The inventive subject matter relates to power systems and, more particularly, to data center power systems.
Data centers typically utilize redundant power systems. Commonly, one or more uninterruptible power supplies (UPSs) may be used to provide power from a primary utility source, with redundant (i.e., backup, auxiliary) power being provided by the UPS from a secondary source, such as a battery. An automatic transfer switch (ATS) may be used to switch between the primary utility source and a local diesel-powered motor/generator set. Responsive to a failure of a primary utility source, equipment in the data center may be temporarily powered by the UPS from the battery until the utility source is restored. In the event that the outage of the utility source is extended, the local generator may be started and the ATS may transfer the load to the generator until the utility service is restored. Some data centers also utilize additional sources, such as flywheels, photovoltaic panels, and fuel cells.
Some embodiments of the inventive subject matter provide a data center power distribution system including at least one switch configured to couple at least one first power source to a load and at least one converter configured to couple at least one second power source to the load. The system further includes a control circuit configured to implement a state machine that controls the at least one switch and the at least one converter to redundantly provide power to the load using variable source designations for the at least one first power source and the at least one second power source.
Variation of the source designations for the at least one first power source and the at least one second power source may vary a priority relationship among the at least one first power source and the at least one second power source. For example, the state machine may define transitions between at least one primary power source and at least one secondary power source configured to provide power to the load responsive to a failure of the primary power source and the control circuit may be configured to vary designations of the at least one first power source and the at least one second power source as primary and secondary power sources responsive to a control input. The at least one secondary power source may include a plurality of secondary sources and the control circuit may be configured to vary priorities among the plurality of secondary sources responsive to the control input.
In some embodiments, the at least one first source may include at least one AC source and the at least one second source may include at least one DC source. The at least one switch may include at least one static switch and the at least one converter may include at least one AC/DC converter. In further embodiments, the at least one first source may include at least one DC source and the at least one second source may include at least one AC source.
Additional embodiments provide an uninterruptible power supply (UPS) including first and second static switches configured to couple respective first and second AC power sources to a load, a DC/DC converter having a first port configured to be coupled to a DC power source and an inverter having a first port coupled to a second port of the DC/DC converter and a second port configured to be coupled to a load. The first and second static switches, the DC/DC converter and the inverter may be integrated in a single assembly. The UPS further includes a control circuit configured to implement a state machine that controls the first and second static switches, the DC/DC converter and the inverter to redundantly provide power to the load using variable source designations for the first and second AC power sources and the DC power source.
Methods according to some embodiments include providing data center power distribution system including at least one switch configured to couple at least one first power source to a load and at least one converter configured to couple at least one second power source to the load, operating a state machine that controls the at least one switch and the at least one converter to redundantly provide power to the load using source designations for the at least one first power source and the at least one second power source, and varying the source designations responsive to a control input. Variation of the source designations for the at least one first power source and the at least one second power source may vary a priority relationship among the at least one first power source and the at least one second power source.
Specific exemplary embodiments of the inventive subject matter now will be described with reference to the accompanying drawings. This inventive subject matter may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the inventive subject matter to those skilled in the art. In the drawings, like numbers refer to like items. It will be understood that when an item is referred to as being “connected” or “coupled” to another item, it can be directly connected or coupled to the other item or intervening items may be present. As used herein the term “and/or” includes any and all combinations of one or more of the associated listed items.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the inventive subject matter. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless expressly stated otherwise. It will be further understood that the terms “includes,” “comprises,” “including” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, items, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, items, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this inventive subject matter belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Some embodiments of the inventive subject matter may change the conventional paradigm under which power is redundantly provided in a data center. In particular, a conventional data center typically operates under fixed prioritization established by the conventions of UPS operation, e.g., primary power is typically provided by a utility grid, with backup power being provided by a local source, such as a battery or a local diesel motor-generator set. In contrast, the illustrated embodiment may provide UPS-like functionality while enabling dynamic redefinition of the priority of various sources without changing the basic redundancy control architecture. Thus, for example, a source, such as a fuel cell or photovoltaic array, may be used as a “secondary” source according to one source designation. To provide different prioritization of the source, its designation may be changed to a “primary” source, and source previous designated as a primary source, such as utility grid, may be designated as a “secondary source” such that, when the fuel cell malfunctions or is otherwise unavailable, the utility grid may be used to provide backup power. The designation of entities as primary and secondary may be varied based on one or more control inputs, such as availability measures for the various sources, weather conditions, cost, and combinations thereof. Using dynamic source designation according to some embodiments enables the use of equipment having a standardized redundancy arrangement that may be easily adapted for different applications, thus providing potential advantages over traditional fixed UPS arrangements.
A controller 240 controls the static switches 210a, 210b, the DC/DC converter 220 and the inverter 230. The controller 240 is configured to implement a redundancy state machine 242 that operates the static switches 210a, 210b, the DC/DC converter 220 and the inverter 230 to provide power redundancy for the load 20 according to a priority established among the sources 10a, 10b, 10c. The controller 240 also implements a source designator 244 that varies the designation of the sources 10a, 10b, 10c used by the redundancy state machine 242, such that priority relationships among the sources 10a, 10b, 10c may be changed.
