The invention relates to computer networks and, more particularly, data center network interconnects.
In a typical cloud-based data center, a large collection of interconnected servers provides computing and/or storage capacity for execution of various applications. For example, a data center may comprise a facility that hosts applications and services for subscribers, i.e., customers of the data center. The data center may, for example, host all of the infrastructure equipment, such as compute nodes, networking and storage systems, redundant power supplies, and environmental controls.
In most data centers, clusters of storage systems and application servers are interconnected via high-speed switch fabric provided by one or more tiers of physical network switches and routers. More sophisticated data centers provide infrastructure spread throughout the world with subscriber support equipment located in various physical hosting facilities.
In general, this disclosure describes data center network systems. Example implementations of network systems for data centers are described in which a switch fabric provides full mesh interconnectivity such that any of the servers may communicate packet data to any other of the servers using any of a number of parallel data paths. In example implementations, the full mesh interconnectivity may be non-blocking and drop-free.
Moreover, according to the techniques described herein, access nodes coupled to the servers, intermediate optical permutation devices, and core switches of the switch fabric may be configured and arranged in a way such that the parallel data paths in the switch fabric provide single L2/L3 hop, full mesh interconnections between any pairwise combination of the access nodes, even in massive data centers having tens of thousands of servers. A plurality of optical permutation devices optically couple the access nodes to the core switches by optical links to communicate the data packets between the access nodes and the core switches as optical signals. Each of the optical permutation devices comprises a set of input optical ports and a set of output optical ports to direct optical signals between the access nodes and the core switches to communicate the data packets. Each of the optical permutation devices is configured such that optical communications received from input optical ports are permuted across the output optical ports based on wavelength so as to provide full-mesh optical connectivity between the edge-facing ports and the core-facing ports without optical interference.
In some example implementations, this disclosure is directed to an optical permutor that operates as an optical interconnect for transporting optical communications between network devices, such as devices within a data center. As described herein, the optical permutor provides a plurality of input ports that receive respective optical input signals, each potentially carrying optical communications at a plurality of different wavelengths. Internal optical elements of the optical permutor are configured such that optical communications received from input ports are “permutated” across output optical ports based on wavelength so as to provide full-mesh connectivity between the ports and in a manner that guarantees no optical interference due to wavelength collision. That is, the optical permutor is configured to ensure that optical communications received from any one of the optical input ports can be directed to any one of the optical output ports without optical interference with any simultaneous communications on any of the other input ports. Moreover, the optical permutor may be bi-directional. In this way, the optical permutors may provide bi-directional, full-mesh point-to-point connectivity for transporting optical communications.
In some examples, this disclosure describes operations performed by an optical permutor. In one specific example, this disclosure describes a method comprising receiving, by a device having a plurality of optical input ports and a plurality of optical output ports, an optical signal over each of the plurality of optical input ports, wherein each optical signal received includes a plurality of wavelengths; splitting, by the device, the plurality of wavelengths in each of the optical signals; communicating, within the device, the plurality of wavelengths carried by each of the optical signals to the plurality of optical output ports so that each of the output optical ports each carry a unique permutation of the input optical ports and the plurality of wavelengths; and forwarding, by the device and over a network, the unique permutations to a plurality of core switches.
In another example, this disclosure describes a network system comprising: a plurality of servers; a switch fabric comprising a plurality of core switches; a plurality of access nodes, each of the access nodes coupled to a subset of the servers to communicate data packets between the servers; and an optical permutation device having a plurality of optical input ports and a plurality of optical output ports, and coupling the access nodes to the core switches by optical links, wherein the optical permutation device is configured to: receive an optical signal over each of the plurality of optical input ports from the plurality of access nodes, wherein each optical signal received includes a plurality of wavelengths; split the plurality of wavelengths in each of the optical signals; communicate the plurality of wavelengths carried by each of the optical signals to the plurality of optical output ports so that each of the output optical ports each carry a unique permutation of the input optical ports and the plurality of wavelengths; and forward, over the switch fabric, the unique permutations to the plurality of core switches.
In another example, this disclosure describes a system having a storage system and processing circuitry, wherein the processing circuitry has access to the storage system and is configured to: receiving, by a device having a plurality of optical input ports and a plurality of optical output ports, an optical signal over each of the plurality of optical input ports, wherein each optical signal received includes a plurality of wavelengths; splitting, by the device, the plurality of wavelengths in each of the optical signals; communicating, within the device, the plurality of wavelengths carried by each of the optical signals to the plurality of optical output ports so that each of the output optical ports each carry a unique permutation of the input optical ports and the plurality of wavelengths; and forwarding, by the device and over a network, the unique permutations to a plurality of core switches.
Like reference characters denote like elements throughout the figures and text.
In some examples, data center 10 may represent one of many geographically distributed network data centers. In the example of
In this example, data center 10 includes a set of storage systems and application servers 12 interconnected via high-speed switch fabric 14. In some examples, servers 12 are arranged into multiple different server groups, each including any number of servers up to, for example, n servers 121-12n. Servers 12 provide execution and storage environments for applications and data associated with customers 11 and may be physical servers, virtual machines, virtualized containers or combinations thereof.
In the example of
In some examples, access nodes 17 may be arranged into multiple different access node groups 19, each including any number of access nodes up to, for example, x access nodes 171-17x. As shown in
In the example of
As described herein, switch fabric 14 includes a set of optical permutors 321-32Y (herein, “optical permutors 32”), also referred to as optical permutation devices, connected to a set of core packet-based switches 22 that collectively provide full mesh point-to-point connectivity between servers 12. As further explained, optical permutors 32 are optical interconnect devices that transport optical signals between access nodes 17 and core switches 22 by utilizing wavelength division multiplexing such that communications for servers 12 of the same server group may be conveyed through a common optical fiber 37. For example, each access node 17 may utilize different wavelengths for conveying communications for servers 12 of the same server group. In the example of in
Furthermore, as described herein, each optical permutor 32 is configured such that optical communications received from downstream ports 36 are “permuted” across upstream ports 38 based on wavelength so as to provide full-mesh connectivity between the upstream and downstream ports without any optical interference. That is, each optical permutor 32 is configured to ensure that optical communications received from any one of downstream servers 12 can be directed to any upstream-facing optical ports 38 without optical interference with any simultaneous communications from any other server 12. Moreover, optical permutors 32 may be bi-directional, i.e., similarly configured to permute communications from upstream ports 38 across downstream ports 36 such that no optical interference occurs on any of the downstream ports. In this way, optical permutors 32 provide bi-directional, full-mesh point-to-point connectivity for transporting communications for servers 12 to/from core switches 22.
