010 US
Parent 15291005 Oct 2016 US
Child 15663169 US
Parent 13732942 Jan 2013 US
Child 15291005 US
Parent 12384109 Mar 2009 US
Child 13732942 US
Continuation in Parts (1)
Number Date Country
Parent 12138771 Jun 2008 US
Child 12384109 US