An example of dynamic redundancy that may be provided by the system 200 of
In the various configurations 1-4, the first backup source (Backup #1) may be the secondary source that is first connected to the load when the primary source fails, and the second backup source (Backup #2) may be the secondary source that is connected to the load when the first backup source fails. It will be appreciated that “failure” of a source generally means the source failing to satisfy one or more predetermined criteria, and may include, for example, reduction in voltage, frequency deviation, excessive noise content, insufficient remaining capacity (e.g., charge, fuel, etc.), and the like.
As explained above, the controller 240 may transition among these different source designations responsive to one or more control inputs. The control inputs may include any of a number of different types of information, such as information about the relative costs of using the various sources and the relative availability of the various sources. Other inputs for controlling the source priority may include other parameters, for example, the criticality of the load being served. For example, while a certain prioritization of sources may provide an optimal cost of operation, such a prioritization may not be acceptable for a certain criticality of the load and/or for a certain availability of the sources, thus motivating a transition to a prioritization that provides a higher degree of security. However, if the availability and/or criticality changes, the system may transition to a prioritization that offers a better cost performance.
The integrated UPS system 200 may be implemented in a number of different ways. For example, the switches 210a, 210b, the DC/DC converter 220, the inverter 230 and the controller 240 may be contained within a single housing designed, for example, to be installed in a data center electrical room. The switches 210a, 210b, the DC/DC converter 220, the inverter 230 and/or the controller may be implemented as modules that are configured to be installed in a frame or other structure, such that numbers and/or capacities of the modules may be varied to suit particular applications. The controller 240 may be implemented as a single centralized controller and/or may be distributed among other modules, such as the switches 210a, 210b, the DC/DC converter 220 and the inverter 230. It will be understood that, generally, these components may be implemented using various arrangements of analog and digital circuitry, including microprocessors, microcontrollers or other data processing devices.
According to further embodiments, a system functionally similar to the one illustrated in
According to further embodiments, types of linkages of sources other than the switches and converters shown in
According to still further embodiments, similar techniques may be used in DC power distribution systems. For example, referring to
In the drawings and specification, there have been disclosed exemplary embodiments of the inventive subject matter. Although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the inventive subject matter being defined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
6268665 | Bobry | Jul 2001 | B1 |
6825578 | Perttu | Nov 2004 | B2 |
7142950 | Rasmussen | Nov 2006 | B2 |
7386743 | Bahali | Jun 2008 | B2 |
7446437 | Paik | Nov 2008 | B2 |
7560831 | Whitted et al. | Jul 2009 | B2 |
7969756 | Wu | Jun 2011 | B1 |
8294297 | Linkhart et al. | Oct 2012 | B2 |
8338988 | Togare | Dec 2012 | B2 |
8723362 | Park et al. | May 2014 | B2 |
8731729 | Blevins | May 2014 | B2 |
20050239518 | D'Agostino | Oct 2005 | A1 |
20060226706 | Edelen | Oct 2006 | A1 |
20090115252 | Caraghiorghiopol | May 2009 | A1 |
20100164280 | Togare | Jul 2010 | A1 |
20110278931 | Johnson, Jr. | Nov 2011 | A1 |
20110278932 | Navarro | Nov 2011 | A1 |
20120036379 | Sultenfuss | Feb 2012 | A1 |
20120068541 | Anderson | Mar 2012 | A1 |
20120074786 | Johnson, Jr. | Mar 2012 | A1 |
20120245794 | Aragai | Sep 2012 | A1 |
20130007473 | van der Lee | Jan 2013 | A1 |
20130175868 | Taurand | Jul 2013 | A1 |
20130257159 | Wang | Oct 2013 | A1 |
20130328395 | Krizman et al. | Dec 2013 | A1 |
20140097680 | Navarro | Apr 2014 | A1 |
20140097690 | Costa | Apr 2014 | A1 |
20140309802 | Monahan | Oct 2014 | A1 |
20150008744 | Navarro | Jan 2015 | A1 |
20150008745 | Navarro | Jan 2015 | A1 |
20150326012 | Tsuchiya | Nov 2015 | A1 |
20150340864 | Compton | Nov 2015 | A1 |
20160013654 | Saha | Jan 2016 | A1 |
20160134109 | Kogo | May 2016 | A1 |
20160181861 | Familiant | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
WO 2010038152 | Apr 2010 | WO |
WO 2015177729 | Nov 2015 | WO |
Entry |
---|
International Search Report and Written Opinion, corresponding Application No. PCT/US2016/066569; dated Mar. 13, 2017, (16 pages). |
Number | Date | Country | |
---|---|---|---|
20170170683 A1 | Jun 2017 | US |