For example, optical permutor 321 is configured to optically direct optical communications from downstream-facing ports 361-36x out upstream-facing ports 381-38x such that each upstream port 38 carries a different one of the possible unique permutations of the combinations of downstream-facing ports 36 and the optical frequencies carried by those ports, where no single upstream-facing port 38 carries communications from servers 12 associated with the same wavelength. As such, in this example, each upstream-facing port 38 carries a non-interfering wavelength from each of the downstream facing ports 36, thus allowing a full mesh of communication. In
In this way, switch fabric 14 may provide full mesh interconnectivity such that any of servers 12 may communicate packet data to any other of the servers 12 using any of a number of parallel data paths. Moreover, according to the techniques described herein, switch fabric 14 may be configured and arranged in a way such that the parallel data paths in switch fabric 14 provides single L2/L3 hop, full mesh interconnections (bipartite graph) between servers 12, even in massive data centers having tens of thousands of servers. In some example implementations, each access node 17 may logically be connected to each core switch 22 and, therefore, have multiple parallel data paths for reaching any given other access node and the servers 12 reachable through those access nodes. As such, in this example, for M core switches 22, M possible data paths exist between each access node 17. Each access node 17 may be viewed as effectively connected to each core switch 22 and thus any access node sourcing traffic into switch fabric 14 may reach any other access node 17 by a single, one-hop L3 lookup by an intermediate device (core switch).
Further, in some embodiments, rather than being limited to flow-based routing and switching, switch fabric 14 may be configured such that access nodes 17 may, for any given packet flow between servers 12, spray the packets of a packet flow across all or a subset of the parallel data paths of switch fabric 14 by which a given destination access node 17 for a destination server 12 can be reached. An access node 17 sourcing a packet flow for a source server 12 may use any technique for spraying the packets across the available parallel data paths, such as random, round-robin, hash-based or other mechanism that may be designed to maximize, for example, utilization of bandwidth or otherwise avoid congestion. In some example implementations, flow-based load balancing need not necessarily be utilized and more effective bandwidth utilization may be used by allowing packets of a given packet flow (five tuple) sourced by a server 12 to traverse different paths of switch fabric 14 between access nodes 17 coupled to the source and destinations servers. The respective destination access node 17 associated with the destination server 12 may be configured to reorder the variable length IP packets of the packet flows and deliver the packets to the destination server in reordered sequence.
In this way, according to the techniques herein, example implementations are described in which access nodes 17 interface and utilize switch fabric 14 so as to provide full mesh (any-to-any) interconnectivity such that any of servers 12 may communicate packet data for a given packet flow to any other of the servers using any of a number of parallel data paths within the data center 10. For example, example network architectures and techniques are described in which access nodes, in example implementations, spray individual packets for packet flows between the access nodes and across some or all of the multiple parallel data paths in the data center switch fabric 14 and reorder the packets for delivery to the destinations so as to provide full mesh connectivity.
As described herein, the techniques of this disclosure introduce a new data transmission protocol referred to as a Fabric Control Protocol (FCP) that may be used by the different operational networking components of any of access nodes 17 to facilitate communication of data across switch fabric 14. As further described, FCP is an end-to-end admission control protocol in which, in one example, a sender explicitly requests a receiver with the intention to transfer a certain number of bytes of payload data. In response, the receiver issues a grant based on its buffer resources, QoS, and/or a measure of fabric congestion. In general, FCP enables spray of packets of a flow to all paths between a source and a destination node, and may provide any of the advantages and techniques described herein, including resilience against request/grant packet loss, adaptive and low latency fabric implementations, fault recovery, reduced or minimal protocol overhead cost, support for unsolicited packet transfer, support for FCP capable/incapable nodes to coexist, flow-aware fair bandwidth distribution, transmit buffer management through adaptive request window scaling, receive buffer occupancy based grant management, improved end to end QoS, security through encryption and end to end authentication and/or improved ECN marking support. More details on the FCP are available in U.S. Provisional Patent Application No. 62/566,060, filed Sep. 29, 2017, entitled “Fabric Control Protocol for Data Center Networks with Packet Spraying Over Multiple Alternate Data Paths,” the entire content of which is incorporated herein by reference.
Although not shown in
In some examples, multiple access nodes 17 may be grouped (e.g., within a single electronic device or appliance), referred to herein as an access node group 19, for providing connectivity to a group of servers supported by the set of access nodes internal to the device. In one example, an access node group 19 may comprise four access nodes 17, each supporting four servers so as to support a group of sixteen servers. As one example, each access node 17 may support eight 100 Gigabit Ethernet interfaces for communicating with other access nodes 17 or an optical permutor 32, and a 6×16-lane (i.e., a “96 lane”) PCIe interface for communicating with servers 12.
In one example, each access node 17 implements four different operational components or functions: (1) a source component operable to receive traffic from server 12, (2) a source switching component operable to switch source traffic to other source switching components of different access nodes 17 (possibly of different access node groups) or to core switches 22, (3) a destination switching component operable to switch inbound traffic received from other source switching components or from cores switches 22 and (4) a destination component operable to reorder packet flows and provide the packet flows to destination servers 12.
In this example, servers 12 are connected to source components of the access nodes 17 to inject traffic into the switch fabric 14, and servers 12 are similarly coupled to the destination component within the access nodes 17 to receive traffic therefrom. Because of the full-mesh, parallel data paths provided by switch fabric 14, each source switching component and destination switching component within a given access node 17 need not perform L2/L3 switching. Instead, access nodes 17 may apply spraying algorithms to spray packets of a packet flow, e.g., randomly, round-robin, based on QoS/scheduling or otherwise to efficiently forward packets without requiring packet analysis and lookup operations. Destination switching components of the ASICs may provide a limited lookup necessary only to select the proper output port for forwarding packets to local servers 12. As such, with respect to full routing tables for the data center, only core switches 22 may need to perform full lookup operations. Thus, switch fabric 14 provides a highly-scalable, flat, high-speed interconnect in which servers 12 are effectively one L2/L3 hop from any other server 12 within the data center.
In the example of
Although not shown, data center 10 may also include, for example, one or more non-edge switches, routers, hubs, gateways, security devices such as firewalls, intrusion detection, and/or intrusion prevention devices, servers, computer terminals, laptops, printers, databases, wireless mobile devices such as cellular phones or personal digital assistants, wireless access points, bridges, cable modems, application accelerators, or other network devices.
As one example, each access node group 19 of multiple access nodes 17 may be configured as standalone network device, and may be implemented as a two rack unit (2RU) device that occupies two rack units (e.g., slots) of an equipment rack. In another example, access node 17 may be integrated within a server, such as a single 1RU server in which four CPUs are coupled to the forwarding ASICs described herein on a mother board deployed within a common computing device. In yet another example, one or more of access nodes 17 and servers 12 may be integrated in a suitable size (e.g., 10RU) frame that may, in such an example, become a network storage compute unit (NSCU) for data center 10. For example, an access node 17 may be integrated within a mother board of a server 12 or otherwise co-located with a server in a single chassis.
The techniques may provide certain advantages. For example, the techniques may increase significantly the bandwidth utilization of the underlying switch fabric 14. Moreover, in example implementations, the techniques may provide full mesh interconnectivity between the servers of the data center and may nevertheless be non-blocking and drop-free.
Although access nodes 17 are described in
In the example of
For example, in
The following provides a complete example for one implementation of optical permutor 40 of
Further, each of the four optical fiber pairs for each of input ports P1-P16 is coupled to a different access node 17, thereby providing bidirectional optical connectivity from 64 different access nodes. Moreover, in this example, each access node utilizes four different wavelengths (L1-L4) for communications associated with servers 12 so as to support parallel communications for up to four servers per access node.
Table 1 lists one example configuration for optical permutor 40 for optical communications in the core-facing direction. That is, Table 1 illustrates an example configuration of optical permutor 40 for producing, on the optical fibers of core-facing output ports P17-P32, a set of 64 unique permutations for combinations of optical input ports P1-P16 and optical wavelengths L1-L4 carried by those input ports, where no single optical output port carries multiple optical communications having the same wavelength. For example, the first column of Table 1 lists the wavelengths L1-L4 carried by the four fibers F1-F4 of each input optical interfaces for ports P0-P16 while the right column lists the unique and non-interfering permutation of input port fiber/wavelength combination output on each optical output interface of ports P17-P32.
Continuing the example, Table 2 lists an example configuration for optical permutor 40 with respect to optical communications in the reverse, downstream direction, i.e., from core switches 22 to access nodes 17. That is, Table 2 illustrates an example configuration of optical permutor 40 for producing, on the optical fibers of rack-facing output ports P1-P16, a set of 64 unique permutations for combinations of core-facing input ports P16-P32 and optical wavelengths L1-L4 carried by those input ports, where no single optical output port carries multiple optical communications having the same wavelength.
Table 3 lists a second example configuration for optical permutor 40 for optical communications in the core-facing direction. As with Table 1 above, Table 3 illustrates an example configuration of optical permutor 40 for producing, on the optical fibers of core-facing output ports P17-P32, a set of 64 unique permutations for combinations of optical input ports P1-P16 and optical wavelengths L1-L4 carried by those input ports, where no single optical output port carries multiple optical communications having the same wavelength. Similar to Table 1 above, the first column of Table 3 lists the wavelengths L1-L4 carried by the four fibers F1-F4 of each input optical interfaces for ports P0-P16 while the right column lists another example of unique and non-interfering permutation of input port fiber/wavelength combination output on each optical output interface of ports P17-P32.
Continuing the example, Table 4 lists another example configuration for optical permutor 40 with respect to optical communications in the reverse, downstream direction, i.e., from core switches 22 to access nodes 17. Like Table 2 above, Table 4 illustrates another example configuration of optical permutor 40 for producing, on the optical fibers of rack-facing output ports P1-P16, a set of 64 unique permutations for combinations of core-facing input ports P16-P32 and optical wavelengths L1-L4 carried by those input ports, where no single optical output port carries multiple optical communications having the same wavelength.
Optical permutor 50 includes a respective one of optical demultiplexers 60A-60N (herein, “optical demuxes 60”) for each optical input interface 52, where the optical demultiplexer is configured to demultiplex the optical communications for a given optical input onto internal optical pathways 64 based on the bandwidth of the optical communications. For example, optical demux 60A separates the optical communications received on optical input interface 52A onto a set of internal optical pathways 64A based on wavelengths λ1,1, λ1,2, . . . λ1,n. Optical demux 60B separates the optical communications received on optical input interface 52B onto a set of internal optical pathways 64B based on wavelengths λ2,1, λ2,2, λ2,n. Each optical demux 60 operates in a similar fashion to separate the optical communications received from the receptive input optical interface 52 so as to direct the optical communications through internal optical pathways 64 toward optical output ports 54A-54N (herein, “optical output ports 54”).
Optical permutor 50 includes a respective one of optical multiplexers 62A-62N (herein, “optical muxes 62”) for each optical output port 54, where the optical multiplexer receives as input optical signals from optical pathways 64 that lead to each optical demux 64. In other words, optical pathways 64 internal to optical permutor 50 provide a full-mesh of N2 optical interconnects between optical demuxes 60 and optical muxes 62. Each optical multiplexer 62 receives N optical pathways as input and combines the optical signals carried by the N optical pathways into a single optical signal for output onto a respective optical fiber.
Moreover, optical demuxes 60 are each configured such that optical communications received from input interface ports 52 are “permuted” across optical output ports 54 based on wavelength so as to provide full-mesh connectivity between the ports and in a way that ensures optical interference is avoided. That is, each optical demux 60 is configured to ensure that each optical output port 54 receives a different one of the possible unique permutations of the combinations of optical input ports 52 and the optical frequencies carried by those ports and where no single optical output port 54 carries communications having the same wavelength.
For example, optical demux 60A may be configured to direct the optical signal having wavelength λ1,1 to optical mux 62A, wavelength λ1,2 to optical mux 62B, wavelength λ1,3 to optical mux 62C, . . . and wavelength λ1,n to optical mux 62N. Optical demux 60B is configured to deliver a different (second) permutation of optical signals by outputting wavelength λ2,n to optical mux 62A, wavelength λ2,1 to optical mux 62B, wavelength λ2,2 to optical mux 62C, . . . and wavelength λ2,n-1 to optical mux 62N. Optical demux 60C is configured to deliver a different (third) permutation of optical signals by outputting wavelength λ3,n-1 to optical mux 62A, wavelength λ3,n-2 to optical mux 62B, wavelength λ3,n-3 to optical mux 62C, . . . and wavelength λ3,n-2 to optical mux 62N. This example configuration pattern continues through optical demux 60N, which is configured to deliver a different (Nth) permutation of optical signals by outputting wavelength λN,2 to optical mux 62A, wavelength λN,3 to optical mux 62B, wavelength λN,4 to optical mux 62C, . . . and wavelength λN,1 to optical mux 62N.
In the example implementation, optical pathways 64 are arranged such that the different permutations of input interface/wavelengths are delivered to optical muxes 62. In other words, each optical demux 60 may be configured to operate in a similar manner, such as λ1 being provided to a first port of the demux, λ2 being provided to a second port of the demux . . . , and λn being provided to an Nth port of the demux. Optical pathways 64 are arranged to optically deliver a specific permutation of wavelengths to each optical mux 62 such that any communications from any one of optical demuxes 60 can reach any optical mux 62 and, moreover, each permutation of wavelengths is selected to avoid any interference between the signals, i.e., be non-overlapping.
For example, as shown in
In this way, a different permutation of input optical interface/wavelength combination is provided to each optical mux 62 and, moreover, each one of the permutations provided to the respective optical mux is guaranteed to include optical communications having non-overlapping wavelengths.
Optical permutor 50 illustrates one example implementation of the techniques described herein. In other example implementations, each optical interface 42 need not receive all N wavelengths from a single optical fiber. For example, different subsets of the N wavelengths can be provided by multiple fibers, which would then be combined (e.g., by a multiplexer) and subsequently permuted as described herein. As one example, optical permutor 50 may have 2N optical inputs 52 so as to receive 2N optical fibers, where a first subset of N optical fibers carries wavelengths λ1 . . . λn/2 and a second subset of N optical fibers carries wavelengths λn/2+1 . . . λn. Light from pairs of the optical inputs from the first and second set may be combined to form optical inputs carrying N wavelengths, which may then be permuted as shown in the example of
In the example implementation, optical permutor 50, including optical input ports 52, optical demuxes 60, optical pathways 64, optical muxes 62 and optical output ports 54 may be implemented as one or more application specific integrated circuit (ASIC), such as a photonic integrated circuit or an integrated optical circuit. In other words, the optical functions described herein may be integrated on a single chip, thereby providing an integrated optical permutor that may be incorporated into electronic cards, devices and systems.
In the example implementation of
In other examples, optical permutors 32, 40, 50 may make use of star couplers and waveguide grating routers described in Kaminow, “Optical Integrated Circuits: A Personal Perspective,” Journal of Lightwave Technology, vol. 26, no. 9, May 1, λ008, the entire contents of which are incorporated herein by reference.
In this example, network 200 represents a multi-tier network having M groups of Z physical network core switches 202A-1-202M-Z (collectively, “switches 202”) that are optically interconnected to O optical permutors 204-1-204-O (collectively, “OPs 204”), which in turn interconnect endpoints (e.g., servers 215) via Y groups of X access nodes 206A-1-206Y-X (collectively, “ANs 206”). Endpoints (e.g., servers 215) may include storage systems, application servers, compute servers, and network appliances such as firewalls and or gateways.
In the example of
Each optical permutor from OPs 204 receives light at a set of wavelengths from each of a set of multiple optical fibers coupled to the optical permutor and redistributes and outputs the wavelengths among each of another set of multiple optical fibers optically coupled to the optical permutor. Each optical permutor 204 may simultaneously input wavelengths from access nodes 206 for output to switches 202 and input wavelengths from switches 202 for output to access nodes 206.
In the example of
Network 200 may interconnect endpoints using one or more switching architectures, such as multi-tier multi-chassis link aggregation group (MC-LAG), virtual overlays, and IP fabric architectures. Each of switches 202 may represent a layer 2 (e.g., Ethernet) switch that participates in the one or more switching architectures configured for network 200 to provide point-to-point connectivity between pairs of access nodes 206. In the case of an IP fabric, each of switches 202 and access nodes 206 may execute a layer 3 protocol (e.g., BGP and/or OSPF) to exchange routes for subnets behind each of the access nodes 206.
In the example of
Each of access nodes 206 includes at least one optical interface to couple to a port of one of optical permutors 204. For example, access node 206A-1 is optically coupled to a port of optical permutor 204-1. As another example, access node 206A-2 is optically coupled to a port of optical permutor 204-2. In the example of
In the example of
Full mesh 220A of group 211A enables each pair of access nodes 206A-1-206A-X (“access nodes 206A”) to communicate directly with one another. Each of access nodes 206A may therefore reach each of optical permutors 204 either directly (via a direct optical coupling, e.g., access node 206A-1 with optical permutor 204-1) or indirectly via another of access nodes 206A. For instance, access node 206A-1 may reach optical permutor 204-O (and, by extension due to operation of optical permutor 204-O, switches 202M-1-202M-Z) via access node 206A-X. Access node 206A-1 may reach other optical permutors 204 via other access nodes 206A. Each of access nodes 206A therefore has point-to-point connectivity with each of switch groups 209. Access nodes 206 of groups 211B-211Y have similar topologies to access nodes 206A of group 211A. As a result of the techniques of this disclosure, therefore, each of access nodes 206 has point-to-point connectivity with each of switch groups 209.
The wavelength permutation performed by each of optical permutors 204 of permutation layer 212 may reduce a number of electrical switching operations required to perform layer 2 forwarding or layer 2/layer 3 forwarding of packets among pairs of access nodes 206. For example, access node 206A-1 may receive outbound packet data from a locally-coupled server 215 and that is destined for an endpoint associated with access node 206Y-1. Access node 206A-1 may select a particular transport wavelength on which to transmit the data on the optical link coupled to optical permutor 204-1, where the selected transport wavelength is permuted by optical permutor 204-1 as described herein for output on a particular optical link coupled to a switch of switching tier 210, where the switch is further coupled by another optical link to optical permutor 204-O. As a result, the switch may convert the optical signal of the selected transport wavelength carrying the data to an electrical signal and layer 2 or layer 2/layer 3 forward the data to the optical interface for optical permutor 204-O, which converts the electrical signal for the data to an optical signal for a transport wavelength that is permuted by optical permutor 204-O to access node 206Y-1. In this way, access node 206A-1 may transmit data to any other access node, such as access node 206Y-1, via network 200 with as few as a single intermediate electrical switching operation by switching tier 210.
This application is a continuation application of and claims priority to U.S. application Ser. No. 16/579,520, filed on Sep. 23, 2019, which is a continuation of U.S. application Ser. No. 15/938,767, filed on Mar. 28, 2018, now U.S. Pat. No. 10,425,707, which claims the benefit of U.S. Provisional Appl. No. 62/478,414, filed Mar. 29, 2017. The entire contents of all of these applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4872157 | Hemmady et al. | Oct 1989 | A |
4872159 | Hemmady et al. | Oct 1989 | A |
5301324 | Dewey et al. | Apr 1994 | A |
5812549 | Sethu | Sep 1998 | A |
5828860 | Miyaoku et al. | Oct 1998 | A |
6021473 | Davis et al. | Feb 2000 | A |
6055579 | Goyal et al. | Apr 2000 | A |
6314491 | Freerksen et al. | Nov 2001 | B1 |
6842906 | Bowman-Amuah | Jan 2005 | B1 |
6901451 | Miyoshi et al. | May 2005 | B1 |
6901500 | Hussain | May 2005 | B1 |
6993630 | Williams et al. | Jan 2006 | B1 |
7035914 | Payne et al. | Apr 2006 | B1 |
7289964 | Bowman-Amuah et al. | Oct 2007 | B1 |
7342887 | Sindhu | Mar 2008 | B1 |
7480304 | Yeh et al. | Jan 2009 | B2 |
7486678 | Devanagondi et al. | Feb 2009 | B1 |
7664110 | Lovett et al. | Feb 2010 | B1 |
7733781 | Petersen | Jun 2010 | B2 |
7822731 | Yu et al. | Oct 2010 | B1 |
7843907 | Abou-Emara et al. | Nov 2010 | B1 |
7965624 | Ripa et al. | Jun 2011 | B2 |
8560757 | Pangbom et al. | Oct 2013 | B2 |
8582440 | Ofelt et al. | Nov 2013 | B2 |
8599863 | Davis | Dec 2013 | B2 |
8625427 | Terry et al. | Jan 2014 | B1 |
8737410 | Davis et al. | May 2014 | B2 |
8798077 | Mehra et al. | Aug 2014 | B2 |
8850101 | Pangbom et al. | Sep 2014 | B2 |
8850125 | Pangbom et al. | Sep 2014 | B2 |
8918631 | Kumar et al. | Dec 2014 | B1 |
8966152 | Bouchard et al. | Feb 2015 | B2 |
9065860 | Pangbom et al. | Jun 2015 | B2 |
9118984 | DeCusatis et al. | Aug 2015 | B2 |
9154376 | Aziz | Oct 2015 | B2 |
9262225 | Davis et al. | Feb 2016 | B2 |
9282384 | Graves | Mar 2016 | B1 |
9294304 | Sindhu | Mar 2016 | B2 |
9294398 | DeCusatis et al. | May 2016 | B2 |
9369408 | Raghavan et al. | Jun 2016 | B1 |
9405550 | Biran et al. | Aug 2016 | B2 |
9565114 | Kabbani et al. | Feb 2017 | B1 |
9569366 | Pangbom et al. | Feb 2017 | B2 |
9632936 | Zuckerman et al. | Apr 2017 | B1 |
9800495 | Lu | Oct 2017 | B2 |
9853901 | Kampmann et al. | Dec 2017 | B2 |
9866427 | Yadav et al. | Jan 2018 | B2 |
9876735 | Davis et al. | Jan 2018 | B2 |
9946671 | Tawri et al. | Apr 2018 | B1 |
10003552 | Kumar et al. | Jun 2018 | B2 |
10135731 | Davis et al. | Nov 2018 | B2 |
10140245 | Davis et al. | Nov 2018 | B2 |
10304154 | Appu et al. | May 2019 | B2 |
10387179 | Hildebrant et al. | Aug 2019 | B1 |
10425707 | Sindhu et al. | Sep 2019 | B2 |
10540288 | Noureddine et al. | Jan 2020 | B2 |
10565112 | Noureddine et al. | Feb 2020 | B2 |
10637685 | Goel et al. | Apr 2020 | B2 |
10645187 | Goyal et al. | May 2020 | B2 |
10659254 | Sindhu et al. | May 2020 | B2 |
10686729 | Sindhu et al. | Jun 2020 | B2 |
10725825 | Sindhu et al. | Jul 2020 | B2 |
10904367 | Goel et al. | Jan 2021 | B2 |
10986425 | Sindhu | Apr 2021 | B2 |
20020015387 | Houh | Feb 2002 | A1 |
20020049859 | Bruckert et al. | Apr 2002 | A1 |
20020075862 | Mayes | Jun 2002 | A1 |
20020094151 | Li | Jul 2002 | A1 |
20020118415 | Dasylva | Aug 2002 | A1 |
20020126634 | Mansharamani et al. | Sep 2002 | A1 |
20020126671 | Ellis et al. | Sep 2002 | A1 |
20030043798 | Pugel | Mar 2003 | A1 |
20030091271 | Dragone | May 2003 | A1 |
20030229839 | Wang et al. | Dec 2003 | A1 |
20040236912 | Glasco | Nov 2004 | A1 |
20050166086 | Watanabe | Jul 2005 | A1 |
20050259632 | Malpani et al. | Nov 2005 | A1 |
20060029323 | Nikonov et al. | Feb 2006 | A1 |
20060056406 | Bouchard et al. | Mar 2006 | A1 |
20060112226 | Hady et al. | May 2006 | A1 |
20060277421 | Balestriere | Dec 2006 | A1 |
20070073966 | Corbin | Mar 2007 | A1 |
20070172235 | Snider et al. | Jul 2007 | A1 |
20070192545 | Gara et al. | Aug 2007 | A1 |
20070198656 | Mazzaferr et al. | Aug 2007 | A1 |
20070255849 | Zheng | Nov 2007 | A1 |
20070255906 | Handgen et al. | Nov 2007 | A1 |
20080002702 | Bajic | Jan 2008 | A1 |
20080138067 | Beshai | Jun 2008 | A1 |
20080244231 | Kunze et al. | Oct 2008 | A1 |
20090024836 | Shen et al. | Jan 2009 | A1 |
20090083263 | Felch et al. | Mar 2009 | A1 |
20090135832 | Fan et al. | May 2009 | A1 |
20090228890 | Vaitovirta et al. | Sep 2009 | A1 |
20090234987 | Lee et al. | Sep 2009 | A1 |
20090285228 | Bagepalli et al. | Nov 2009 | A1 |
20090303880 | Maltz et al. | Dec 2009 | A1 |
20090324221 | Neilson | Dec 2009 | A1 |
20100061391 | Sindhu et al. | Mar 2010 | A1 |
20100125903 | Devarajan et al. | May 2010 | A1 |
20100290458 | Assarpour | Nov 2010 | A1 |
20100318725 | Kwon | Dec 2010 | A1 |
20110289179 | Pekcan et al. | Jan 2011 | A1 |
20110055827 | Lin et al. | Mar 2011 | A1 |
20110113184 | Chu | Mar 2011 | A1 |
20110170553 | Beecroft et al. | Jul 2011 | A1 |
20110173392 | Gara et al. | Jul 2011 | A1 |
20110202658 | Okuno et al. | Aug 2011 | A1 |
20110225594 | Iyengar et al. | Sep 2011 | A1 |
20110228783 | Flynn | Sep 2011 | A1 |
20110238923 | Hooker et al. | Sep 2011 | A1 |
20110289180 | Sonnier et al. | Nov 2011 | A1 |
20110289279 | Sonnier et al. | Nov 2011 | A1 |
20120030431 | Anderson et al. | Feb 2012 | A1 |
20120036178 | Gavini et al. | Feb 2012 | A1 |
20120096211 | Davis et al. | Apr 2012 | A1 |
20120176890 | Balus et al. | Jul 2012 | A1 |
20120207165 | Davis | Aug 2012 | A1 |
20120254587 | Biran et al. | Oct 2012 | A1 |
20120314710 | Shikano | Dec 2012 | A1 |
20130003725 | Hendel et al. | Jan 2013 | A1 |
20130024875 | Wang et al. | Jan 2013 | A1 |
20130028083 | Yoshida et al. | Jan 2013 | A1 |
20130088971 | Anantharam et al. | Apr 2013 | A1 |
20130145375 | Kang | Jun 2013 | A1 |
20130191443 | Gan et al. | Jul 2013 | A1 |
20130258912 | Zimmerman et al. | Oct 2013 | A1 |
20130330076 | Liboiron-Ladouceur et al. | Dec 2013 | A1 |
20130346789 | Brunel et al. | Dec 2013 | A1 |
20140023080 | Zhang et al. | Jan 2014 | A1 |
20140040909 | Winser et al. | Feb 2014 | A1 |
20140044128 | Suresh et al. | Feb 2014 | A1 |
20140059537 | Kamble et al. | Feb 2014 | A1 |
20140161450 | Graves et al. | Jun 2014 | A1 |
20140187317 | Kohler et al. | Jul 2014 | A1 |
20140258479 | Tenginakai et al. | Sep 2014 | A1 |
20140269351 | Graves et al. | Sep 2014 | A1 |
20140310467 | Shalf et al. | Oct 2014 | A1 |
20140359044 | Davis et al. | Dec 2014 | A1 |
20150009994 | Keesara et al. | Jan 2015 | A1 |
20150019702 | Kncheria | Jan 2015 | A1 |
20150037032 | Xu | Feb 2015 | A1 |
20150117860 | Braun | Apr 2015 | A1 |
20150143045 | Han et al. | May 2015 | A1 |
20150143073 | Winser et al. | May 2015 | A1 |
20150163171 | Sindhu et al. | Jun 2015 | A1 |
20150180603 | Darling et al. | Jun 2015 | A1 |
20150186313 | Sodhi et al. | Jul 2015 | A1 |
20150222533 | Birrittella et al. | Aug 2015 | A1 |
20150244617 | Nakil et al. | Aug 2015 | A1 |
20150256405 | Janardhanan et al. | Sep 2015 | A1 |
20150278148 | Sindhu | Oct 2015 | A1 |
20150278984 | Koker et al. | Oct 2015 | A1 |
20150280939 | Sindhu | Oct 2015 | A1 |
20150281128 | Sindhu | Oct 2015 | A1 |
20150324205 | Eisen et al. | Nov 2015 | A1 |
20150325272 | Murphy | Nov 2015 | A1 |
20150334034 | Smedley et al. | Nov 2015 | A1 |
20150334202 | Frydman et al. | Nov 2015 | A1 |
20150378776 | Lippett | Dec 2015 | A1 |
20150381528 | Davis et al. | Dec 2015 | A9 |
20160056911 | Ye et al. | Feb 2016 | A1 |
20160062800 | Stanfill et al. | Mar 2016 | A1 |
20160092362 | Barron et al. | Mar 2016 | A1 |
20160164625 | Gronvall et al. | Jun 2016 | A1 |
20160210159 | Wilson et al. | Jul 2016 | A1 |
20160239415 | Davis et al. | Aug 2016 | A1 |
20160241430 | Yadav et al. | Aug 2016 | A1 |
20160337723 | Graves | Nov 2016 | A1 |
20160364333 | Brown et al. | Dec 2016 | A1 |
20160364334 | Asaro et al. | Dec 2016 | A1 |
20160380885 | Jani et al. | Dec 2016 | A1 |
20170005921 | Liu et al. | Jan 2017 | A1 |
20170031719 | Clark et al. | Feb 2017 | A1 |
20170032011 | Song et al. | Feb 2017 | A1 |
20170060615 | Thakkar et al. | Mar 2017 | A1 |
20170061566 | Min et al. | Mar 2017 | A1 |
20170068639 | Davis et al. | Mar 2017 | A1 |
20170235581 | Nickoils et al. | Aug 2017 | A1 |
20170265220 | Andreoli-Fang et al. | Sep 2017 | A1 |
20170286143 | Wagner et al. | Oct 2017 | A1 |
20170286157 | Hasting et al. | Oct 2017 | A1 |
20170346766 | Dutta | Nov 2017 | A1 |
20180011739 | Pothula et al. | Jan 2018 | A1 |
20180024771 | Miller et al. | Jan 2018 | A1 |
20180026901 | Sugunadass | Jan 2018 | A1 |
20180115494 | Bhatia et al. | Apr 2018 | A1 |
20180152317 | Chang et al. | May 2018 | A1 |
20180234300 | Mayya et al. | Aug 2018 | A1 |
20180239702 | Farmahini Farahani et al. | Aug 2018 | A1 |
20180287818 | Goel et al. | Oct 2018 | A1 |
20180287965 | Sindhu et al. | Oct 2018 | A1 |
20180288505 | Sindhu et al. | Oct 2018 | A1 |
20180293168 | Noureddine et al. | Oct 2018 | A1 |
20180300928 | Koker et al. | Oct 2018 | A1 |
20180307494 | Ould-Ahmed-Vall et al. | Oct 2018 | A1 |
20180307535 | Suzuki et al. | Oct 2018 | A1 |
20180322386 | Sridharan et al. | Nov 2018 | A1 |
20180357169 | Lai | Dec 2018 | A1 |
20190005176 | Illikkal et al. | Jan 2019 | A1 |
20190012278 | Sindhu et al. | Jan 2019 | A1 |
20190012350 | Sindhu et al. | Jan 2019 | A1 |
20190013965 | Sindhu et al. | Jan 2019 | A1 |
20190018806 | Koufaty et al. | Jan 2019 | A1 |
20190042292 | Palermo et al. | Feb 2019 | A1 |
20190042518 | Marolia et al. | Feb 2019 | A1 |
20190095333 | Heirman et al. | Mar 2019 | A1 |
20190102311 | Gupta et al. | Apr 2019 | A1 |
20190104057 | Goel et al. | Apr 2019 | A1 |
20190104206 | Goel et al. | Apr 2019 | A1 |
20190104207 | Goel et al. | Apr 2019 | A1 |
20190158428 | Gray et al. | May 2019 | A1 |
20190188079 | Kohli | Jun 2019 | A1 |
20190243765 | Sindhu et al. | Aug 2019 | A1 |
20190363989 | Shalev et al. | Nov 2019 | A1 |
20200021664 | Goyal et al. | Jan 2020 | A1 |
20200021898 | Sindhu et al. | Jan 2020 | A1 |
20200119903 | Thomas et al. | Apr 2020 | A1 |
20200133771 | Goyal et al. | Apr 2020 | A1 |
20200145680 | Dikshit et al. | May 2020 | A1 |
20200151101 | Noureddine et al. | May 2020 | A1 |
20200159568 | Goyal et al. | May 2020 | A1 |
20200159859 | Beckman et al. | May 2020 | A1 |
20200169513 | Goel et al. | May 2020 | A1 |
20200183841 | Noureddine et al. | Jun 2020 | A1 |
20200259682 | Goel et al. | Aug 2020 | A1 |
20200280462 | Sindhu et al. | Sep 2020 | A1 |
20200314026 | Sindhu et al. | Oct 2020 | A1 |
20210176347 | Goel et al. | Jun 2021 | A1 |
Number | Date | Country |
---|---|---|
104052618 | Sep 2014 | CN |
104954251 | Sep 2015 | CN |
105024844 | Nov 2015 | CN |
105847148 | Aug 2016 | CN |
105900406 | Aug 2016 | CN |
1079571 | Feb 2001 | EP |
1489796 | Dec 2004 | EP |
1501246 | Jan 2005 | EP |
2289206 | Mar 2011 | EP |
2928134 | Oct 2015 | EP |
2009114554 | Sep 2009 | WO |
2013184846 | Dec 2013 | WO |
2014178854 | Nov 2014 | WO |
2016037262 | Mar 2016 | WO |
2019014268 | Jan 2019 | WO |
Entry |
---|
“QFX10000 Switches System Architecture,” White Paper, Juniper Networks, Apr. 2015, 15 pp. |
Adya et al., “Cooperative Task Management without Manual Stack Management,” Proceedings of the 2002 Usenix Annual Technical Conference, Jun. 2002, 14 pp. |
Al-Fares et al., “Hedera: Dynamic Flow Scheduling for Data Center Networks,” NSDI'10 Proceedings of the 7th USENIX Conference on Networked Systems Design and Implementation, Apr. 28-30, 2010, 15 pp. |
Alizadeh et al., “Conga: Distributed Congestion-Aware Load Balancing for Datacenters,” SIGCOMM '14 Proceedings of the 2014 ACM Conference on SIGCOMM, Aug. 17-22, 2014, pp. 503-514. |
Amendment in Response to Office Action dated Dec. 31, 2019, from U.S. Appl. No. 16/147,070, filed Mar. 31, 2020, 15 pp. |
Bakkum et al., “Accelerating SQL Database Operations on a GPU with CUDA,” Proceedings of the 3rd Workshop on Genral-Purpose Computation on Graphics Processing Units, Mar. 14, 2010, 10 pp. |
Banga et al., “Better operating system features for faster network servers,” ACM Sigmetrics Performance Evaluation Review, vol. 26, Issue 3, Dec. 1998, 11 pp. |
Barroso et al., “Attack of the killer Microseconds,” Communications of the ACM, vol. 60, No. 4, Apr. 2017, 7 pp. |
Benson et al., “MicroTE: Fine Grained Traffic Engineering for Data Centers,” CoNEXT '11 Proceedings of the Seventh Conference on emerging Networking Experiments and Technologies Article No. 8, Dec. 6-9, 2011, 12 pp. |
Benson et al., “Network Traffic Characteristics of Data Centers in the Wild,” IMC '10 Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement, Nov. 1-30, 2010, pp. 267-280. |
Deutsch, “Deflate Compressed Data Format Specification version 1.3,” IETF Network Working Group, RFC 1951, May 1996, 15 pp. |
Ford et al., “TCP Extensions for Multipath Operation with Multiple Addresses,” Internet Engineering Task Force (IETF), RFC 6824, Jan. 2013, 64 pp. |
Friedman et al., “Programming with Continuations,” Technical Report 151, Nov. 1983, 14 pp. |
Gay et al., “The nesC Language: A Holistic Approach to Networked Embedded Systems,” accessed from http://nescc.sourceforge.net, last updated Dec. 14, 2004, 11 pp. |
Halbwachs et al., “The Synchronous Data Flow Programming Language LUSTRE,” Proceedings of the IEEE, vol. 79, No. 9, Sep. 1991, 16 pp. |
Haynes et al., “Continuations and Coroutines,” Technical Report No. 158, Jun. 1984, 19 pp. |
Hewitt, “Viewing Control Structures as Patterns of Passing Messages,” Massachusetts Institute of Technology, Artificial Intelligence Laboratory, Dec. 1976, 61 pp. |
Hseush et al., Data Path Debugging: Data-Oriented Debugging for a Concurrent Programming Language, PADD 88 Proceedings of the 1988 ACM SIGPLAN and SIGOPS workshop on Parallel and distributed debugging, May 5-6, 1988, 12 pp. |
Huang et al., “Erasure Coding in Windows Azure Storage,” 2012 USENIX Annual Technical Conference, Jun. 13-15, 2012, 12 pp. |
Hurson, “Advances in Computers, vol. 92,” Jan. 13, 2014, Academic Press, XP055510879, 94-95 pp. |
Sen et al., “ESKIMO—Energy Savings using Semantic Knowledge of Inconsequential Memory Occupancy for DRAM subsystem,” 42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Dec. 12-16, 2009, 10 pp. |
Kahn et al., “Actors as a Special Case of Concurrent Constraint Programming,” ECOOP/OOPSLA '90 Proceedings, Oct. 21-25, 1990, 10 pp. |
Kaminow, “Optical Integrated Circuits: A Personal Perspective,” Journal of Lightwave Technology, vol. 26, No. 9, May 1, 2008, pp. 994-1004. |
Kandula et al., “Dynamic Load Balancing Without Packet Reordering,” SIGCOMM Computer Communication Review, vol. 37, No. 2, Apr. 2007, pp. 53-62. |
Kandula et al.,“The Nature of Datacenter Traffic: Measurements & Analysis,” IMC '09 Proceedings of the 9th ACM SIGCOMM conference on Internet measurement, Nov. 4-6, 2009, pp. 202-208. |
Kelly et al., A Block Diagram Compiler, The Bell System Technical Journal, Dec. 7, 1960, 10 pp. |
Kounavis et al., “Programming the data path in network processor-based routers,” Software- Practice and Experience, Oct. 21, 2003, 38 pp. |
Larus et al., “Using Cohort Scheduling to Enhance Server Performance,” Usenix Annual Technical Conference, Jun. 2002, 12 pp. |
Levis et al., “Tiny OS: An Operating System for Sensor Networks,” Ambient Intelligence, Jan. 2005, 34 pp. |
Lin et al., A Parameterized Dataflow Language Extension for Embedded Streaming Systems, 2008 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, Jul. 21-24, 2008, 8 pp. |
Mishra et al., “Thread-based vs Event-based Implementation of a Group Communication Service,” Proceedings of the First Merged International Parallel Processing Symposium and Symposium on Parallel and Distributed Processing, Mar. 30-Apr. 3, 1998, 5 pp. |
Raiciu et al., “Improving Datacenter Performance and Robustness with Multipath TCP,” ACM SIGCOMM Computer Communication Review—SIGCOMM '11, vol. 41, No. 4, Aug. 2011, pp. 266-277. |
Schroeder et al., “Flash Reliability in Production: The Expected and the Unexpected,” 14th USENIX Conference on File and Storage Technologies (FAST '16), Feb. 22-25, 2016, 15 pp. |
Varela et al., “The Salsa Programming Language 2.0.0alpha Release Tutorial,” Tensselaer Polytechnic Institute, Nov. 2009, 52 pp. |
Von Behren et al., “Why Events are a Bad Idea (for high-concurrency servers),” Proceedings of HotOS IX, May 2003, 6 pp. |
Wang et al., “A Spatial and Temporal Locality-Aware Adaptive Cache Design with Network Optimization for Tiled Many-Core Architectures,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25. No.9, Sep. 2017, pp. 2419-2433. |
Welsh et al., “SEDA: An Architecture for Well-Conditioned, Scalable Internet Services,” Eighteenth Symposium on Operating Systems Principles, Oct. 21-24, 2001, 14 pp. |
Zhu et al., “Congestion Control for Large-Scale RDMA Deployments,” SIGCOMM '15 Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication, Aug. 17-21, 2015, pp. 523-536. |
First Office Action and Search Report, and translation thereof, from counterpart Chinese Application No. 201880033020.5, dated Mar. 30, 2020, 12 pp. |
Prosecution History from U.S. Appl. No. 15/939,041, dated Dec. 11, 2019 through Mar. 25, 2020, 14 pp. |
Prosecution History from U.S. Appl. No. 15/939,227, dated Jun. 26, 2019 through Apr. 23, 2020, 51 pp. |
U.S. Appl. No. 16/859,765, filed Apr. 27, 2020, by Goel et al. |
U.S. Appl. No. 16/901,991, filed Jun. 15, 2020, Sindhu et al. |
Prosecution History from U.S. Appl. No. 15/938,767, dated Sep. 10, 2018 through May 15, 2019, 18 pp. |
Prosecution History from U.S. Appl. No. 16/579,520, dated Jun. 26, 2020 through Dec. 24, 2020, 54 pp. |
International Preliminary Report on Patentability from International Application No. PCT/US2018/024879, dated Oct. 10, 2019, 13 pp. |
International Search Report and Written Opinion of International Application No. PCT/US2018/024879, dated Jun. 22, 2018, 19 pp. |
Final Office Action from U.S. Appl. No. 16/901,991, dated Mar. 28, 2022, 11 pp. |
Advisory Action from U.S. Appl. No. 16/901,991 dated Jun. 27, 2022, 5 pp. |
Notice of Allowance from U.S. Appl. No. 16/859,765, dated Jun. 1, 2022,10 pp. |
Response to Final Office Action dated Mar. 28, 2022 from U.S. Appl. No. 16/901,991 filed filed Jun. 28, 2022, p. 10. |
Response to Final Office Action dated Mar. 28, 2022, from U.S. Appl. No. 16/901,991, filed May 31, 2022, 9 pp. |
Office Action from U.S. Appl. No. 16/901,991, dated Nov. 3, 2021, 12 pp. |
Response to Office Action dated Nov. 3, 2021, from U.S. Appl. No. 16/901,991, filed Feb. 2, 2022, 8 pp. |
Number | Date | Country | |
---|---|---|---|
20210235173 A1 | Jul 2021 | US |
Number | Date | Country | |
---|---|---|---|
62478414 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16579520 | Sep 2019 | US |
Child | 17301842 | US | |
Parent | 15938767 | Mar 2018 | US |
Child | 16579520 | US |